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(QCD) Propagators in the complex plane

▶ Spectral forms of correlation functions are widely studied using
functional methods and/or lattice simulations, in particular in re-
lation to meson spectra, charmonia (at finite T ), dissociation tem-
peratures, what happens at deconfinement, transport in the quark-
gluon plasma, . . .

▶ They can also enter the QCD bound state equations (Bethe-Salpeter,
Dyson-Schwinger), in terms of their constituents.

▶ They are indispensable to connect fictitious Euclidean results to
physical Minkowski observables.

▶ Unfortunately, getting clear-cut information on the full spectral prop-
erties of propagators is a very hard job (see this meeting!).

Anyhow, to us:

gauge (in)variant spectral properties are important!
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Playing with the Källén-Lehmann representation
Let us assume D(p2) describes a physical observable degree of free-
dom: Euclidean propagator can be written as

G(p2) =
∫

∞

0

ρ̃(µ)
µ+p2 dµ = Stieltjes integral transform

with ρ̃(t)≥ 0.

▶ ρ̃(t) ∝ Disccut=negative real axisG(t) via Cauchy’s theorem.

▶ In principle, no need to know G(p2) for p2 ∈C. Via (inverse) Stielt-
jes transform (1941,Widder)

ρ̃(t) = lim
n→+∞

(−1)n+1 1
(n!)2 ∂

n
t

[
t2n+1

∂
n+1
t G(t)

]
, t ≥ 0

Unfortunately, this is numerically hugely unstable, certainly for dis-
crete data with errors.
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Gauge field propagators are (usually) not gauge invariant

▶ So what physical information can be drawn from them?

▶ Powerful ally: BRST invariance → Slavnov-Taylor identity → Nielsen
identities → (perturbative) mass poles are gauge parameter inde-
pendent. So is vacuum energy V (φ) when considering gauge-
Higgs systems, albeit that ⟨φ⟩ is gauge variant.

▶ Beyond perturbation theory? What about spectral functions? Gauge
parameter dependent? Positive? What about the Higgs scalar?
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Why our interest in non-Abelian Higgs systems?
▶ Assume a fundamental Higgs, in the Higgs coupling → ∞ limit to

freeze the VEV (for simplicity). Then no clear order parameter
between confinement-Higgs behaviour (E. FRADKIN, S. SHENKER , PHYS.REV. D19

(1979) 3682)
▶ Phase diagram sketch of W. CAUDY, J. GREENSITE, PHYS.REV. D78 (2008) 025018

▶ Wait, is ⟨φ⟩ ̸= 0 not an order parameter? Perturbatively perhaps
yes, but non-perturbatively, topological DOFs might destroy the
condensate according to FMS (J. FROHLICH, G. MORCHIO, F. STROCCHI, PHYS. LETT. 97B

(1980) 249; NUCL. PHYS. B190 (1981) 553).
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Why our interest in Higgs systems?

▶ Should we able to see this behaviour in (gauge invariant) spectrum
related quantities?

▶ For example: cc poles (or complex cuts) emerging in certain cor-
ners of the (gauge coupling, Higgs mass)-diagram, representing
“confinement”? Standard mass poles in other corners, represent-
ing “massive Higgs physics”?

▶ Let us be modest, and first learn a few (new) things for Abelian
Higgs systems.

(D. van Egmond in her talk will discuss the less modest SU(2)
case.)
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Abelian Higgs model

S =
∫

d4x

{
1
4

FµνFµν +(Dµϕ)†Dµϕ+
λ

2

(
ϕ

†
ϕ− v2

2

)2
}
,

The spontaneous symmetry breaking is implemented by expressing the
scalar field as an expansion around its classical vev, namely

ϕ =
1√
2
((v +h)+ iρ),

h is identified as the Higgs field and ρ is the (unphysical) Goldstone
boson, with ⟨ρ⟩ = 0. Here we choose to expand around the classical
value of the vev, so that ⟨h⟩ is zero at the classical level, but receives
loop corrections. That is, tadpole graphs are to be kept!

