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Introduction
Analytic structure of a propagator: states and spectrum

Physical case: Källén-Lehmann spectral representation

D(k2) =

∫ ∞

0
dσ2 ρ(σ2)

σ2 − k2
,

θ(k0)ρ(k
2) := (2π)d

∑
n

|⟨0|ϕ(0)|Pn⟩|2δD(Pn − k),

singularities on complex k2-plane
←→ states non-orthogonal to ϕ(0) |0⟩

Analytic structures of the QCD propagators would be
helpful to understand fundamental aspects (e.g.,
confinement) and real-time dynamics.

Based on the progress on the Landau-gauge gluon, ghost, and
quark propagators, there has been an increasing interest in their
analytic structures.
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An interesting possibility – complex singularity

An interesting possibility has been consistently suggested by
independent (old and recent) analyses: the gluon propagator may
have complex singularities, invalidating the Källén-Lehmann
spectral representation.

1 Modeling gluon propagator to fit lattice results

(refined-)Gribov-Zwanziger model [Dudal et. al. 2008]...

Massive-like gluon model [Siringo 2016] [YH and Kondo, 2018]...

Numerical reconstruction techniques [Binosi and Tripolt 2019] [Falcão,

Oliveira, and Silva 2020] [Lechien and Dudal 2022] [Boito et. al. 2022]...

2 Dyson-Schwinger equation on the complex momentum plane
[Strauss, Fischer, and Kellermann 2012] [Binosi and Tripolt 2019] [Huber and Fischer 2020]

However, the interpretation of complex singularities has not been
established and deserves attention.
(short-lived gluon? non-locality? [Stingl 1986] etc.)
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Definition and main questions

How to investigate analytic structures

Aim: investigating analytic structures of the propagators from
Euclidean data through “analytic continuation”.

The “analytic continuation” from finite data is in principle an
ill-posed problem: use models consistent with the
Euclidean data with some theoretical backgrounds.

𝑘𝐸
2Im 𝑘𝐸

2

Re 𝑘𝐸
2

Analytic structure

Euclidean data

“analytic continuation”: need a model
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What is “complex singularity” exactly?

� �
Complex singularity: singularity off the real axis in the complex
Euclidean momentum plane k2E of an analytically continued Eu-
clidean propagator D(k2E ).� �

e.g.) complex poles: poles not on
the real axis of analytically
continued Euclidean propagator

D(k2E ) =
Z

w + k2E
+

Z ∗

w∗ + k2E

+

∫ ∞

0
dσ2 ρ(σ2)

σ2 + k2E
,

Im k2

Re k2

k2
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Definition and main questions

Reconstruction from Euclidean field theory to QFT

[Osterwalder and Schrader 1973, 1975]

Euclidean
Schwinger functions {Sn}

Minkowski
Wightman functions {Wn}

Relativistic QFT
states and operators

standard:
OS reconstruction

(α) reconstruction S2 → W2

standard: Wightman
reconstruction

(β) a possibility
is discussed
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Definition and main questions

Main Questions

In the presence of complex singularities, natural questions on this
procedure are,

(α) Is it possible to reconstruct a Wightman function W (ξ0, ξ⃗) on
the Minkowski spacetime from the Schwinger function?
Which conditions of the Wightman/OS axioms are
preserved/violated?

(β) Does there exist a quantum theory reproducing the
reconstructed Wightman function W (ξ0, ξ⃗) as a vacuum
expectation value: W (ξ) = ⟨0|ϕ(ξ)ϕ(0)|0⟩? If it exists, what
states cause complex singularities?

We will answer these questions affirmatively.
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Reconstruction of the Wightman function and its general properties

Warm-up: Wick Rotation? (1)

Usually, we do not care about the reconstruction and instead use
the inverse Wick rotation k2E → −k2 (Euclidean propagator →
time-ordered propagator).

However, this is not applicable in the presence of complex
singularities.

As a warm-up example, let us see the Gribov-type propagator in a
(0 + 1) dimensional theory:

D(k2E ) =
k2E

k4E + γ4
.

