Fredholm inversion with Gaussian processes

Collaborators

J. M. Pawlowski

S. Zafeiropoulos

J. Rodríguez-Quintero

N. Wink

C. S. Schneider

J. Horak

J. Turnwald

J. M. Urban

Figure 7.2. The spectral function $\rho(M^2)$ for a typical interacting field theory. The one-particle states contribute a delta function at m^2 (the square of the particle's mass). Multiparticle states have a continuous spectrum beginning at $(2m)^2$. There may also be bound states.

Analogous expressions hold for the case $y^0 > x^0$. Both cases can be summarized in the following general representation of the two-point function (the Källén-Lehmann spectral representation):

$$
\langle \Omega | T\phi(x)\phi(y) | \Omega \rangle = \int_{0}^{\infty} \frac{dM^2}{2\pi} \rho(M^2) D_F(x - y; M^2), \tag{7.6}
$$

where $\rho(M^2)$ is a positive spectral density function,

$$
\rho(M^2) = \sum_{\lambda} (2\pi)\delta(M^2 - m_{\lambda}^2) |\langle \Omega | \phi(0) | \lambda_0 \rangle|^2. \tag{7.7}
$$

 \cdot Many non-perturbative approaches to strongly interacting QFTs only provide numerical access to Euclidean correlators

- · Many non-perturbative approaches to strongly interacting QFTs only provide numerical access to Euclidean correlators
- Direct analytic continuation of imaginary-time data problematic

- . Many non-perturbative approaches to strongly interacting QFTs only provide numerical access to Euclidean correlators
- \cdot Direct analytic continuation of imaginary-time data problematic
- · Indirect access via Källén-Lehmann spectral representation:

$$
G(p)=\int_0^\infty \frac{\mathrm{d}\omega}{2\pi}\frac{2\omega\,\rho(\omega)}{p^2+\omega^2}\equiv \int_0^\infty \mathrm{d}\omega\,K(p,\omega)\rho(\omega)
$$

- . Many non-perturbative approaches to strongly interacting QFTs only provide numerical access to Euclidean correlators
- \cdot Direct analytic continuation of imaginary-time data problematic
- · Indirect access via Källén-Lehmann spectral representation:

$$
G(p)=\int_0^\infty \frac{\mathrm{d}\omega}{2\pi}\frac{2\omega\,\rho(\omega)}{p^2+\omega^2}\equiv \int_0^\infty \mathrm{d}\omega\,K(p,\omega)\rho(\omega)
$$

Computing spectral function $\rho(\omega)$ from noisy data G is an ill-posed linear inverse problem (Fredholm inversion)

Outline

- · Motivation for probabilistic ansatz
- \cdot Gaussian process regression (GPR)
- \cdot Fredholm inversion with GPR
- \cdot Related & original work
- . Application 1: bound state masses
- \cdot Incorporating asymptotic constraints
- \cdot Application 2: S-matrix building blocks

 \cdot A problem is a function $f^{-1}: \mathcal{G} \longrightarrow \mathcal{R}$ from a space of initial conditions $\mathcal G$ to a space of solutions $\mathcal R$

- \cdot A problem is a function $f^{-1}: \mathcal{G} \longrightarrow \mathcal{R}$ from a space of initial conditions $\mathcal G$ to a space of solutions $\mathcal R$
- Usually interested in a solution $\rho \in \mathcal{R}$ for a point $G \in \mathcal{G}$

- \cdot A problem is a function $f^{-1}: \mathcal{G} \longrightarrow \mathcal{R}$ from a space of initial conditions $\mathcal G$ to a space of solutions $\mathcal R$
- \cdot Usually interested in a solution $\rho \in \mathcal{R}$ for a point $G \in \mathcal{G}$
- $\cdot \text{ The combination }\{f^{-1},G\} \text{ is a } problem\ instance.$