C KL Higgs elementary Higgs composite More gauge invariance Conclusion



D. Dudal BRST+Gribov 9 / 46

Abelian Higgs model
In the condensed vacuum, the gauge field and the Higgs field acquire
the following masses

m2 = e2v2, m2
h = λv2.

Quantization in the ’t Hooft or Rξ-gauge (to remove mixing between
Goldstone/photon)

Sgf = s
∫

dd x

{
−i

ξ

2
c̄b+ c̄(∂µAµ +ξmρ)

}
,

=
∫

dd x

{
ξ

2
b2 + ib∂µAµ + ibξmρ+ c̄∂

2c−ξm2c̄c−ξmec̄hc

}
.

For the BRST transformation we have

sAµ = −∂µc,sc = 0,sϕ = iecϕ,sϕ
† =−iecϕ

†,

sh = −ecρ,sρ = ec(v +h),sc̄ = ib,sb = 0.
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Pole mass, residue and spectral functions

If

G(p2) =
1

p2 +m2 −Π(p2)
,

then
m2

pole = m2 −Π1−loop(−m2)+O(ℏ2),

is the consistent way to derive the pole mass. Formally, the residue is
given by

Z = lim
p2→−m2

pole

(p2 +m2
pole)G(p2).

leading to

Z =
1

1−∂p2Π(p2)|p2=−m2
= 1+∂p2Π(p2)|p2=−m2 +O(ℏ2).
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Pole mass: wrong and right

We could also solve exactly

p2 +m2 −Π1−loop(p2) = 0.

The pole mass will be gauge dependent (at odds with Nielsen identity).
For very small values of ξ, the approximated pole mass even gets com-
plex (conjugate) values. This is due to the fact that the branch point, is
ξ-dependent, and we can end up “on the cut”, splitting the pole mass
in 2 cc values. Cf. Y. HAYASHI, K.I. KONDO, PHYS. REV. D99 (2019) NO.7, 074001 using the “mas-
sive Landau gauge” (Curci-Ferrari) to model nonperturbative physics
(Tissier-Serreau-Wschebor-Reinosa-et al model).
Correct identification of pole masses in perturbation theory requires
care, in all cases!
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Pole mass: wrong and right

Figure: Gauge dependence of the Higgs pole mass obtained iteratively to first
order (Green) and the approximated pole mass (Red), for the parameter
values m = 2 GeV, mh =

1
2 GeV, µ = 10 GeV, e = 1

10 .
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Residue

Figure: Gauge dependence of the residue of the pole for the Higgs field, for
the parameter values m = 2 GeV, mh =

1
2 GeV, µ = 10 GeV, e = 1

10 .
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Elementary spectral functions

G(p2) =
∫

∞

0
dt

ρ(t)
t +p2 ,

is rewritten as

G(p2) =
Z

p2 +m2
pole

+
∫

∞

0
dt

ρ̃(t)
t +p2

with the “reduced” propagator (at leading order in ℏ)

G̃(p2) =
∫

∞

0
dt

ρ̃(t)
t +p2 = Z

 Π̃(p2)− (p2 +m2
pole)

∂Π̃(p2)
∂p2 |p2=−m2

(p2 +m2
pole)

2

 .

while, using Cauchy’s integral theorem,

ρ̃(t) =
1

2πi
lim

ε→0+

(
G̃(−t − iε)− G̃(−t + iε)

)
.
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Photon spectral function

Figure: Spectral function of the photon, with t given in GeV2, for the
parameter values m = 2 GeV, mh =

1
2 GeV, µ = 10 GeV, e = 1

10 . It is gauge
independent, as consistent with Nielsen identity. Or even simpler/stronger:
the transverse part of the photon is gauge invariant. The first-order pole
mass lies at t = 4.08286GeV 2, and the two-particle state of one photon field
and one Higgs field starts at t∗ = (mh +m)2 = 6.25GeV 2.
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Higgs spectral function

