Towards automating LIV/NC predictions: Helicity-polarized parton scattering in MadGraph5_aMC@NLO ${ }^{1}$

Richard Ruiz

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

[^0]
Thank you for the invitation! ©

Outline

Something New: scattering with helicity-polarized partons has been implemented in the event generator MadGraph5_aMC@NLO

- Who? What? Why? How? When?

Something Cool: a few case studies

- (polarized) vector boson scattering at the LHC (TH perspective)
- (polarized) vector boson scattering at the LHC (EX perspective)
- (polarized) vector boson scattering at muon colliders

Something Disclaimer: lots of references here omitted for space :(
(please complain if reference is missing in the paper!)

MadGraph5_aMC@NLO (mg5amc) in a Nutshell

In a Nutshell

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or Madgraph) by Stelzer and Long at Wisconsin
[hep-ph/9401258]

- For a given scattering process, generates Feynman graphs and helicity amplitudes (HELAS routines) for fast numerical evaluation

In a Nutshell

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or MadGraph) by Stelzer and Long at Wisconsin

- For a given scattering process, generates Feynman graphs and helicity amplitudes (helas routines) for fast numerical evaluation
- Phase space integration is done via MC sampling (MadEvent)
- ME also writes phase space points (external momenta!) to file with integration (probability) weight, i.e., MG+ME is a MC event generator

In a Nutshell

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or Madgraph) by Stelzer and Long at Wisconsin

- For a given scattering process, generates Feynman graphs and helicity amplitudes (helas routines) for fast numerical evaluation
- Phase space integration is done via MC sampling (MadEvent)
- ME also writes phase space points (external momenta!) to file with integration (probability) weight, i.e., MG+ME is a MC event generator

Doing this efficienctly and robustly is difficult but doable. Maltoni, Stelzer [hep-ph/0208156]

- + arbitrary color structures, + spin correlated decays of resonances (Madspin), + amplitude support for arbitrary Feynman Rule (aloна), +jet matching/merging, + loop-induced processes (Madioop)

In a Nutshell

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or Madgraph) by Stelzer and Long at Wisconsin

- For a given scattering process, generates Feynman graphs and helicity amplitudes (helas routines) for fast numerical evaluation
- Phase space integration is done via MC sampling (MadEvent)
- ME also writes phase space points (external momenta!) to file with integration (probability) weight, i.e., MG+ME is a MC event generator

Doing this efficienctly and robustly is difficult but doable. Maltoni, Stelzer [hep-ph/0208156]

- + arbitrary color structures, + spin correlated decays of resonances (Madspin), + amplitude support for arbitrary Feynman Rule (aloan), + jet matching/merging, + loop-induced processes (Madioop)
- Merger with MC@NLO for NLO in QCD [1405.0301] and NLO in EW [1804.10017]

Then and Now (Publicity Plots)

(L) Early practioners of MadGraph

Fig. 2. The number of events per $100 \mathrm{fb}^{-1}$ for which both like-sign leptons have transverse momentum greater than p_{T}^{MIN}. The rapidity and azimuthal angle cuts on the like-sign leptons are at the optimum values specified in Table 1 for $m_{\rho}=2.52 \mathrm{TeV}$. All events with the third lepton inside its acceptance region are rejected. The solid, dashed, dot-dashed, and dotted lines are, respectively, the signal and the backgrounds from $\bar{q} q \rightarrow l^{ \pm} \nu_{l} \bar{l} l$ and from $q q \rightarrow q q W^{+} W^{+} / W^{-} W^{-}$in orders α_{W}^{2} and $\alpha_{W} \alpha_{S}$.
(R) MadGraph5_aMC@NLO today

What is "new"?

${ }^{2}$ w/ Buarque Franzosi, Mattelaer, and Shil [1912.01725]; + work in progress

What is "new"?
 parton scattering with fixed external helicity polarizations ${ }^{2}$

${ }^{2}$ w/ Buarque Franzosi, Mattelaer, and Shil [1912.01725]; + work in progress

To get pp scattering rates, mg5amc uses the Collinear Factorization Thm Collins, Soper, Sterman ('85,' 88, '89); Collins, Foundations of pQCD (2011)

$$
d \sigma(p p \rightarrow W \gamma+X)=\sum_{i, j} f_{i} \otimes f_{j} \otimes \Delta_{i j} \otimes d \hat{\sigma}(i j \rightarrow W \gamma)+\mathcal{O}\left(\Lambda_{\mathrm{NP}}^{p} / Q^{p+2}\right)
$$

hadron-level scattering probabilities are the product (convolution) of parton-dist. (PDFs), -emission (Sudakov), and -scattering probs. $\left(|\mathcal{M}|^{2}\right)$

To get pp scattering rates, mg5amc uses the Collinear Factorization Thm Collins, Soper, Sterman ('85,'88,'89); Collins, Foundations of pQCD (2011)

$$
d \sigma(p p \rightarrow W \gamma+X)=\sum_{i, j} f_{i} \otimes f_{j} \otimes \Delta_{i j} \otimes d \hat{\sigma}(i j \rightarrow W \gamma)+\mathcal{O}\left(\Lambda_{\mathrm{NP}}^{p} / Q^{p+2}\right)
$$

hadron-level scattering probabilities are the product (convolution) of parton-dist. (PDFs), -emission (Sudakov), and -scattering probs. $\left(|\mathcal{M}|^{2}\right)$

The partonic scattering rate is given by the usual (textbook) expression:

$$
d \hat{\sigma}(i j \rightarrow W \gamma)=\underbrace{\frac{1}{2 Q^{2}}}_{\text {hard scale }} \underbrace{|\mathcal{M}(i j \rightarrow W \gamma)|^{2}}_{\text {dof avg./summed. }}
$$

Scattering rates for unpolarized external partons is given by the dof-averaged ${ }^{3}$ (initial states) and dof-summed (final state) ME:

$$
\overline{|\mathcal{M}(i j \rightarrow W \gamma)|^{2}}=\underbrace{\frac{1}{\mathcal{S}_{i} \mathcal{S}_{j}}}_{\text {spin dof }} \underbrace{\frac{1}{N_{c}^{i} N_{c}^{j}}}_{\text {color dof }} \sum_{\text {dof },\{\lambda\}}|\underbrace{\mathcal{M}\left(i_{\lambda} j_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\lambda^{\prime}}\right)}_{\text {ME in helicity basis }}|^{2}
$$