- \cdot A problem is a function $f^{-1}: \mathcal{G} \longrightarrow \mathcal{R}$ from a space of initial conditions $\mathcal G$ to a space of solutions $\mathcal R$
- \cdot Usually interested in a solution $\rho \in \mathcal{R}$ for a point $G \in \mathcal{G}$
- \cdot The combination $\{f^{-1}, G\}$ is a *problem instance*
- $\delta \cdot \text{ For } f[\rho] \equiv \int \text{d}\omega \, K(p,\omega) \rho(\omega) = G(p), \ \mathcal{G}, \mathcal{R} \text{ are } function \text{ spaces}$

- \cdot A problem is a function $f^{-1}: \mathcal{G} \longrightarrow \mathcal{R}$ from a space of initial conditions $\mathcal G$ to a space of solutions $\mathcal R$
- \cdot Usually interested in a solution $\rho \in \mathcal{R}$ for a point $G \in \mathcal{G}$
- \cdot The combination $\{f^{-1}, G\}$ is a *problem instance*
- $\mathcal{F} \cdot \text{ For } f[\rho] \equiv \int \mathrm{d}\omega \, K(p,\omega) \rho(\omega) = G(p), \; \mathcal{G}, \mathcal{R} \text{ are } function \text{ spaces}.$
- Determination of $\rho(\omega)$ from $G(p)$ is well-posed in principle

 \cdot In practice: discrete *data* G with finite measurement error

- \cdot In practice: discrete *data* **G** with finite measurement error
- Deterministic computation of solution function $\rho(\omega)$ is ill-posed due to violation of uniqueness (cf. Hadamard)

- \cdot In practice: discrete *data* **G** with finite measurement error
- \cdot Deterministic computation of solution function $\rho(\omega)$ is ill-posed due to violation of uniqueness (cf. Hadamard)
- \cdot Probabilistic ansatz: model initial & solution functions jointly for simultaneous inference from available data

 \longrightarrow Objective: $P({G(p), \rho(\omega)} | f, G)$

- \cdot In practice: discrete *data* **G** with finite measurement error
- \cdot Deterministic computation of solution function $\rho(\omega)$ is ill-posed due to violation of uniqueness (cf. Hadamard)
- \cdot Probabilistic ansatz: model initial & solution functions jointly for simultaneous inference from available data

 \longrightarrow Objective: $P({G(p), \rho(\omega)} | f, G)$

. Desirable: incorporation of additional prior information in the form of constraints and biases

 \cdot Consider $\omega, \rho(\omega) \in \mathbb{R}$ for concreteness

- \cdot Consider $\omega, \rho(\omega) \in \mathbb{R}$ for concreteness
- \cdot Define prior distribution with a Gaussian process (GP):

 $\rho(\omega) \sim \mathcal{GP}(\mu(\omega), C(\omega, \omega'))$, $C(\omega, \omega') = C(\omega', \omega)$

- \cdot Consider $\omega, \rho(\omega) \in \mathbb{R}$ for concreteness
- \cdot Define prior distribution with a Gaussian process (GP):

 $\rho(\omega) \sim \mathcal{GP} \left(\mu(\omega), C(\omega, \omega') \right), \; C(\omega, \omega') = C(\omega', \omega)$

. GPs are normal distributions in function space

- \cdot Consider $\omega, \rho(\omega) \in \mathbb{R}$ for concreteness
- \cdot Define prior distribution with a Gaussian process (GP):

 $\rho(\omega) \sim \mathcal{GP}(\mu(\omega), C(\omega, \omega'))$, $C(\omega, \omega') = C(\omega', \omega)$

- . GPs are normal distributions in function space
- Analogy: free scalar field theory $\sim \infty$ -dim. multivariate normal