Figure: Spectral function of the Higgs boson, with t given in GeV2, for ξ = 2 (Green,
solid), ξ = 3 (Red, dotted), ξ = 5 (Yellow, dashed) and the parameter values m = 2
GeV, mh = 1

2 GeV, µ = 10 GeV, e = 1
10 . Clearly, it is gauge dependent/non-positive.

Interesting limit: the larger ξ gets, the longer positive the spectral functions stays.
Visual interpretation of the unitary gauge, ξ → ∞ being a “physical” gauge. But also
non-renormalizable, visible from the growth at larger t . There are (unphysical)
threshold effects at t∗ = (

√
ξm+

√
ξm)2 (Goldstone 2-particle states).
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On the branch point

Figure: Behaviour of the one-loop correction of the Higgs propagator Πhh(p2) around
the pole mass, for the values a =−10−6 (Yellow, dashed), a = 0 (Red, dotted),
a =−10−6 (Green, solid). The value x is a small imaginary variation of the argument
in Πhh(p2). Only for a = 0 we find a continuous function at x = 0, meaning that for
any other value, we are on the branch cut. Πhh(p2) is non-differentiable at p2 =−m2

h
and we cannot extract a residue for this pole. In order to avoid such a problem, we
should move away from the Landau gauge and take a larger value for ξ, so that the
threshold for the branch cut will be smaller than −m2

h. For this we need that
4ξm2 > m2

h, which in the case of our parameters set means to require that ξ > 1
64 .

C KL Higgs elementary Higgs composite More gauge invariance Conclusion



D. Dudal BRST+Gribov 18 / 46

Higgs spectral function: asymptotics

▶ We note that the Higgs spectral function becomes negative, de-
pending on ξ. This can be understood from the asymptotics:

G(p2)
p2→∞
=

Z
p2 ln p2

µ2

→ ρ(t)
t→∞
= −Z

t

(
ln

t
µ2

)−2

with Z = 1600π2

3−ξ
.

▶

(Of course, this is a somewhat formal discussion, as Abelian Higgs
theories are ill in the deep UV.)
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Intermezzo: the massive Abelian Landau gauge

▶ Remember: massive Landau gauge (aka. Curci-Ferrari model) fre-
quently used to (quite successfully) model non-perturbative QCD
propagators.

▶ DOFs are confined, so let us not worry about non-unitarity of the
elementary gluons.

▶ But what if we were to worry, how to see the non-unitarity via the
spectral functions?
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Intermezzo: the massive Abelian Landau gauge

Consider a Higgs-Curci-Ferrari model

SCF =
∫

dd x

{
1
4

FµνFµν +
m2

2
AµAµ +(Dµϕ)†Dµϕ+m2

ϕϕ
†
ϕ+λ(ϕϕ

†)2

− α
b2

2
+b∂µAµ + c̄∂

2c−αm2c̄c

}
,

There is a non-nilpotent BRST invariance:

smAµ = −∂µc,smc = 0,smϕ = iecϕ,

smϕ
† = −iecϕ

†,smc̄ = b,smb = −m2c.
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Bad property 1

Figure: Gauge dependence of the first order pole mass for the scalar field.
The chosen parameter values are m = 1

2 GeV, mϕ = 2 GeV, µ = 10 GeV,
e = 1

10 .
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Bad property 2
We could ignore the elementary excitations, and focus on the sm-invariant

operators (“physical” subspace). We notice that sm

(
b2

2 +m2c̄c
)
= 0.