[^1]Scattering rates for unpolarized external partons is given by the dof-averaged ${ }^{3}$ (initial states) and dof-summed (final state) ME:

$$
\overline{|\mathcal{M}(i j \rightarrow W \gamma)|^{2}}=\underbrace{\frac{1}{\mathcal{S}_{i} \mathcal{S}_{j}}}_{\text {spin dof }} \underbrace{\frac{1}{N_{c}^{i} N_{c}^{j}}}_{\text {color dof }} \sum_{\text {dof },\{\lambda\}}|\underbrace{\mathcal{M}\left(i_{\lambda} j_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}\right)}_{\text {ME in helicity basis }}|^{2}
$$

For polarized scattering, truncate the spin averaging/summing

$$
\left.\overline{\left|\mathcal{M}\left(i j_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}\right)\right|^{2}}=\underbrace{\frac{1}{N_{c}^{i} N_{c}^{j}}}_{\text {color dof }} \sum_{\text {dof }} \right\rvert\, \underbrace{\left|\mathcal{M}\left(i j_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}\right)\right|^{2}}_{\text {ME in helicity basis }}
$$

Scattering rates for unpolarized external partons is given by the dof-averaged ${ }^{3}$ (initial states) and dof-summed (final state) ME:

$$
\overline{|\mathcal{M}(i j \rightarrow W \gamma)|^{2}}=\underbrace{\frac{1}{\mathcal{S}_{i} \mathcal{S}_{j}}}_{\text {spin dof }} \underbrace{\frac{1}{N_{c}^{i} N_{c}^{j}}}_{\text {color dof }} \sum_{\text {dof },\{\lambda\}}|\underbrace{\mathcal{M}\left(i_{\lambda} j_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}\right)}_{\text {ME in helicity basis }}|^{2}
$$

For polarized scattering, truncate the spin averaging/summing

$$
\left.|\overline{\left.\mathcal{M}\left(i_{\lambda} \lambda_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}\right)\right|^{2}}=\underbrace{\frac{1}{N_{c}^{i} N_{c}^{j}}}_{\text {color dof }} \sum_{\text {dof }}| \underbrace{\mid \mathcal{M}\left(i \lambda_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}\right)}_{\text {ME in helicity basis }}\right|^{2}
$$

The two are related by reintroducing spin averaging/summing

$$
\overline{|\mathcal{M}(i j \rightarrow W \gamma)|^{2}}=\underbrace{\frac{1}{\mathcal{S}_{i} \mathcal{S}_{j}}}_{\text {spin dof }} \sum_{\lambda, \lambda^{\prime}, \tilde{\lambda} \tilde{\lambda}^{\prime}} \overline{\left|\mathcal{M}\left(i_{i} j_{\lambda^{\prime}} \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}\right)\right|^{2}}
$$

3 degrees of freedom $=$ all discrete quantum numbers, e.g., color, spin, electric charge

Parton Scattering with Polarized External States (3/3)

Helicity-polarized parton scattering in LHC collisions is given by

$$
\left.d \sigma\left(p p \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}+X\right)\right|_{i_{\lambda}, j_{\lambda^{\prime}}}=f_{i_{\lambda}} \otimes f_{i_{\lambda^{\prime}}} \otimes \Delta_{i_{\lambda} j_{\lambda^{\prime}}} \otimes d \hat{\sigma}\left(i_{\lambda_{\lambda^{\prime}}} \rightarrow W_{\lambda} \gamma_{\tilde{\lambda}^{\prime}}\right)
$$

- $f_{i_{\lambda}}$ is the PDF for parton i with helicity λ in unpolarized proton p
- $\Delta_{i_{\lambda} j_{\lambda^{\prime}}}$ is the parton shower / evolution for i, j with helicities $\lambda, \lambda^{\prime}$

Parton Scattering with Polarized External States (3/3)

Helicity-polarized parton scattering in LHC collisions is given by

$$
\left.d \sigma\left(p p \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}+X\right)\right|_{i_{\lambda}, j_{\lambda^{\prime}}}=f_{i_{\lambda}} \otimes f_{i_{\lambda^{\prime}}} \otimes \Delta_{i_{\lambda j_{\lambda^{\prime}}}} \otimes d \hat{\sigma}\left(i_{\lambda} j_{\lambda^{\prime}} \rightarrow W_{\lambda} \gamma_{\tilde{\lambda}^{\prime}}\right)
$$

- $f_{i_{\lambda}}$ is the PDF for parton i with helicity λ in unpolarized proton p
- $\Delta_{i_{\lambda} j_{\lambda^{\prime}}}$ is the parton shower / evolution for i, j with helicities $\lambda, \lambda^{\prime}$

Again, unpolarized scattering is recovered by spin averaging/summing

$$
d \sigma(p p \rightarrow W \gamma+X)=\left.\underbrace{\sum_{i_{\lambda}, j_{\lambda^{\prime}}}}_{\text {partons }} \underbrace{\frac{1}{s_{i} S_{j}}}_{\text {spin } \text { dof }} \underbrace{\sum_{\lambda, \lambda^{\prime}, \tilde{\lambda} \tilde{\lambda}^{\prime}}}_{\text {helicities }} d \sigma\left(p p \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}+X\right)\right|_{i_{\lambda}, j_{\lambda^{\prime}}}
$$

Parton Scattering with Polarized External States (3/3)

Helicity-polarized parton scattering in LHC collisions is given by

$$
\left.d \sigma\left(p p \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}+X\right)\right|_{i_{\lambda}, j_{\lambda^{\prime}}}=f_{i_{\lambda}} \otimes f_{i_{\lambda^{\prime}}} \otimes \Delta_{i_{\lambda j_{\lambda^{\prime}}}} \otimes d \hat{\sigma}\left(i_{\lambda} j_{\lambda^{\prime}} \rightarrow W_{\lambda} \gamma_{\tilde{\lambda}^{\prime}}\right)
$$

- $f_{i_{\lambda}}$ is the PDF for parton i with helicity λ in unpolarized proton p
- $\Delta_{i_{\lambda} j_{\lambda^{\prime}}}$ is the parton shower / evolution for i, j with helicities $\lambda, \lambda^{\prime}$