 \longrightarrow mean $\mu(\omega) \sim$ vacuum expectation value

 \longrightarrow covariance $\overline{C(\omega,\omega')}$ \sim propagator

· Finite-dim. multivariate normal for any finite set of points:

$$
\left(\begin{array}{c} \rho(\omega_1) \\ \vdots \\ \rho(\omega_N) \end{array}\right) \begin{array}{c} \sim \; \mathcal{N} \\ \sim \; \mathcal{N} \\ \begin{array}{c} \vdots \\ \mu(\omega_N) \end{array} \begin{array}{c} C(\omega_1,\omega_1) \; \; \; \ldots \; \; \; C(\omega_1,\omega_N) \\ \vdots \; \; \; , \; \; \; \vdots \; \; \; \ddots \; \; \; \vdots \\ \mu(\omega_N) \; \; \; C(\omega_N,\omega_1) \; \; \ldots \; \; \; C(\omega_N,\omega_N) \end{array}\right) \\ = (2\pi)^{-\frac{N}{2}} \det(\mathbf{C})^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{\rho}-\boldsymbol{\mu})^T\mathbf{C}^{-1}(\boldsymbol{\rho}-\boldsymbol{\mu})\right) \end{array}
$$

· Finite-dim. multivariate normal for any finite set of points:

$$
\left(\begin{array}{c} \rho(\omega_1) \\ \vdots \\ \rho(\omega_N) \end{array}\right) \begin{array}{c} \sim \; \mathcal{N} \left(\begin{array}{cccc} \mu(\omega_1) & C(\omega_1,\omega_1) & \ldots & C(\omega_1,\omega_N) \\ \vdots & \vdots & \ddots & \vdots \\ \mu(\omega_N) & C(\omega_N,\omega_1) & \ldots & C(\omega_N,\omega_N) \end{array}\right) \\ = (2\pi)^{-\frac{N}{2}}\det(\mathbf{C})^{-\frac{1}{2}}\exp\left(-\frac{1}{2}(\boldsymbol{\rho}-\boldsymbol{\mu})^T\mathbf{C}^{-1}(\boldsymbol{\rho}-\boldsymbol{\mu})\right) \end{array}
$$

 \cdot Sampling similar to pseudofermion generation in LQCD:

1. Cholesky decomposition: $\mathbf{C} = \mathbf{A}\mathbf{A}^T$

2. $\rho = \mathbf{A}\boldsymbol{\eta}$ with $\boldsymbol{\eta} \sim \mathcal{N}(\mathbf{0}, \mathbb{I})$

$$
\mu(\omega)=0, \ C(\omega,\omega')=\sigma^2\exp\left(-\frac{(\omega-\omega')^2}{2\xi^2}\right)
$$

$$
\mu(\omega)=0, \ C(\omega,\omega')=\sigma^2\exp\left(-\frac{(\omega-\omega')^2}{2\xi^2}\right)
$$

· Joint distribution of *observed* ρ and *unobserved* $\rho(\omega)$:

$$
\begin{pmatrix} \rho(\omega) \\ \rho \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mu(\omega) & C(\omega, \omega') & \mathbf{C}^T(\omega) \\ \mu & \mathbf{C}(\omega') & \mathbf{C} + \sigma_n^2 \mathbb{I} \end{pmatrix}
$$

$$
\boldsymbol{\mu}_i = \mu(\omega_i), \ \mathbf{C}_i(\omega) = C(\omega_i, \omega), \ \mathbf{C}_{ij} = C(\omega_i, \omega_j)
$$

 \cdot Joint distribution of *observed* ρ and *unobserved* $\rho(\omega)$:

$$
\begin{pmatrix} \rho(\omega) \\ \rho \end{pmatrix} \sim \ N \begin{pmatrix} \mu(\omega) & C(\omega, \omega') & \mathbf{C}^T(\omega) \\ \mu & \mathbf{C}(\omega') & \mathbf{C} + \sigma_n^2 \mathbb{1} \end{pmatrix}
$$

$$
\boldsymbol{\mu}_i = \mu(\omega_i), \ \mathbf{C}_i(\omega) = C(\omega_i, \omega), \ \mathbf{C}_{ij} = C(\omega_i, \omega_j)
$$