Figure: Spectral function of the composite operator b2

2 +m2c̄c, for α = 2
(Green, dotted), α = 3 (Red, solid), α = 5 (Yellow, dashed). The chosen
parameter values are m = 1

2 GeV, µ = 10 GeV. This is a ghost! Functional
version of the asymptotic Fock space ghost constructed by I. OJIMA, Z. PHYS. C13

(1982) 173.
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Some comments

Even in one-loop perturbation theory in the Abelian Higgs model, the
typical problems should have become clear already:

▶ unphysical (gauge variant) thresholds

▶ non-positive spectral functions for would-be observables

▶ gauge variant spectral functions for would-be observables

▶ imagine the non-Abelian case, where the transverse gauge
bosons are also not gauge invariant anymore
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Gauge invariant observables
’t Hooft (1979 Cargèse lectures)
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Gauge invariant observables

▶ Spectrum should be described by gauge invariant operators. Could
be used to “interpolate” between bound states (∼ strong coupling)
and elementary excitations (∼ weak coupling).

▶ Later on formalized by FMS in J. FROHLICH, G. MORCHIO, F. STROCCHI, PHYS. LETT. 97B

(1980) 249; NUCL. PHYS. B190 (1981) 553.

▶ Nice review and lattice results in A. MAAS,PROG. PART. NUCL. PHYS. 106 (2019) 132 AND

FOLLOW-UP PAPERS.
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Gauge invariant observables

▶ Consider the two local gauge invariant composite operators O and
Vµ

ϕ
†
ϕ → O =

1
2

(
h2 +2vh+ρ

2) ,

−iϕ†(Dµϕ) → Vµ =
1
2

(
−ρ∂µh+h∂µρ+ v∂µρ+eAµ

(
v2 +h2 +2vh+ρ

2)) .

▶ In the Higgs vacuum, one gets

⟨O(x)O(y)⟩ ∼ ⟨h(x)h(y)⟩(tree level)+ higher orders ,

Vµ ∼ ev2

2
Aµ + total derivative+ higher orders .

▶ O related to the Higgs excitation, Vµ to the photon.
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Gauge invariant observables: a few comments 1

I will skip most of the technical details, but

▶ The operators O and Vµ belong to the non-trivial BRST cohomol-
ogy, as must be the case to be called local observables.

▶ Their renormalization is fully under control via a multitude of Ward
identities, including their mixing at quantum level with BRST exact
terms and EOM-terms.

▶ Noteworthy, Vµ has vanishing anomalous dimension (running), be-
ing related to the U(1) Noether current.

Note ∂µVµ = s(. . .) in generic Rξ gauge → (only) transverse when
inserted into gauge invariant correlation functions.
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Gauge invariant observables: a few comments 1
▶ We were able to prove a novel deep identity (only to be found when

the O is included in the theory via a proper source)

∂Ev

∂v
= ⟨h⟩+λv ⟨O⟩

connecting tadpoles, the classical minimum v and the vacuum en-
ergy minimization to ⟨O⟩. Contrary to textbook lore, minimization
of Ev is not a priori equivalent to nullifying tadpoles.

▶ Likewise, it holds exactly that

Pµν(p)
〈
Vµ (p)Vν (−p)

〉
=

p4

4e2 Pµν (p)
〈
Aµ (p)Aν (−p)

〉
−3

(
p2 −m2

)
4e2 ,

and

Lµν(p)
〈
Vµ (p)Vν (−p)

〉
=

v2

4
The longitudinal part is constant, no propagating degrees of free-
dom!
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Gauge invariant observables: a few comments 2

▶ Due to higher-dimensional nature of O and Vµ → polynomially
subtracted Källén-Lehmann representation to get finite results. These
polynomials (additive counterterms) are well-understood also from
the Ward identity viewpoint, and are of no consequence for the
spectral density/analytical structure.

▶ A certain care is needed when resumming Feynman graphs.
▶ In fact, this is already the case for the Higgs scalar itself.
▶ But there is more: since we consider composite fields, the textbook

correspondence between connected and 1PI n-point functions is
lost.