Again, unpolarized scattering is recovered by spin averaging/summing

$$
d \sigma(p p \rightarrow W \gamma+X)=\left.\underbrace{\sum_{i_{\lambda}, j_{\lambda^{\prime}}}}_{\text {partons }} \underbrace{\frac{1}{s_{i} \mathcal{S}_{j}}}_{\text {spin dof }} \underbrace{\sum_{\lambda, \lambda^{\prime}, \tilde{\lambda} \tilde{\lambda}^{\prime}}}_{\text {helicities }} d \sigma\left(p p \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}+X\right)\right|_{i_{\lambda}, j_{\lambda^{\prime}}}
$$

Hence, for unpolarized initial states and polarized final states:

$$
d \sigma\left(p p \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}+X\right)=\left.\sum_{i_{\lambda}, j_{\lambda^{\prime}}} \underbrace{\frac{1}{s_{i} \mathcal{S}_{j}}}_{\text {spin dof }} \sum_{\lambda, \lambda^{\prime}} d \sigma\left(p p \rightarrow W_{\tilde{\lambda}} \gamma_{\tilde{\lambda}^{\prime}}+X\right)\right|_{i_{\lambda}, j_{\lambda^{\prime}}}
$$

WHY?!?!?!?!?!?!?!

Practical Considerations:

- Request by multiboson and VBF/VBS groups in ATLAS and CMS
- Polarization is excellent test of $V \pm A$ (chiral) structure in (B)SM
- Polarization is excellent test of gauge+unitarity structure in (B)SM
- Polarization is *not* a Lorentz-invariant quantity ©

Future Proofing:

- W_{0} / Z_{0} and W_{T} / Z_{T} PDFs (needed at $\sqrt{s} \gtrsim 50 \mathrm{TeV}$) couple differently to bosons and massles fermions

```
Note that rationale studies for }\sqrt{}{s}=27-100\textrm{TeV}\mathrm{ are being done today!
```

- (N)NLO QCD + NLO EW PDFs will eventually be needed to match precision of (N)NLO QCD + NLO EW predictions

DGLAP evolution for LH/RH quarks is asymmetric \Longrightarrow polarized PDFs

Important: While formally clear, technical implementation is difficult due to relaxing of Lorentz invariance / reference frame independence

Simulating helicity-polarized events at lowest order with mg5amc is as difficult as unpolarized computations, e.g., $q \overline{q^{\top}} \rightarrow W_{0}^{ \pm} Z_{T}$

```
MMG5_2MC>
MG5_aMC>define ww = w+ w-
Defined multiparticle ww = w+ w-
MG5_aMC>generate p p > ww{0} z{T}
INFO: Checking for minimal orders wilch gives processes.
INFO: Please specify coupling-orders to bypass this step.
INFO: Trying coupling order WEIGHTED<=4: WEIGTHED IS 2*QED+QCD
INFO: Trying process: u d~ > w+ z WEIGHTED<=4 @1
INFO: Process has 3 diagrams
INFO: Trying process: u s~ > w+ z WEIGHTED<=4 @1
INFO: Trying process: c d~ > w+ z WEIGHTED<=4 @1
INFO: Trying process: c s~ > w+ z WEIGHTED<=4 @1
INFO: Process has 3 diagrams
INFO: Trying process: d u~ > w- z WEIGHTED<=4 @1
INFO: Process has 3 diagrams
INFO: Trying process: d c~ > w- z WEIGHTED<=4 @1
INFO: Trying process: s u~ > w- z WEIGHTED<=4 @1
INFO: Trying process: s c~ > w- z WEIGHTED<=4 @1
INFO: Process has 3 diagrams
INFO: Process u~ d > w- z added to mirror process d u~ > w- z
INFO: Process c~ s > w- z added to mirror process s c~ > w- z
INFO: Process d~ u > w+ > added to mirror process u d~ > w+ z
INFO; Process s~ c > w+ z addea to mirror process c s~ > w+ z
40rocesses with 12 diagrams generated in 0.070 s
Total: 4 processes with 12 diagrams
MM55_aMC>generate p p > ww{0} z{T} [QCD]
INFO: Generating FKS-subtracted matrix glements for born process: u d~ > w+ z [ all = QCD ] (1 / 8)
MNO: Generating FKS-subtracted matriy elements for born process: c s~ > w+ z [ all = QCD ] (2 / 8)
```

- $\mathrm{z}\{\mathrm{T}\}$ denotes LH and RH transverse Z bosons
- ww\{0\} denotes longitudinal $W^{ \pm}$bosons
- Just be careful to know in which frame the helicities are defined

Active effort to make user friendly see appendices of [1912.01725]

Syntax	λ in Helas Basis	Propagator	Syntax	λ in HELAS Bask	Propagator
spin $\frac{1}{4}$				spin $\frac{1}{1}$	
(L) $\{-\}$	${ }^{-1}$ (Left)	Yes (massive only)	\{-1\}	-1	No
(R) $\{+\}$	+1 (Right)	Yes (massive only)	(1)	1	No
			(3)	3	No
			\{-3)	-3	No
spin 1				spin 2	
\{0\}	0 (Longitudina; massive only)	Yes (massive only)	\{-2\}	-2	No
(T)	1 and -L (Transverse; colserent sum)	Yes (massive only)	\{-1\}	-1	No
(L) $\{-\}$	1	No	(0)	0	No
(R) $\{+\}$	+1	No	(1)	1	No
(a)		Propagatoss only	\{2\}	2	No

Table 5. For a given particle spin, the allowed mg5amc polarization syntax, its helicity state in the HELAS basis, and whether the polarization is transmitted through propagators of massive particles.

At LO, the bracket polarization syntax can be used for any initial-state (IS) or finalstate (FS) particle in any scattering process. Examples of such usage are:
generate P P $>t t^{\sim}\{R\}$
generate $e+\{L\}$ e- $>w+\{0\} w-\{T\}$
generate $z \quad z\{R\}>w+w-\{0\}$
which respectively describe the Born-level processes:

$$
\begin{equation*}
q \bar{q} . g g \rightarrow t \bar{t}_{R}, \quad e_{L}^{+} e^{-} \rightarrow W_{o}^{+} W_{T}^{-}, \quad \text { and } \quad Z Z_{R} \rightarrow W^{+} W_{o}^{-} . \tag{A.1}
\end{equation*}
$$

The helicity label 0 denotes a longitudinally polarized massive vector boson; L and R represent LH and RH helicity polarizations for spin $1 / 2$ and 1 particles; and T models transverse polarizations of spin 1 particles as a coherent sum of L and R helicities. Throughout this following, omitting a helicity label expresses an unpolarized particle. The $\{\mathrm{X}\}$ polarization syntax can also be used with multi-partide definitions. For example: to model the diboson process $p p \rightarrow W_{T}^{ \pm} W_{0}^{\mp}$, the following commands are possible
define $w w=w+w-$
generate $\mathrm{P} P>\mathrm{ww}\{\mathrm{T}\} \mathrm{ww}\{0\}$
To avoid polarization definition conflicts, multi-particle definitions consisting of polarized states, e.g., define $w w X=w+\{T\}-\{0\}$, is not allowed.