In terms of the imaginary time τ , the Euclidean propagator
(Schwinger function) S(τ) is,

S(τ) =
1

2γ
e
− γ|τ |√

2 sin

(
−γ|τ |√

2
+

π

4

)
,
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Reconstruction of the Wightman function and its general properties

Warm-up: Wick Rotation? (2)

We reconstruct the Wightman function by identifying the
Schwinger function as imaginary-time data of the holomorphic
Wightman function [S(τ) = W (−iτ) for τ > 0].

Then, the reconstructed Wightman function is,

W (t) =
i

2γ
e
i γt√

2 sinh

(
γt√
2
− iπ

4

)
,

which diverges exponentially in both limits t → ±∞. The
time-ordered propagator θ(t)W (t) + θ(−t)W (−t) cannot be
Fourier-transformed. Therefore, the simple prescription k2E → −k2
does not give a correct answer.

From this example,

we cannot rely on the inverse Wick rotation k2E → −k2, and
we need to consider the reconstruction procedure carefully.
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General properties of complex singularities

Wightman function W (t, x⃗) is reconstructed from Schwinger
function S(τ, x⃗) by identifying S(τ, x⃗) = W (−iτ, x⃗) (τ > 0).
In the presence of complex singularities (bounded in k2

E -plane), we
rigorously prove:

List of properties� �
Holomorphy of W (t, x⃗) in the tube R4 − iV+

[V+: forward lightcone]

Existence of the boundary value
W (t, x⃗) = limτ→+0W (t − iτ, x⃗) as a distribution.

W (t, x⃗) satisfies Lorentz symmetry and locality (i.e.
spacelike commutativity).

◦ Non-temperedness of the boundary value W (t, x⃗)

◦ Violation of the positivity of W (t, x⃗).� �
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Reconstruction of the Wightman function and its general properties

Sketches of proofs: (0)holomorphy

Reconstruction: S(τ, x⃗)→W (ξ = (t, x⃗))� �
S(τ, x⃗)

τ>0
= W (−iτ, x⃗) → W (ξ − iη) for ξ ∈ R4, η ∈ V+

→ W (ξ) = lim
η→0, η∈V+

W (ξ − iη)

� �
e.g.) Complex poles (Ep⃗ :=

√
p⃗2 +M2 with ReEp⃗ > 0)

D(k2E ) =
Z

k2E +M2
+

Z ∗

k2E + (M∗)2

→ S(τ, x⃗) =

∫
d3p⃗

(2π)3
e i p⃗·x⃗

[
Ze−Ep⃗τ

2Ep⃗
+

Ze−E∗
p⃗ τ

2E ∗
p⃗

]

→W (ξ − iη) =

∫
d3p⃗

(2π)3
e i p⃗·(ξ⃗−i η⃗)

[
Ze−iEp⃗(ξ

0−iη0)

2Ep⃗
+

Z ∗e−iE∗
p⃗ (ξ

0−iη0)

2E ∗
p⃗

]
converges (and is holomorphic in ξ − iη) for η0 > |η⃗|, i.e., η ∈ V+.
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Reconstruction of the Wightman function and its general properties

Sketches of proofs:
(1) boundary value and non-temperedness

Reconstruction: S(τ, x⃗)→W (ξ = (t, x⃗))� �
S(τ, x⃗)

τ>0
= W (−iτ, x⃗) → W (ξ − iη) in R4 − iV+

→ W (ξ) = lim
η→0, η∈V+

W (ξ − iη)

� �
e.g.) a pair of complex conjugate poles (cont’d)

W (ξ − iη) =

∫
d3p⃗

(2π)3
e i p⃗·(ξ⃗−i η⃗)

[
Ze−iEp⃗(ξ

0−iη0)

2Ep⃗
+

Z ∗e−iE∗
p⃗ (ξ

0−iη0)

2E ∗
p⃗

]
∃W (ξ) = limη→0, η∈V+ W (ξ − iη) as a distribution [∵ the limit

exists if smeared by a smooth compactly-supported function of ξ].

Since Ep⃗ is complex, W (ξ) grows exponentially for ξ0 → ±∞.
W (ξ) is not tempered.
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Reconstruction of the Wightman function and its general properties

Sketches of proofs: (2) violation of positivity

� �
The positivity is violated due to the non-temperedness.� �

For this, we show

positivity =⇒ temperedness

Rough idea:

Positivity of 2pt.-function → the sector {ϕ(x) |0⟩}x∈R4 has a
positive metric.

translational invariance → translation operator U(a):
U(a)ϕ(x) |0⟩ = ϕ(x + a) |0⟩ is unitary.