· Closed-form expression for conditional posterior:

$$
\rho(\omega)|\boldsymbol{\rho}\sim\mathcal{N}\left(\mu(\omega)+\mathbf{C}^{T}(\omega)\big(\mathbf{C}+\sigma_{n}^{2}\cdot\mathbb{1}\big)^{-1}(\boldsymbol{\rho}-\boldsymbol{\mu}),\ C(\omega,\omega')-\mathbf{C}^{T}(\omega)\big(\mathbf{C}+\sigma_{n}^{2}\cdot\mathbb{1}\big)^{-1}\mathbf{C}(\omega')\right)
$$

 \cdot Joint distribution of *observed* ρ and *unobserved* $\rho(\omega)$:

$$
\begin{pmatrix} \rho(\omega) \\ \rho \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mu(\omega) & C(\omega, \omega') & \mathbf{C}^T(\omega) \\ \mu & \mathbf{C}(\omega') & \mathbf{C} + \sigma_n^2 \mathbb{I} \end{pmatrix}
$$

$$
\boldsymbol{\mu}_i = \mu(\omega_i), \ \mathbf{C}_i(\omega) = C(\omega_i, \omega), \ \mathbf{C}_{ij} = C(\omega_i, \omega_j)
$$

· Closed-form expression for conditional posterior:

 \cdot GPR: non-parametric ansatz with hyperparameters α

- \cdot GPR: non-parametric ansatz with hyperparameters α
- Common selection approach: maximize likelihood

$$
p(\boldsymbol{\rho}|\boldsymbol{\alpha}) = \left((2\pi)^N \det\left(\mathbf{C}_{\alpha} + \sigma_n^2 \mathbb{1}\right)\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{\rho} - \boldsymbol{\mu})^T \big(\mathbf{C}_{\boldsymbol{\alpha}} + \sigma_n^2 \mathbb{1}\big)^{-1}(\boldsymbol{\rho} - \boldsymbol{\mu})\right)
$$

or, conventionally, minimize negative log-likelihood (NLL)

$$
-\log p(\boldsymbol{\rho}|\boldsymbol{\alpha})=\frac{1}{2}(\boldsymbol{\rho}-\boldsymbol{\mu})^T\big(\mathbf{C}_{\boldsymbol{\alpha}}+\sigma_n^2\mathbb{I}\big)^{-1}(\boldsymbol{\rho}-\boldsymbol{\mu})+\frac{1}{2}\text{log}\det\big(\mathbf{C}_{\alpha}+\sigma_n^2\mathbb{I}\big)+\frac{N}{2}\text{log}\,2\pi
$$

- \cdot GPR: non-parametric ansatz with hyperparameters α
- Common selection approach: maximize likelihood

$$
p(\boldsymbol{\rho}|\boldsymbol{\alpha}) = \left((2\pi)^N \det\left(\mathbf{C}_\alpha + \sigma_n^2 \mathbb{1}\right)\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{\rho}-\boldsymbol{\mu})^T\big(\mathbf{C}_\alpha + \sigma_n^2 \mathbb{1}\big)^{-1}(\boldsymbol{\rho}-\boldsymbol{\mu})\right)
$$

or, conventionally, minimize negative log-likelihood (NLL)

$$
-\log p(\boldsymbol{\rho}|\boldsymbol{\alpha})=\frac{1}{2}(\boldsymbol{\rho}-\boldsymbol{\mu})^T\big(\mathbf{C_{\alpha}}+\sigma_n^2\mathbb{I}\big)^{-1}(\boldsymbol{\rho}-\boldsymbol{\mu})+\frac{1}{2}\text{log}\det\big(\mathbf{C_{\alpha}}+\sigma_n^2\mathbb{I}\big)+\frac{N}{2}\text{log}\,2\pi
$$