In standard computations using mg5anc, once a process has been defined, e.g., generate p p $>\mathrm{t} t \sim$, the MadGraph sub-program $|113,124|$ will build all helicity amplitudes from ALOHA [70] and HELAS [68] routines, for all contributing sub-channels, e.g., $g g, q \bar{q} \rightarrow t \bar{t}$, and for all external helicity permutations, e.g., $t_{L} t_{L}, t_{L} t_{R}, t_{R} t_{L}$, and $t_{R} t_{R}$. Next, amplitudes are evaluated numerically, squared, and summed. For initial states and identical final states, dof. averaging and symmetry multiplicity factors are then incorporated. When using the polarization features on IS/FS particles, this procedure is changed in two ways:

syntax	croes (pb)	syntax	croes (pb)
$p p>Z Z, Z>e+e$	0.011	$\mathrm{p} p>Z \mathrm{Z}, \mathrm{Z}>1+\mathrm{b}$	0.042
$\mathrm{p} p>\mathrm{Z}\{0\} \mathrm{Z}\{0\}, \mathrm{Z}>\mathrm{e}+\mathrm{e}$	$6.5 \mathrm{ec}-4$	$\mathrm{p} \mathrm{p}>\mathrm{Z}\{0\} \mathrm{Z}\{0\}, \mathrm{Z}>1+1-$	0.0026
$\mathrm{pp}>\mathrm{Z}\{0\} \mathrm{Z}\{\mathrm{T}\}, \mathrm{Z}>e+e$	0.0025	$\mathrm{p} p>\mathrm{Z}\{\mathrm{T}\} \mathrm{Z}\{0\}, \mathrm{Z}>1+\mathrm{l}$	0.010
$\mathrm{pp}>\mathrm{Z} \mid \mathrm{T}\} \mathrm{Z}\{\mathrm{T}\}, \mathrm{Z}>\mathrm{e}+\mathrm{e}$	0.0075	$\mathrm{P} P>\mathrm{Z}\{\mathrm{T}\} \mathrm{Z}\{\mathrm{T}\}, \mathrm{Z}>1+1$	0.030
sum	0.011	smm	0.042
pp $>\mathrm{ZZ}, \mathrm{Z}>\mathrm{e}+e \mathrm{e}, \mathrm{z}>\mathrm{mu}+\mathrm{mb-}$	0.021	$p \mathrm{p}>\mathrm{Z} \mathrm{Z}, \mathrm{Z}>1+1-\mathrm{Z}>\mathrm{j} j$	0.66
$\mathrm{p} p>Z\{0\} \mathrm{Z}$ \{0\}, $\mathrm{Z}>\mathrm{e}+e, Z>\mathrm{mml}+\mathrm{mm}-$	0.0013	$p p>Z\{0\} Z\{0\}, Z>1+1, Z>j j$	0.040
$p \mathrm{p}>\mathrm{Z}\{0\} \mathrm{Z}\{\mathrm{T}\}, \mathrm{Z}>\mathrm{e}+\mathrm{e}-, \mathrm{Z}>\mathrm{mu}+\mathrm{mu}-$	0.0025	$p \mathrm{P}>\mathrm{Z}\{0\} \mathrm{Z}\{\mathrm{T}\}, \mathrm{Z}>1+1, Z>\mathrm{j}$,	0.079
	0.0025	$p \mathrm{P}>\mathrm{Z}\{\mathrm{T}\} \mathrm{Z}\{0\}, Z>1+1, Z>j j$	0.079
$\mathrm{p} p>\mathrm{Z}\{\mathrm{T}\} \mathrm{Z}\{\mathrm{T}\}, \mathrm{Z}>\mathrm{e}+\mathrm{e}, \mathrm{Z}>\mathrm{man}+\mathrm{mm-}$	0.015	$\mathrm{p} \mathrm{p}>\mathrm{Z}\{\mathrm{T}\} \mathrm{Z}\{\mathrm{T}), \mathrm{Z}>1+\mathrm{l}, \mathrm{Z}>\mathrm{j} j$	0.47
sum	0.021	smm	0.67

Table 7. Decomposition of the un-polarized sample into a sum of polarized samples. Depending of the syntax used one needs to sum either three or four different configurations. The sample with the auxiliary/scalar component are here not included since they are negligible
then NadGraph enters an ordered mode where the decays of $z\{X\}$ and $z\{Y\}$ are steered according to the order of the decay chains. In the first instance, $z\{X\}$ will be decayed to $e+e-$ and $z\{Y\}$ to mu+mu-; in the second instane, $z\{X\}$ will be decayed to $l+1$ - and $z\{Y\}$ to jj . This case is similar to the ordered syntax for initial state particles. (ii) If the number of polarized particles is different from the specified decays, like in the following:
generate $\mathrm{P} P>\mathrm{z}\{\mathrm{X}\} \mathrm{z}\{\mathrm{Y}\}, \mathrm{Z}>1+1$ -
generate $p p>z\{X\} z\{Y\}, Z>e+e-, Z>m u+m u-, Z>$ tat ta-
then MadGraph enters an unordered mode and all possible decay permutations are modeled.
In Table 7, we present the total cross section for the $p p \rightarrow Z Z$ process into different decay channels. We show the unpolarized cross section and the decomposition into different helicity configurations, together with their incoherent sum. The "correct" decomposition depends on the mode. In the ordered mode one needs to sum over all orders of helicity configurations. (In the example, this sums to four configurations since $Z_{T} Z_{0}$ and $Z_{0} Z_{T}$ are treated differently.) In the unordered mode permutations are equivalent and should not be double counted. (In the example, only three configurations sum to the unpolarized result.)