Therefore, the Wightman function W (a) = ⟨0|ϕ(0)U(−a)ϕ(0)|0⟩
will be bounded above ⇒ tempered.
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Reconstruction of the Wightman function and its general properties

Sketches of proofs: (3) Lorentz symmetry

The Schwinger function has the Euclidean rotation SO(4)
invariance.

→ W (ξ − iη) is invariant under infinitesimal Euclidean rotations.

→ W (ξ − iη) is invariant under infinitesimal complex Lorentz
transformations.

→ 1 W (ξ − iη) is invariant under the proper complex Lorentz
symmetry L+(C) (within its domain of definition), where
L+(C) := {Λ ∈ C4×4 ; ΛTGΛ = G , det Λ = 1} with the
metric G = diag(1,−1,−1,−1).

→ The Wightman function W (ξ) is invariant under the restricted
Lorentz transformation2.

1An argument similar to Bargmann-Hall-Wightman theorem is used here.
2In the case of a scalar field, the invariance under Lorentz boosts can be

explicitly checked by a contour deformation.
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Reconstruction of the Wightman function and its general properties

Sketches of proofs: (4) locality

The spacelike commutativity [Wij(ξ) = (−1)σWji (−ξ)]3 follows
from

permutation symmetry of Schwinger function
Sij(x − y) = (−1)σSji (y − x),

single-valued continuation Wij(ξ − iη) in the ‘extended tube’
L+(C)[R4 − iV+] including spacelike points (’Jost points’).

Wij(z) = (−1)JWij(−z) from −1 ∈ SO(4) ⊂ L+(C).4

Wij(ξ − iη) (−1)σ+JWji (ξ − iη) (−1)σWji (−ξ + iη)

Wij(ξ) (−1)σWji (−ξ)

η → 0
(η ∈ V+)

η → 0
holomorphy at spacelike ξ

3(−1)σ: statistical factor
4(−1)J : the number of dotted indices in the correlator
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Summary: answer to the question (α)

Main question (α)� �
Is it possible to reconstruct a Wightman function W (ξ0, ξ⃗) on
the Minkowski spacetime from the Schwinger function?
Which conditions of the Wightman/OS axioms are pre-
served/violated?� �

In this section, we have seen that it is possible to reconstruct the
Wightman function as a distribution.

The violated/preserved conditions of the Wightman/OS axioms are
summarized in the next slide.
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Summary of Wightman/OS axioms

Minkowski: Wightman axioms for Wightman functions

[W0] Temperedness violated 7

[W1] Poincaré Symmetry preserved 3

[W2] Spectral Condition violated 7

[W3] Spacelike Commutativity preserved 3

[W4] Positivity violated 7

[W5] Cluster property irrelevant

Euclidean: Osterwalder-Schrader axioms for Schwinger functions

[OS0] Temperedness assumed 3

[OS1] Euclidean Symmetry assumed 3

[OS2] Reflection Positivity violated 7

[OS3] Permutation Symmetry assumed 3

[OS4] Cluster property irrelevant
[OS0’] Laplace transform condition violated (but irrelevant)
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Realization in quantum theory

Interpretation in an indefinite metric state space (0)

Main question (β)� �
Does there exist a quantum theory reproducing the recon-
structed Wightman function W (ξ) as a vacuum expectation
value: W (ξ) = ⟨0|ϕ(ξ)ϕ(0)|0⟩?
If exists, what states cause complex singularities?� �

In this section, we argue that complex singularities can be realized
in indefinite-metric QFTs and correspond to pairs of zero-norm
eigenstates of complex energies.
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Realization in quantum theory

Interpretation in an indefinite metric state space (1)

An important observation is that complex-energy spectra can
appear in an indefinite metric state space.

Complex conjugate eigenvalues of a hermitian Hamiltonian
can be realized by zero-norm pairs:

(|E ⟩ , |E ∗⟩)

{
H |E ⟩ = E |E ⟩ , H |E ∗⟩ = E ∗ |E ∗⟩
⟨E |E ⟩ = ⟨E ∗|E ∗⟩ = 0, ⟨E |E ∗⟩ ̸= 0

This pair contributes to the Wightman function,

⟨0|ϕ(t)ϕ(0)|0⟩ ⊃ (⟨E ∗|E ⟩)−1e−iEt ⟨0|ϕ(0)|E ⟩ ⟨E ∗|ϕ(0)|0⟩
+ (⟨E |E ∗⟩)−1e−iE∗t ⟨0|ϕ(0)|E ∗⟩ ⟨E |ϕ(0)|0⟩ .