 \cdot Ignores structure $\&$ unstable directions of posterior landscape \longrightarrow stabilize or integrate out with suitable hyperprior $q(\alpha)$

sklearn to the rescue

```
>>> from sklearn.datasets import make friedman2
                                                                                  >>>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian process.kernels import DotProduct, WhiteKernel
\gg X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
\gg kernel = DotProduct() + WhiteKernel()
>>> gpr = GaussianProcessRegressor(kernel=kernel,
            random_state=\theta).fit(X, y)
\gg apr.score(X, y)
0.3680...\gg apr.predict(X[:2,:], return_std=True)
(\arctan(653.0..., 592.1...]), \arctan(316.6..., 316.6...))
```
 \cdot Linear transformations $G = \mathcal{K} \circ \rho$ preserve Gaussian statistics

- \cdot Linear transformations $G = \mathcal{K} \circ \rho$ preserve Gaussian statistics
- $\cdot \ \rho \sim \mathcal{GP}(\mu, C) \longrightarrow G \sim \mathcal{GP}(\mathcal{K} \circ \mu, \mathcal{K} \circ C \circ \mathcal{K}^T)$

- \cdot Linear transformations $G = \mathcal{K} \circ \rho$ preserve Gaussian statistics
- $\cdot \ \rho \sim \mathcal{GP}(\mu, C) \longrightarrow G \sim \mathcal{GP}(\mathcal{K} \circ \mu, \mathcal{K} \circ C \circ \mathcal{K}^T)$
- \cdot Joint prior over *indirect observations* **G** and prediction ρ :

$$
\left(\begin{array}{c}\rho\\ \mathbf{G}\end{array}\right)\sim\ \mathcal{N}\left(\begin{array}{ccc}\mu & C & C\circ\mathcal{K}^T\\ \mathcal{K}\circ\mu^{\star} & \mathcal{K}\circ C & \mathcal{K}\circ C\circ\mathcal{K}^T+\sigma_n^2\mathbbm{1} \end{array}\right)
$$

- \cdot Linear transformations $\overline{G} = \mathcal{K} \circ \rho$ preserve Gaussian statistics
- $\overline{\Psi} \cdot \ \rho \sim \mathcal{GP}(\mu, \overline{C}) \longrightarrow G \sim \mathcal{GP}(\mathcal{K} \circ \mu, \overline{\mathcal{K} \circ C} \circ \mathcal{K}^T).$
- \cdot Joint prior over *indirect observations* **G** and prediction ρ :

$$
\left(\begin{array}{c}\rho \\ \mathbf{G}\end{array}\right)\sim\ \mathcal{N}\left(\begin{array}{ccc}\mu & C & C\circ\mathcal{K}^T \\ \mathcal{K}\circ\mu^{\star} & \mathcal{K}\circ C & \mathcal{K}\circ C\circ\mathcal{K}^T+\sigma_n^2\mathbb{I} \end{array}\right)
$$

Closed-form posterior like before, with $K \circ$ where necessary

$$
G(p) \sim \mathcal{GP}\left(\int \mathrm{d}\omega \ K(p,\omega)\mu(\omega), \int \mathrm{d}\omega \, \mathrm{d}\omega' K(p,\omega) C(\omega,\omega') K(p',\omega')\right)
$$

$$
P(\rho(\omega)|\mathbf{G}) = \mathcal{N}\Bigg(\mu(\omega) + \int d\eta' C(\omega, \eta') K(\mathbf{p}^T, \eta')\Bigg)
$$

$$
\Bigg(\int d\zeta d\zeta' K(\mathbf{p}, \zeta) C(\zeta, \zeta') K(\mathbf{p}^T, \zeta') + \sigma_n^2 \mathbb{1}\Bigg)^{-1} \Bigg(\mathbf{G} - \int d\eta K(\mathbf{p}, \eta) \mu(\eta)\Bigg),
$$

$$
C(\omega, \omega') - \int d\eta' C(\omega, \eta') K(\mathbf{p}^T, \eta')
$$

$$
\Bigg(\int d\zeta d\zeta' K(\mathbf{p}, \zeta) C(\zeta, \zeta') K(\mathbf{p}^T, \zeta') + \sigma_n^2 \mathbb{1}\Bigg)^{-1} \int d\eta K(\mathbf{p}, \eta) C(\eta, \omega')\Bigg)
$$