Aside from the LO MadGraph5 syntax just described, it is also possible to decay unstable, polarized, spin $1 / 2$ and 1 resonances using MadSpin $|72|$. When called, MadSpin automatically sets up the computation in the frame selected for event generation and employs the modified BW propagators described in section (3.2) and above for decaying polarized resonance, with the same support limitations listed in table (5). The syntax for MadSpin remains unchanged and ignores polarization information included in production-level Les Houches event files (LHEF). To clarify, MadSpin uses production-level information in the LHEF banner to modify unstable propagators accordingly. To model the decay of both a polarized or umpolarized W^{+}boson, one simply uses:

The MC Analysis Chain for Collider Experiments

Major efforts to support favorite phys. models in your favorite generator

- Universal FeynRules Object (UFO) libs. encode Feynman rules (.py) that work with popular event generators, e.g., MG5, Whizard

Alloul, Christensen, Duhr, Degrande, and Fuks feynrules.irmp.ucl.ac.be
case study: polarization in vector boson scattering at the LHC
(theory perspective)
big idea: studying VBS = studying Higgs / EWSB sector

Cut, rotate, glue, etc. sub-graphs $\Longrightarrow W^{+} W^{+} \rightarrow W^{+} W^{+}$scattering
(why make $W^{+} W^{-}$pairs when you can scatter them?)

$$
\begin{aligned}
& -i \mathcal{M}\left(W^{+} W^{+} \rightarrow W^{+} W^{+}\right) \sim\left(\frac{E}{M_{W}}\right)^{4} \times\left(\frac{-M_{W}^{2}}{E^{2}}\right) \times g_{W}^{2}\left(s_{\theta}^{2}+c_{\theta}^{2}\right) \sim \frac{-g_{W}^{2} E^{2}}{M_{W}^{2}} \\
& \left.W^{+} W^{+}\right) \sim\left(\frac{E}{M_{W}}\right)^{4} \times\left(\frac{1}{E^{2}}\right) \times\left(g_{W} M_{W}\right)^{2} \sim \frac{+g_{W}^{2} E^{2}}{M_{W}^{2}}
\end{aligned}
$$

Delicate (structural) cancellations when all particles are included!
Lee, Quigg, and Thacker (' 77×2); Chanowitz and Gaillard (' 84, ' 85)
\Longrightarrow modified $h-V-V$ couplings can partially disrupt cancellations

Too many contributions?
It is possible that Higgs with $m_{h}=125 \mathrm{GeV}$ is one of several in nature
add'I scalars appears in Two Higgs Doublet Models, Supersymmetry, scalar-singlet dark matter, composite Higgs

$$
\underbrace{\left|h_{\mathrm{SM}}\right\rangle}_{\text {interaction eigenstate }}=\underbrace{\cos \psi\left|h_{125} \mathrm{GeV}\right\rangle}_{\text {mass eigenstate }}+\underbrace{\sin \psi\left|H_{\text {several } \mathrm{TeV}}\right\rangle}_{\text {mass eigenstate }}
$$

$\Longrightarrow \mathcal{M}$ grows with scattering energy for $E_{(\sim 1 \mathrm{TeV})} \ll m_{H(\text { several ReV) })}$!

Plotted: angle of outgoing ℓ^{-}in

The $W_{\lambda}^{ \pm}, Z_{\lambda}$ bosons are massive, spin- 1 objects

- 2 transverse polarizations (L,R) - 1 longitudinal polarization (0)

polarizations also imprint on kinematics of decay products!
$p p \rightarrow W^{+} W_{\lambda}^{-} j j \rightarrow W^{+} e^{-} \overline{\nu_{e}} j j$ via VBS

Buarque Franzosi, Mattelaer, RR, Shil [1912.01725]

Plotted: p_{T} of outgoing ℓ^{-}in

The $W_{\lambda}^{ \pm}, Z_{\lambda}$ bosons are massive, spin-1 objects

- 2 transverse polarizations (L,R)
- 1 longitudinal polarization (0)

polarizations also imprint on kinematics of decay products!
$p p \rightarrow W^{+} W_{\lambda}^{-} j j \rightarrow W^{+} e^{-} \overline{\nu_{e}} j j$ via VBS

Buarque Franzosi, Mattelaer, RR, Shil [1912.01725]

Plotted: $M_{\ell \ell}$ of outgoing $\ell^{-} \ell^{\prime+}$ in

The $W_{\lambda}^{ \pm}, Z_{\lambda}$ bosons are massive, spin-1 objects

- 2 transverse polarizations (L,R)
- 1 longitudinal polarization (0)

polarizations also imprint on kinematics of decay products!

Buarque Franzosi, Mattelaer, RR, Shil [1912.01725]
case study: polarization in vector boson scattering at the LHC
(experimental perspective)

Motivation: measuring rare processes, e.g., vector boson scattering (VBS), is part of the Large Hadron Collider's long-term program

See review by Buarque (ed.), Gallinaro (ed.), RR (ed.), et al, Rev. Physics ('22) [arXiv:2106.01393]

VBS probes spin \& charge configurations inaccessible with quarks/gluons
\Longrightarrow VBS is uniquely sensitive to Standard Model and new physics!

First measurement of polarization

The $W_{\lambda}^{ \pm}, Z_{\lambda}$ bosons are massive, spin-1 objects

- 2 transverse polarizations (L,R) - 1 longitudinal polarization (0)
in $W^{ \pm} W^{ \pm}$scattering
CMS (PLB'20)

Process	$\sigma \mathcal{B}(\mathrm{fb})$	Theoretical prediction (fb)
$\mathrm{W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{L}}^{ \pm}$	$0.32_{-0.07}^{+0.42}$	0.44 ± 0.05
$\mathrm{~W}_{\mathrm{X}}^{ \pm} \mathrm{W}_{\mathrm{T}}$	$3.06_{-0.48}^{+51}$	3.13 ± 0.35
$\mathrm{~W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{X}}^{ \pm}$	$1.20_{-0.56}^{+0.56}$	1.63 ± 0.18
$\mathrm{~W}_{\mathrm{T}}^{ \pm} \mathrm{W}_{\mathrm{T}}^{ \pm}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21

uncertainties sizable but will improve with time

The $W_{\lambda}^{ \pm}, Z_{\lambda}$ bosons are massive, spin- 1 objects

First measurement of polarization fractions $\left(f_{\lambda}\right)$ in $W^{ \pm} Z$ scattering

ATLAS ('22) [2211.09435]

- 2 transverse polarizations (L,R)
- 1 longitudinal polarization (0)

polarizations also imprint on kinematics of decay products!