(Other resummation strategies were proposed in A. MAAS, R. SONDENHEIMER,

PHYS.REV.D 102 (2020) 113001 , but for the considered model, numerically
quite analogous results.)
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Gauge invariant observables: resummation
The Higgs propagator

⟨hh⟩(p) = 1
p2 +m2

h
+

1
(p2 +m2

h)
2
Πhh(p

2)+O(ℏ2)

The quantity Πhh contains terms of the type p4

(p2+m2
h)

2 ln
p2x(1−x)+m2

h
µ2

(x = Feynman parameter), which cannot be resummed for big values
of p. If doing so, spurious (tachyon) poles pop up.
Via p4 = (p2 +m2

h)
2 −m4

h −2p2m2
h:

p4

(p2 +m2
h)

2
ln

p2x(1− x)+m2
h

µ2 = ln
p2x(1− x)+m2

h

µ2 − (m4 +2p2m2)

(p2 +m2)2 ln
p2x(1− x)+m2

h

µ2 .

The underlined term in can be safely resummed,

Πhh(p2)

(p2 +m2
h)

2
=

Π̂hh(p2)

(p2 +m2
h)

2
+Chh(p

2),⇒Ghh(p
2)=

1

p2 +m2 − Π̂(p2)
+Chh(p

2),

Important: Chhp2 does not influence the perturbatively corrected pole
mass!
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Gauge invariant observables: resummed propagators

0 1 2 3 4 5 6
p0

1

2

3

4

Gp2

Figure: Resummed Higgs propagator, with all quantities given in units of
appropriate powers of the energy scale µ, for the parameter values e = 1,
v = 1µ, λ = 1

5 .
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Gauge invariant observables: resummed propagators

5 10 15 20
p

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
GOO(p

2)

0 5 10 15 20
p0.0

0.2

0.4

0.6

0.8
GTVV(p

2)

Figure: Resummed propagator for the scalar (left) and vector (right composite
operator. All quantities are given in units of appropriate powers of the energy
scale µ, with the parameter values e = 1, v = 1µ, λ = 1

5 .
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Spectral function for the gauge invariant scalar

0 5 10 15 20 25 30
t0

1

2

3

4

5

6
103.ρ(t)

Figure: Spectral function for the propagator ⟨O(p)O(−p)⟩, with t given in
units of µ2, for the parameter values e = 1, v = 1µ, λ = 1

5 . The spectral
function is now positive, gauge invariant and no more plagued by unphysical
threshold effects. We see the close similarity with ⟨hh⟩ in the unitary gauge,
making clear the physicalness of the latter gauge. Moreover, we can also
show the (now genuinely gauge invariant) mass pole coincides with that of
⟨hh⟩.
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Spectral function for the transverse vector propagator

0 10 20 30 40 50
t0

5

10

15

20

25

103.ρ(t)

Figure: Spectral function for the propagator ⟨O(p)O(−p)⟩T , with t given in
unity of µ2, for the parameter values e = 1, v = 1µ, λ = 1

5 . Also here,
everything perfectly physical; the pole is again coincident with the elementary
one.
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Interesting perspective for the unitary gauge (ξ →+∞)

▶ We notice that the Higgs spectral function for ξ →+∞ resembles
quite well that of the gauge invariant scalar.

Despite that the unitary gauge is not renormalizable, cf.

⟨Aµ(p)Aν(−p)⟩tree
ξ→∞
=

1
p2 +m2 Pµν +

1
m2 Lµν.

it gives another indication that it serves as the “most physical gauge”,
as Goldstones and ghosts decouple, being infinitely heavy.
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O and Vµ as elementary fields?

▶ So far so good, we have identified good (composite) quantum op-
erators to probe the “truly gauge invariant” spectrum of the Abelian
Higgs model.

▶ It looks logical to try to “rewrite” the whole theory (including inter-
actions) in terms of these more fundamental variables.