- \cdot Linear transformations $G = \mathcal{K} \circ \rho$ preserve Gaussian statistics
- $\overline{\Psi} \cdot \ \rho \sim \mathcal{GP}(\mu, \overline{C}) \longrightarrow G \sim \mathcal{GP}(\mathcal{K} \circ \mu, \overline{\mathcal{K} \circ C} \circ \mathcal{K}^T).$
- \cdot Joint prior over *indirect observations* **G** and prediction ρ :

$$
\left(\begin{array}{c}\rho \\ \mathbf{G}\end{array}\right)\sim\ \mathcal{N}\left(\begin{array}{ccc}\mu & C & C\circ\mathcal{K}^T \\ \mathcal{K}\circ\mu^{\star} & \mathcal{K}\circ C & \mathcal{K}\circ C\circ\mathcal{K}^T+\sigma_n^2\mathbb{I} \end{array}\right)
$$

- Closed-form posterior like before, with $K \circ$ where necessary
- \cdot Generalizable to *arbitrary* derivative & integral constraints or known values of ρ by treating them as observations

Related/original work

· Krige, Danie G. (1951): *A statistical approach to some basic mine valuation problems on the Witwatersrand*. J. of the Chem., Metal. and Mining Soc. of South Africa. 52 (6): 119–139.

· Valentine, Andrew P. and Sambridge, Malcolm (2019): *Gaussian process models—I. A framework for probabilistic continuous inverse theory*. Geophysical Journal International, Volume 220, Issue 3, March 2020, Pages 1632–1647

· Del Debbio, Luigi and Giani, Tommaso and Wilson, Michael (2021): *Bayesian approach to inverse problems: an application to NNPDF closure testing.* arXiv:2111.05787 [hep-ph]

· Candido, Alessandro and Del Debbio, Luigi and Giani, Tommaso and Petrillo, Giacomo (2023): *Inverse problems in PDF determinations.* arXiv:2302.14731 [hep-lat]

$$
G(p)=\int_0^\infty \frac{\mathrm{d}\omega}{2\pi}\frac{2\omega\,\rho(\omega)}{p^2+\omega^2}\equiv \int_0^\infty \mathrm{d}\omega\,K(p,\omega)\rho(\omega)
$$

$$
G(p)=\int_0^\infty \frac{\mathrm{d}\omega}{2\pi}\frac{2\omega\,\rho(\omega)}{p^2+\omega^2}\equiv \int_0^\infty \mathrm{d}\omega\,K(p,\omega)\rho(\omega)
$$

· Example with analytic solution: relativistic Breit-Wigner dist.

$$
\rho(\omega)=\frac{4A\Gamma \omega}{4\Gamma^2 \omega^2+(M^2+\Gamma^2-\omega^2)^2},\ G(p)=\frac{A}{(p+\Gamma)^2+M^2}
$$

$$
G(p)=\int_0^\infty \frac{\mathrm{d}\omega}{2\pi}\frac{2\omega\,\rho(\omega)}{p^2+\omega^2}\equiv \int_0^\infty \mathrm{d}\omega\,K(p,\omega)\rho(\omega)
$$

Example with analytic solution: relativistic Breit-Wigner dist.

$$
\rho(\omega)=\frac{4A\Gamma \omega}{4\Gamma^2 \omega^2+(M^2+\Gamma^2-\omega^2)^2},\ G(p)=\frac{A}{(p+\Gamma)^2+M^2}
$$