Case Study: helicity-polarized EW PDFs at muon colliders ${ }^{4}$

[^2]Idea: one can write the following scattering formula ${ }^{5}$

$$
\sigma\left(\mu^{+} \mu^{-} \rightarrow \mathcal{F}+\text { anything }\right)=f_{i / \mu^{+}} \otimes f_{j / \mu^{-}} \otimes \hat{\sigma}_{i j}+\text { uncertainties }
$$

[^3]Idea: one can write the following scattering formula ${ }^{5}$

$$
\sigma\left(\mu^{+} \mu^{-} \rightarrow \mathcal{F}+\text { anything }\right)=f_{i / \mu^{+}} \otimes f_{j / \mu^{-}} \otimes \hat{\sigma}_{i j}+\text { uncertainties }
$$

$$
=\underbrace{\sum V_{\lambda_{A}}, V_{\lambda_{B}}^{\prime} \int_{\tau_{0}}^{1} d \xi_{1} \int_{\tau_{0} / \xi_{1}}^{1} d \xi_{2} \int d P S_{\mathcal{F}}}
$$

sum over all configurations / phase space integral

$$
\times[\underbrace{f_{V_{\lambda_{A}} / \mu^{+}}\left(\xi_{1}, \mu_{f}\right) f_{V_{\lambda_{B}^{\prime} / \mu^{-}}^{\prime}}\left(\xi_{2}, \mu_{f}\right)}_{W_{\lambda}^{+} / W_{\lambda}^{-} / Z_{\lambda} / \gamma_{\lambda} \operatorname{PDFs}}] \times \underbrace{\frac{d \hat{\sigma}\left(V_{\lambda_{A}} V_{\lambda_{B}}^{\prime} \rightarrow \mathcal{F}\right)}{d P S_{n}}}_{\text {"hard scattering" at } \mathrm{LO}}
$$

$$
\mathcal{O}\left(\frac{M_{V_{k}}^{2}}{M_{V V^{\prime}}^{2}}\right)+\mathcal{O}\left(\frac{p_{T, V_{k}}^{2}}{M_{V V^{\prime}}^{2}}\right) \quad \leftarrow \quad \text { (appear from expanding } \mu_{\lambda} \rightarrow V_{\lambda} / \text { matrix elements) }
$$

perturbative power-law corrections

$$
+\underbrace{\mathcal{O}\left(\log \frac{\mu_{f}^{2}}{M_{V}^{2}}\right)}_{\log \text { corrections }} \leftarrow\left(\mu_{f} \text { is only an UV regulator here at LO }\right)
$$

We studied the red terms
w/ Costantini, Maltoni, Mattelaer [2111.02442]
${ }^{5}$ Dawson('84); Kane, et al ('84); Kunszt and Soper ('88)

... what exactly did we do?

Implementing EW boson PDFs in MadGraph5

- NEW: (Polarized) Effective Vector Boson Approx. (EVA)
- Bare (LO) PDFs for helicity-polarized $W_{\lambda}, Z_{\lambda}, \gamma_{\lambda}$ from $\ell_{\lambda}^{ \pm}$
- Automatically support PDFs for unpolarized W / Z (EWA) from $\ell_{\lambda}^{ \pm}$
- KEPT: Improved Weizsäcker-Williams approximation (iWWA)
- Unpolairzed γ PDF + power corrections from $\ell^{ \pm}$(Frixione, et al [hep-ph/9310350])
- Technicalities:
- M_{W}, M_{Z} always nonzero in PDFs and matrix elements!
- static and dyamic μ_{f}
- n-point μ_{f} variation
- Choice of p_{T} and q as evolution variable (this gives extra $\log (1-\xi)$ terms in PDFs!)
- Also enabled EVA+DIS collider configuration
- Technical appendix rederiving W_{λ}, Z_{λ} PDFs to provide standard reference and mapping between different approaches in the literature
- Released in v3.3.0 (Major milestone for lepton colliders; see Frixione, et al [2108.10261])

PDFs for $e^{ \pm}, \mu^{ \pm} \rightarrow W_{\lambda} / Z_{\lambda} / \gamma_{\lambda}+\ell$ depend on helicities (λ)

- Subtle but important differences if evolving by q^{2} of V vs p_{T}^{2} of ℓ

$$
\begin{aligned}
& f_{V_{+} / f_{L}}\left(z, \mu_{f}^{2}\right)=\frac{g_{V}^{2}}{4 \pi^{2}} \frac{g_{L}^{2}(1-z)^{2}}{2 z} \log \left[\frac{\mu_{f}^{2}}{M_{V}^{2}}\right] \\
& f_{V_{-} / f_{L}}\left(z, \mu_{f}^{2}\right)=\frac{g_{V}^{2}}{4 \pi^{2}} \frac{g_{L}^{2}}{2 z} \log \left[\frac{\mu_{f}^{2}}{M_{V}^{2}}\right] \\
& f_{V_{0} / f_{L}}\left(z, \mu_{f}^{2}\right)=\frac{g_{V}^{2}}{4 \pi^{2}} \frac{g_{L}^{2}(1-z)}{z}, \\
& f_{V_{+} / f_{R}}\left(z, \mu_{f}^{2}\right)=\left(\frac{g_{R}}{g_{L}}\right)^{2} \times f_{V_{-} / f_{L}}\left(z, \mu_{f}^{2}\right) \\
& f_{V_{-} / f_{R}}\left(z, \mu_{f}^{2}\right)=\left(\frac{g_{R}}{g_{L}}\right)^{2} \times f_{V_{+} / f_{L}}\left(z, \mu_{f}^{2}\right) \\
& f_{V_{0} / f_{R}}\left(z, \mu_{f}^{2}\right)=\left(\frac{g_{R}}{g_{L}}\right)^{2} \times f_{V_{0} / f_{L}}\left(z, \mu_{f}^{2}\right)
\end{aligned}
$$

some results on $V_{\lambda} V_{\lambda^{\prime}}^{\prime} \rightarrow X$ in $\mu^{+} \mu^{-}$collisions ${ }^{6}$