▶ How?
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The equivalence theorem

▶ Main message: a change of path integration variables cannot change
the physics (→ S -matrix). This is the core of the so-called Equiva-
lence Theorem, cf. M. C. BERGERE, Y. M. P. LAM, PHYS. REV. D 13, (1976) 3247, R. HAAG PHYS.

REV. 112 (1958) 669, S. KAMEFUCHI, L. O’RAIFEARTAIGH, A. SALAM, NUCL. PHYS. 28 (1961) 529, Y. M. P. LAM,

PHYS. REV. D 7 (1973) 2943.

▶ The field redefinition can be non-local. The underlying proofs

▶ It is also what lies at the heart of “renormalizable (power counting)
non-renormalizable” theories, cf. J. GOMIS, S. WEINBERG, NUCL.PHYS.B 469 (1996) 473.

▶ For a scalar toy model, it was shown in A A. BLASI, N. MAGGIORE, S. P. SORELLA

AND L. C. Q. VILAR, PHYS. REV. D 59, 121701 (1999) that the non-renormalizable part,
after a proper field redefinition, corresponds to a harmless (toy)
BRST cohomologically trivial sector.
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The equivalence theorem: generalization to our case
We will follow a two-step procedure.
▶ First, we pass from Cartesian to a polar basis:

h → (h′+ v)cos
(
ρ
′)− v ,

ρ → (h′+ v)sin
(
ρ
′) ,

Aµ → A′
µ −

1
e

∂µρ
′ ,

The action then becomes (Landau gauge)

SHiggs(A
′,h′,ρ′)+

∫
d4x

(
ib(∂A′− 1

e
∂

2
ρ
′)+ c̄∂

2c

)

Sghosts =
∫

d4x

(
η̄ηcos

(
ρ
′)− η̄σ(h′+ v)sin

(
ρ
′)− 1

e
ξ̄ν∂νσ

)
+

∫
d4x

(
σ̄ηsin

(
ρ
′)+ σ̄σ(h′+ v)cos

(
ρ
′)+ ξ̄νξν

)
.
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The equivalence theorem: generalization to our case

Pro: nilpotent BRST symmetry operator s, s2 = 0

sA′
µ = 0, sh′ = 0 ,

sρ
′ = ec , sc = 0 ,

sc̄ = ib , sb = 0 ,

sξ̄ν = sξν = sη = sσ = 0 ,

sη̄ = −ecσ̄ ,

sσ̄ = ecη̄ ,

with physical scalar h′ and vector A′
µ. “Eaten” Goldstone boson ρ′

and ghost c form a trivial BRST doublet.

Con: a new (complicated) ghost sector (∼Jacobian det of the non-linear
field redefinition). How relevant is it?
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The equivalence theorem: generalization to our case
▶ Next, we move to the gauge invariant composite scalar and vector,

now reading

O(A′
µ,h

′) =
1
2
(h′+ v)2 − v2

2
, Vµ(A

′,h′) =
e
2
(h′+ v)2A′

µ .

which we invert to

h′ =
O
v2

(
1+ζf1(O/v2)

)
, A′

µ =
2Vµ

ev2

(
1+ζf2(O/v2)

)
where we introduced a new parameter ζ in front of the non-linear
part. Its role will become clear soon.

▶ Then we transform the path integral again, eventually finding

Snew =
∫

d4x

(
1
4

F 2
µν(2V/(ev2))+

1
2v4 (∂µO)2 +

2
v2 V 2

µ +
4
v4 V 2

µ O+
λ

2
O2

)

+
∫

d4x

 2ib
ev2 ∂µVµ−

ib
e

∂
2
ρ
′+ c̄∂

2c︸ ︷︷ ︸
=− 1

e s(c̄∂2ρ′)

+ζ(long ghost piece)
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The equivalence theorem: generalization to our case
▶ The red part is the new “physical core” of the theory.
▶ The green part will assure that, on-shell, Vµ is transverse, as a

massive vector should be.
▶ The underbraced piece is BRST trivial.
▶ What about the other ghost sector (tacitly not written here)?
▶ Equivalence theorem (in algebraic form):