Common approach: discretize integral, solve system of linear eq.

$$
G(p_i) \approx \sum_{\omega_j} \varDelta \omega \, K(p_i,\omega_j) \rho(\omega_j) \quad \longleftrightarrow \quad {\bf G} \approx {\bf \tilde K} {\boldsymbol \rho}
$$

$$
G(p)=\int_0^\infty \frac{\mathrm{d}\omega}{2\pi}\frac{2\omega\,\rho(\omega)}{p^2+\omega^2}\equiv \int_0^\infty \mathrm{d}\omega\,K(p,\omega)\rho(\omega)
$$

Example with analytic solution: relativistic Breit-Wigner dist.

$$
\rho(\omega)=\frac{4A\Gamma \omega}{4\Gamma^2 \omega^2+(M^2+\Gamma^2-\omega^2)^2},\ G(p)=\frac{A}{(p+\Gamma)^2+M^2}
$$

Common approach: discretize integral, solve system of linear eq.

$$
G(p_i) \approx \sum_{\omega_j} \varDelta \omega \, K(p_i,\omega_j) \rho(\omega_j) \quad \longleftrightarrow \quad {\mathbf G} \approx \tilde{{\mathbf K}} {\boldsymbol \rho}
$$

 \cdot Additive Gaussian noise: $\mathbf{G} + \boldsymbol{\epsilon}$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$, $\sigma = 10^{-4}$

 $\cdot \ \operatorname{Perfect}\ \text{data:}\ \boldsymbol{\rho}\approx \tilde{\mathbf{K}}^{-1}\mathbf{G}$

- $1.0^{-1/10^{20}}$ à G [GeV $[GeV]$ ρ [GeV-2] ρ [GeV $^{-2}]$ o.5 Ω $\overline{0}$ 10^{-5} 10^{3} 10^{3} n^2 p^2 0.0 0.0 $\frac{1}{10^0}$ 10^{-2} $10²$ 10^{0} 10^{-4} 10^{-4} 10^{-2} $10²$ ω [GeV] ω [GeV]
- $\overline{\mathbf{F}} \cdot \overline{\mathbf{Perfect}} \ \text{data:} \ \overline{\mathbf{\rho}} \approx \overline{\mathbf{\tilde{K}}}^{-1} \mathbf{G}$

 \cdot Noisy data: $\boldsymbol{\rho} \approx \tilde{\mathbf{K}}^{-1}(\mathbf{G} + \boldsymbol{\epsilon})$

- $\times 10^{20}$ $1.0 G$ [GeV $Q = \begin{bmatrix} 2 \\ 1.0 \\ 0.5 \end{bmatrix}$ ρ [GeV $^{-2}]$ o.s 10^{-5} $10³$ 10^{-5} 10^{3} n^2 p^2 0.0 0.0 10^{0} 10^{-2} $10²$ 10^{-4} 10^{-4} 10^{-2} 10^{0} $10²$ ω [GeV] ω [GeV]
- \cdot Condition number $\kappa(\tilde{\mathbf{K}}) \approx \mathcal{O}(10^{33})$

 \cdot Perfect data: $\boldsymbol{\rho} \approx \tilde{\mathbf{K}}^{-1} \mathbf{G}$

 \rightarrow expect to lose $~\sim 33$ digits of accuracy with naive inversion

$$
{}\cdot \text{ GPR: } \boldsymbol{\rho} \approx \boldsymbol{\mu} + \mathbf{C} \tilde{\mathbf{K}}^T \Big(\tilde{\mathbf{K}} \mathbf{C} \tilde{\mathbf{K}}^T + \sigma_n^2 \mathbb{I}\Big)^{-1} \left((\mathbf{G} + \boldsymbol{\epsilon}) - \tilde{\mathbf{K}} \boldsymbol{\mu}\right)
$$

$$
{}\cdot \text{ GPR: } \boldsymbol{\rho} \approx \boldsymbol{\mu} + \mathbf{C} \tilde{\mathbf{K}}^T \Big(\tilde{\mathbf{K}} \mathbf{C} \tilde{\mathbf{K}}^T + \sigma_n^2 \mathbb{I}\Big)^{-1} \left((\mathbf{G} + \boldsymbol{\epsilon}) - \tilde{\mathbf{K}} \boldsymbol{\mu}\right)
$$