[^4]
Higgs production in EVA

We had fun looking into *many* processes

$$
\text { (L) } \sum_{\lambda_{A}, \lambda_{B}} V_{\lambda_{A}} V_{\lambda_{B}} \rightarrow H X \quad \text { (R) } V_{T} V_{0} \rightarrow H X
$$

Top production in EVA

... *many* processes

$$
\text { (L) } \sum_{\lambda_{A}, \lambda_{B}} V_{\lambda_{A}} V_{\lambda_{B}} \rightarrow t \bar{t} X \quad \text { (R) } V_{0} V_{0} \rightarrow t \bar{t} X
$$

Diboson production in EVA

(4 polarization plots +1 table) \times each class of processes

	$\sigma[\mathrm{fb}]$			
	mg5amc syntax	$\sqrt{s}=3 \mathrm{TeV}$	$\sqrt{s}=14 \mathrm{TeV}$	$\sqrt{s}=30 \mathrm{TeV}$
$\sum V_{\lambda_{A}} V_{\lambda_{B}}^{\prime} \rightarrow W^{+} W^{-}$	vp vm > w+ w-	$2.2 \cdot 10^{2}+{ }_{-35 \%}^{+98 \%}$	$7.0 \cdot 10^{2}{ }_{-33 \%}^{99 \%}$	$8.6 \cdot 10^{2}{ }_{-32 \%} 88 \%$
$V_{T} V_{T}^{\prime} \rightarrow W^{+} W^{-}$	$\operatorname{vp}\{\mathrm{T}\} \mathrm{vm}\{\mathrm{T}\}>\mathrm{w}+\mathrm{w}-$	$2.0 \cdot 10^{2}{ }_{-35 \%}^{+99 \%}$	$6.6 \cdot 10^{2}{ }_{-34 \%}^{93 \%}$	$8.0 \cdot 10^{2}{ }_{-33 \%}^{92 \%}$
$V_{0} V_{T}^{\prime} \rightarrow W^{+} W^{-}$	$\mathrm{vp}\{0\} \mathrm{vm}\{\mathrm{T}\}>\mathrm{w}+\mathrm{w}-$	$1.2 \cdot 10^{1}{ }_{-27 \%}^{+54 \%}$	$4.4 \cdot 10^{1}{ }_{-25 \%}^{\text {50\% }}$	$5.2 \cdot 10^{1}{ }_{-24 \%}^{49 \%}$
$V_{0} V_{0}^{\prime} \rightarrow W^{+} W^{-}$	$\mathrm{vp}\{0\} \operatorname{vm}\{0\}>\mathrm{w}+\mathrm{w}-$	$4.2 \cdot 10^{-1}$	$1.7 \cdot 10^{0}$	$2.0 \cdot 10^{0}$
$\sum V_{\lambda_{A}} V_{\lambda_{B}}^{\prime} \rightarrow W^{+} Z$	vp vm > w+ z	$5.3 \cdot 10^{1+105 \%}{ }_{-40 \%}$	$1.8 \cdot 10^{2}{ }_{-37 \%}{ }^{\text {97\% }}$	$2.2 \cdot 10^{2}+{ }_{-37 \%}^{95 \%}$
$V_{T} V_{T}^{\prime} \rightarrow W^{+} Z$	$\operatorname{vp}\{\mathrm{T}\} \operatorname{vm}\{\mathrm{T}\}>\mathrm{w}+\mathrm{z}$	$5.0 \cdot 10^{1+111 \%}{ }_{-42 \%}$	$1.6 \cdot 10^{2}{ }_{-39 \%}^{+103 \%}$	2.0 $10^{2}{ }_{-38 \%}^{+100 \%}$
$V_{0} V_{T}^{\prime} \rightarrow W^{+} Z$	$\operatorname{vp}\{0\} \operatorname{vm}\{\mathrm{T}\}>\mathrm{w}+\mathrm{z}$	$3.4 \cdot 10^{0}{ }_{-18 \%}^{+46 \%}$	1.4.10 $0^{1}{ }_{-17 \%}^{+33 \%}$	$1.7 \cdot 10^{1}{ }_{-17 \%}^{+34 \%}$
$V_{0} V_{0}^{\prime} \rightarrow W^{+} Z$	$\operatorname{vp}\{0\} \operatorname{vm}\{0\}>w+z$	$3.9 \cdot 10^{-2}$	$2.1 \cdot 10^{-1}$	$2.6 \cdot 10^{-1}$
$\sum V_{\lambda_{A}} V_{\lambda_{B}}^{\prime} \rightarrow Z Z$	$\mathrm{vp} \mathrm{vm}>\mathrm{zz}$	4.4 $\cdot 10^{1}{ }_{-52 \%}^{164 \%}$	1.6. $10^{2}{ }_{-48 \%}^{14 \%}$	$1.9 \cdot 10^{2}{ }_{-48 \%}^{143 \%}$
$V_{T} V_{T}^{\prime} \rightarrow Z Z$	$\mathrm{vp}\{\mathrm{T}\} \mathrm{vm}\{\mathrm{T}\}>\mathrm{zz}$	$4.0 \cdot 10^{1}+{ }_{54 \%}^{+17 \%}$	$1.4 \cdot 10^{2}{ }_{-50 \%}^{+153 \%}$	$1.7 \cdot 10^{2}{ }_{-49 \%}^{+150 \%}$
$V_{0} V_{T}^{\prime} \rightarrow Z Z$	$\operatorname{vp}\{0\} \operatorname{vm}\{\mathrm{T}\}>\mathrm{z} \mathrm{z}$	$4.2 \cdot 10^{0}{ }_{-33 \%}^{+66 \%}$	$1.8 \cdot 10^{1}{ }_{-30 \%}^{+61 \%}$	$2.2 \cdot 10^{1}{ }_{-30 \%}^{+660 \%}$
$V_{0} V_{0}^{\prime} \rightarrow Z Z$	$\operatorname{vp}\{0\} \operatorname{vm}\{0\}>\mathrm{z} \mathrm{z}$	$1.1 \cdot 10^{-1}$	$6.0 \cdot 10^{-1}$	$7.2 \cdot 10^{-1}$
$\sum V_{\lambda_{A}} V_{\lambda_{B}}^{\prime} \rightarrow \gamma Z$	vp vm > a z	$1.9 \cdot 10^{1}{ }_{-53 \%}^{169 \%}$	7.1. $10^{1}{ }_{-49 \%}^{149 \%}$	$8.8 \cdot 10^{1}+145 \%$
$V_{T} V_{T}^{\prime} \rightarrow \gamma Z$	$\mathrm{vp}\{\mathrm{T}\} \mathrm{vm}\{\mathrm{T}\}>\mathrm{az}$	1.8.10 ${ }^{1+172 \%}{ }_{-54 \%}$	$6.8 \cdot 10^{1}{ }_{-50 \%}^{+153 \%}$	$8.4 \cdot 10^{1}{ }_{-49 \%}^{+149 \%}$
$V_{0} V_{T}^{\prime} \rightarrow \gamma Z$	$\operatorname{vp}\{0\} \operatorname{vm}\{\mathrm{T}\}>\mathrm{az}$	$9.5 \cdot 10^{-1}{ }_{-33 \%}^{+6 \% \%}$	$4.4 \cdot 10^{0}{ }_{-30 \%}^{+61 \%}$	$5.5 \cdot 10^{0}{ }_{-30 \%}^{+60 \%}$
$V_{0} V_{0}^{\prime} \rightarrow \gamma Z$	$\operatorname{vp}\{0\} \operatorname{vm}\{0\}>\mathrm{az}$	$5.6 \cdot 10^{-4}$	$4.5 \cdot 10^{-3}$	$6.5 \cdot 10^{-3}$
$\sum V_{\lambda_{A}} V_{\lambda_{B}}^{\prime} \rightarrow \gamma W^{+}$	vp vm > a w+	$1.1 \cdot 10^{1+111 \%}{ }_{-42 \%}$	$4.0 \cdot 10^{1}+101 \%$	$4.9 \cdot 10^{1}+{ }_{-38 \%}^{+99 \%}$
$V_{T} V_{T}^{\prime} \rightarrow \gamma W^{+}$	$\operatorname{vp}\{\mathrm{T}\} \operatorname{vm}\{\mathrm{T}\}>\mathrm{a} \mathrm{w}^{+}$	1.1. $10^{1}{ }_{-42 \%}^{+11 \%}$	3.9.10 ${ }^{1}{ }_{-39 \%}^{102 \%}$	4.8 $\cdot 10^{1}{ }_{-38 \%}^{100 \%}$
$V_{0} V_{T}^{\prime} \rightarrow \gamma W^{+}$	vp $\{0\} \operatorname{vm}\{\mathrm{T}\}$ > a w+	$1.6 \cdot 10^{-2}{ }_{-31 \%}^{+62 \%}$	7.3 $\cdot 10^{-1}{ }_{-28 \%}^{+56 \%}$	$9.2 \cdot 10^{-1}{ }_{-27 \%}^{+54 \%}$
$V_{0} V_{0}^{\prime} \rightarrow \gamma W^{+}$	$\operatorname{vp}\{0\} \operatorname{vm}\{0\}>\mathrm{a} w+$	$1.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-3}$	$1.7 \cdot 10^{-3}$
$\sum V_{\lambda_{A}} V_{\lambda_{B}}^{\prime} \rightarrow \gamma \gamma$	vp vm > a a	$2.1 \cdot 10^{0}{ }_{-54 \%}^{+172 \%}$	8.5 $10^{0}{ }_{-50 \%}^{+152 \%}$	1.1 $\cdot 10^{1}{ }_{-48 \%}^{147 \%}$
$V_{T} V_{T}^{\prime} \rightarrow \gamma \gamma$	$\mathrm{vp}\{\mathrm{T}\} \mathrm{vm}\{\mathrm{T}\}>\mathrm{a} a$	$2.1 \cdot 10^{0}{ }_{-54 \%}^{172 \%}$	$8.5 \cdot 10^{0}{ }_{-50 \%}^{152 \%}$	1.1 $\cdot 10^{1}{ }_{-48 \%}^{147 \%}$
$V_{0} V_{T}^{\prime} \rightarrow \gamma \gamma$	$\mathrm{vp}\{0\} \mathrm{vm}\{\mathrm{T}\}>\mathrm{a} a$	$7.8 \cdot 10^{-4}{ }_{-35 \%}^{+70 \%}$	$3.4 \cdot 10^{-3}{ }_{-34 \%}^{+67 \%}$	$4.2 \cdot 10^{-3}{ }_{-33 \%}^{+67 \%}$
$V_{0} V_{0}^{\prime} \rightarrow \gamma \gamma$	$\operatorname{vp}\{0\} \operatorname{vm}\{0\}>\mathrm{a} \mathrm{a}$	$5.8 \cdot 10^{-4}$	$4.7 \cdot 10^{-3}$	$6.8 \cdot 10^{-3}$