The system has another nilpotent symmetry δ amongst the new
fields, with

δ
2 = 0 , {s,δ}= 0 .

and all new fields form δ-doublets.
▶ The physical spectrum is given by

cohom(s)
⋂

cohom(δ)

and boils down to the original gauge invariant operators, reex-
pressed in terms of O and Vµ.
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The equivalence theorem: generalization to our case

→ Example of constrained cohomology, first considered in S. OUVRY, R. STORA,

P. VAN BAAL, PHYS. LETT. B 220 (1989) 159, F. DELDUC, N. MAGGIORE, O. PIGUET, S. WOLF, PHYS. LETT. B 385

(1996) to algebraically define the observables of topological Yang-
Mills theories.

▶ Moreover, we showed that, with Γ = effective action,

ζ
∂

∂ζ
Γ = δ(. . .)

→ ζ is like a gauge parameter and will not enter any observable. The
complicated new ghost sector, power-counting non-renormalizable,
is like a gauge fixing term. It also means there are no new physical
divergences arising, the original counterterms are sufficient!
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What about the (global) U(1) and its symmetry breaking?

▶ Its role is diminished in the new formulation. We no longer have
⟨ϕ⟩ at our disposal to decide about the vacuum being (globally)
invariant or not.

At the end, this is not what interests us, but rather whether the
vector particles are massive (or not). If a transition from massive
to massless behaviour corresponds to an actual phase transition,
it can be analyzed in terms of the analytic properties of the free
energy.

▶ We can always introduce a BRST invariant parameter v ̸= 0 as the
minimum of the classical potential and keep it as minimum for the
quantum potential by a suitable choice of the vacuum renormal-
ization constant. Depending on ⟨O⟩, ⟨ϕ⟩ and v√

2
may coincide or

not, depending on ⟨h⟩.
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What about the (global) U(1) and its symmetry breaking?

▶ Physics will not depend on this choice of renormalization scheme.
Depending on the quantum dynamics, ⟨O⟩ remains nonzero or
not, and whether the gauge invariant vector quantity Vµ keeps its
nonzero mass pole beyond tree level. This is in perfect accordance
with the FMS philosophy!

▶ The rewriting of the action in terms of the explicitly gauge invari-
ant variables, in conjunction with the Equivalence Theorem, is an
explicit framework capable of implementing FMS: we may choose
around which value of ϕ̄ on the ϕ-orbit (v in our language) we
expand, whilst standard perturbation theory as developed in text-
books corresponds to the situation of picking up a particular di-
rection, i.e. setting ⟨ϕ⟩ = ϕ̄(= v√

2
). At the end, the observable

physics will be the same, irrespective of any gauge choice or as-
sumption about broken global U(1) invariance.
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Final comments
Main message

I hope to have convinced you of the importance of considering gauge invariant
correlation functions to probe gauge-(Higgs) systems.

Things to do

▶ Generalization to SU(2) (next talk:)) and then to electroweak model? Inclusion
of dressed (gauge-invariant) fermion matter?

▶ Making contact with lattice simulations (cf. work of A. MAAS) and phenomenol-
ogy?

▶ Test the perturbative predictions of the new action vs. the original one.

▶ In D. BINOSI, A. QUADRI, PHYS.REV.D 106 (2022) 6, 065022, an interesting (renormalizable!)
setup was considered to include a higher-dimensional operator deformation of
the Abelian Higgs model, which turns out to be ∼ O∂2O. We are now joining
forces to probe this model. Preliminary computations show rather interesting be-
haviour in terms of relative strength of extra allowed coupling corresponding to
O∂2O.

▶ . . .

C KL Higgs elementary Higgs composite More gauge invariance Conclusion



D. Dudal BRST+Gribov 46 / 46

The End!

Thanks!
C KL Higgs elementary Higgs composite More gauge invariance Conclusion