Application 1: bound state masses

2212.01113 [hep-ph]

 \cdot Scalar glueball: $J^{PC} = 0^{++}$

 \cdot Pseudo-sc. glueball: $J^{PC} = 0^{-+}$

Application 1: bound state masses

2212.01113 [hep-ph]

 \cdot Standard GPR: equality constraints $\mathcal{A} \circ \rho = b$ (with \mathcal{A} any linear operator) by treating b as an indirect observation

- \cdot Standard GPR: equality constraints $\mathcal{A} \circ \rho = b$ (with \mathcal{A} any linear operator) by treating b as an indirect observation
- $\overline{\Delta} \cdot \overline{\Delta}$ Asymptotic constraints $\mathcal{A} \circ \rho \overset{\omega \to \infty}{\propto} \phi(\omega)$

- \cdot Standard GPR: equality constraints $\mathcal{A} \circ \rho = b$ (with \mathcal{A} any linear operator) by treating b as an indirect observation
- Asymptotic constraints $A \circ \rho \overset{\omega \to \infty}{\propto} \phi(\omega)$ by modifying kernel via

Mercer's theorem: \forall continuous symmetric PSD kernels $C: [a, b] \times [a, b] \longrightarrow \mathbb{R}, C(x, y) = C(y, x) \forall x, y \in [a, b]$ \exists orthonormal basis of eigenfunctions $e_i(x)$ with non-negative $\text{ eigenvalues } \lambda_i \text{ s.t. } C(x,y) = \sum \lambda_i e_i(x) \overline{e_i(y)} \,.$

- \cdot Standard GPR: equality constraints $\mathcal{A} \circ \rho = b$ (with \mathcal{A} any linear operator) by treating b as an indirect observation
- Asymptotic constraints $A \circ \rho \overset{\omega \to \infty}{\propto} \phi(\omega)$ by modifying kernel via

Mercer's theorem: \forall continuous symmetric PSD kernels $C: \overline{[a,b]}\times[\overline{a},b] \longrightarrow \mathbb{R}, \ C(x,y)=C(y,x) \ \forall \ x,y \in \overline{[a,b]}$ \exists orthonormal basis of eigenfunctions $e_i(x)$ with non-negative $\text{ eigenvalues } \lambda_i \text{ s.t. } C(x,y) = \sum \lambda_i e_i(x) \overline{e_i(y)} \,.$

 \cdot E.g.: smooth transition from perturbative to non-pert. region

Application 2: S-matrix building blocks

2107.13464 [hep-ph], 2301.07785 [hep-ph]

Application 2: S-matrix building blocks

2107.13464 [hep-ph], 2301.07785 [hep-ph]

Application 2: S-matrix building blocks

2107.13464 [hep-ph], 2301.07785 [hep-ph]

Outlook

- \cdot Algorithm:
	- \cdot Integrate out hyperparams via hyperpriors & HMC
	- . Automatic kernel selection, hyperkernels, deep kernel learning
	- \cdot Inequality constraints like positivity $\&$ monotonicity
	- · Smeared spectral densities from finite-volume correlators
- \cdot Data:
	- \cdot Increased resolution/precision of lattice & fRG results
	- \cdot Improved real-time constraints from spectral DSE
- \cdot Software:
	- \cdot fredipy: python package for Fredholm inversion, coming soon!
	- Couple to STAN-HMC for faster hyperparameter integration