Summary and Conclusion

Exploring VBS/VBF is part of LHC's long-term program

See review by Buarque (ed.), Gallinaro (ed.), RR (ed.), et al, Rev. Physics ('22) [arXiv:2106.01393]

- Helicity-polarized simulations available with MadGraph5aMC@NLO up to LO+LL(PS) [1912.01725]; NLO is under dev.; see also Poncelet, et al [2102.13583], + others
- $W_{\lambda} / Z_{\lambda} / \gamma_{\lambda}$ PDFs in $\ell^{+} \ell^{-}$collisions also available with MG5aMC@NLO EWA@LO [2111.02442] and plans underway to merge parallel Snowmass efforts

Thank you!

[^0]: ${ }^{1}$ Based on work w/ Buarque Franzosi, Mattelaer, and Shil [1912.01725]; + work in progress

[^1]: ${ }^{3}$ degrees of freedom $=$ all discrete quantum numbers, e.g., color, spin, electric charge

[^2]: ${ }^{4}$ Surge of motivation/interest, e.g., Al Ali, et al. [2103.14043]; R\&D progress as reported in the European Strategy Update (Delahaye, et al) [1901.06150], muoncollider.web.cern.ch; Snowmass + US activities next several slides from work w/ Costantini, Maltoni, \& Mattelaer [2111.02442]

[^3]: 5
 Dawson('84); Kane, et al ('84); Kunszt and Soper ('88)

[^4]: ${ }^{6}$ w/ A. Costantini, F. Maltoni, L. Mantani, O. Mattelaer [2111.02442]