By preparing such states for all momentum p⃗, we can
reproduce the Wightman function reconstructed from complex
poles.
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Realization in quantum theory

Example: Lee-Wick model (1)

To show this more concretely, we consider an example, the
covariant operator formulation of Lee-Wick model [Nakanishi1972].
The essential ingredients are as follows.

Annihilation operators α(p⃗), β(p⃗):
[α(p⃗), β†(q⃗)] = [β(p⃗), α†(q⃗)] = (2π)3δ(p⃗ − q⃗), and other
commutators vanish.
The field operator is

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep⃗

[
α(p⃗)e i p⃗·x⃗−iEp⃗t + β†(p⃗)e−i p⃗·x⃗+iEp⃗t

]
.

where Ep⃗ :=
√

M2 + p⃗2 and M2 ∈ C.
Vacuum state |0⟩: α(p⃗) |0⟩ = β(p⃗) |0⟩ = 0.
Hamiltonian

H =

∫
d3p

(2π)3

[
Ep⃗β

†(p⃗)α(p⃗) + E ∗
p⃗α

†(p⃗)β(p⃗)
]
.
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Realization in quantum theory

Example: Lee-Wick model (2)

The states |p⃗, α⟩ := α†(p⃗) |0⟩ and |p⃗, β⟩ := β†(p⃗) |0⟩ form the pair
of complex-energy zero-norm states for every p⃗ ∈ R3:

H |p⃗, α⟩ = E ∗
p⃗ |p⃗, α⟩ , H |p⃗, β⟩ = Ep⃗ |p⃗, β⟩ ,

⟨p⃗, α|q⃗, α⟩ = ⟨p⃗, β|q⃗, β⟩ = 0, ⟨p⃗, α|q⃗, β⟩ = (2π)3δ(p⃗ − q⃗).

From these pairs, the Wightman functions are

⟨0|ϕ(x)ϕ(0)|0⟩ =
∫

d3p

(2π)3
1

2Ep⃗
e i p⃗·x⃗−iEp⃗t ,

⟨0|ϕ(x)ϕ†(0)|0⟩ = ⟨0|ϕ†(x)ϕ(0)|0⟩ = 0,

⟨0|ϕ†(x)ϕ†(0)|0⟩ =
∫

d3p

(2π)3
1

2E ∗
p⃗

e i p⃗·x⃗−iE∗
p⃗ t ,

which are indeed Wightman functions reconstructed from complex
poles 1

k2+M2 and 1
k2+(M∗)2

.
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Realization in quantum theory

Remarks on the interpretation

Thus, complex singularities can be realized in an indefinite-metric
QFT and understood as pairs of zero-norm states.

Complex-energy states violate the spectral condition and
make asymptotic states ill-defined.

Complex singularity of the gluon propagator suggests

AA
µ(0) |0⟩ = |E ⟩+ |E ∗⟩+ · · ·

Such zero-norm states should be confined. In the Kugo-Ojima
scenario, |E ⟩ and |E ∗⟩ should be in BRST quartets.

Both states |E ⟩ and |E ∗⟩ should contain BRST-parent states
→ complex singularities in ghost-gluon bound states?

Different choice of in- and out- vacuum → short lifetime
gluon? [Siringo and Comitini ’22] [Siringo’s talk]
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Summary

Many studies suggest that the Landau-gauge gluon propagator has
complex singularities. Therefore, we have considered the
reconstruction procedure in the presence of complex singularities

The 2pt. Wightman function can be reconstructed as a
distribution.

Complex singularities lead to non-temperedness of the
Wightman function ⇒ violation of the positivity and
spectral condition

Complex singularities are consistent with Lorentz
symmetry and locality.

Complex singularities in a propagator can be realized in an
indefinite-metric QFT and understood as pairs of zero-norm
confined states.


	Introduction
	Definition and main questions
	Reconstruction of the Wightman function and its general properties
	Realization in quantum theory
	Summary

