
Determination of spetral funtions

from the funtional formalism of

spetral DSEs

Spetra of mesons in the funtional formalism of spetral gap

equations

Vladimír �auli

OTF UJF Rez

sauli�ujf.as.z

Maynooth 2023

• Introdution

• Meson Form fators from funtional formalism QCD

DSEs

• Re�etions of on�nement

• Spetral funtion in walking gauge theory



Intro

Spetral DSEs= Set of DSEs soved within Minkowski spae Integral Repre-

sentation

DSEs- Funtional fromalism leading to set of DSEs, usually using SM degrees

of freedom, hadrons are bound states of quarks, or they an be identi�ed by its

resonant shape in given spin hannel of ammplitude

Exlusive hadron prodution=>timelike momenta, Minkowski spae, 99.99%

based on EFT (CHPT), from 2017 -spetral gap equations
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Fermion Spetral Funtion for extreme walking gauge theory



Funtional formalism for alulations of hadroni form fators

• It is nonperturbative QFT approah

• It as based on skeleton expansion in terms of loops with dressed (exat) quark

propagators and dressed SM verties A.Bender... Phys. Lett. B 380,7 (1996);P. Maris , Tandy,

PRC C 62(2000) 055204

• Appliable to exlusive QED/QCD proesses (applied hundreds times to pro-

esess, transitions at spaelike (Eulidean) domain of energy and momenta,

inluding mesoni as well as baryoni exitations)

• Spetral gap equations- solution of DSEs in Minkowski spae, suited to deal

with QCD resonanes, suited for on�nement study in strong QFT



Sample of exlusive proesses we an deal with:
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Figure 1: a)e+e− → πoγ, σ ≃ GG∗;Gπ(q
2, 0) b) e+e− → ηγ σ ≃ GG∗;Gη(q

2, 0)
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Figure 2: a)e+e− → K+K−
b) e+e− → π+π−

example of the leading skeleton for γ∗ → π+π−



J µ(p,Q) = eFπ(Q
2)pµ

=
2Nc

3
ie

∫

d4k

(2π)4
tr
[

Su(k + Q/2)Γµ
u,u,γ(k,Q)Su(k − Q/2)Γπ(k−)

Sd(k + p)Γ̃π(k+)
]

+ ... (1)

Dressing of Γ′s S′s is essentialy ruial for a orret desription of e+e− →

π+π−

sine σ ≃ FF∗ , ( note for Γµ → γµ
....one gets ordinary, but quite

inorret desription by 1-loop Feynman diagram)



Funtional formalism of DSEs

QFT approah , funtional di�erentation of QFT generating funtional Itzyk-

son,Zuber QFT; C.D. Roberts, A.G. Williams Prog.Part. N.P, 1994

Like WTI , the SDEs are funtional relation between Green's funtion (vauum

expetation of time ordered produt of �elds)
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Figure 3: a)YM DSEs b) quark DSEs



Integral representation (IR) of Green's funtion

• IR is a usefull tool to solve SDEs (Inluding BSE for b.s.)

• allows analytial renormalization, avoids numerial regularization (no uto�),

• allows symmetry preserving trunation of the DSEs set



Integral representations in QCD and SM

-selfonsistent NP generalization of Nakinishi's Perturbation Theory Integral

representation N. Nakanishi- Graph Theory and Feynman Integrals, 1971

propagators:

G(k) =

∞
∫

0

dx
g(x)

k2 − x + iε

Sf(p) =

∫ ∞

−∞
dx

ρf(x)

( 6 p − x)
=

∫ ∞

0
do

σf,d(o) 6 p + σf,b(o)

p2 − o + iǫ

Gµν(k) = δAB
∫ ∞

0
do

σg(o)(−gµν + kµkν

k2
)

k2 − o + ε
− ξ

kµkν

(k2)2

(2)



Higher verties are not generaly known, however those known, they satisfy

generalized form of Nakanishi IR. For qqγ semi amputated gauge vertex (proved

for LRA DSEs in V.S. Phys Rev. D106 2022

G
µ
(q;Q) =

∫

R
dx

1

6 q− 6 Q/2 − x

(

γ
µ
ρ(x)

) 1

6 q+ 6 Q/2 − x
+ G

µ
T (q;Q)

4 longitudinal (�xed by the gauge tehnique above) + 8 transverse omponents

of proper v.

Γ
µ
iT

(q,Q) =

∫ 1

−1
dz

∫ ∞

0
doda

ρi(o, z, a)T
µ
i

q2 + zq.Q + aQ2/4 − o + iε

(3)

et.... for other verties



Spetral DSEs

Instead of seeking for SE(kE), G
µν
E ... the DSEs are solved (also!) for

σf(o), σg(o)

IR emerges as a selfonsitent solution of spetral DSEs (bakward hek is

needed)

minimal set to alulate form fator we need:

QCD ghosts, gluons, quarks+ photons and their verties Details will ome later. DSEs

trunation used for purpose of form fator alulations:



Pion EMG form fator

After �nding IR for the BSE meson vertex as well, the evaluation of ontinuous

hadroni form fators at the timelike domain of momentum is possible. γ∗ →

π+π−

J µ
(p,Q) = eFπ(Q

2
)p

µ

=
2Nc

3
ie

∫

d4k

(2π)4
tr
[

G
µ
EM,u

(k + Q/2, k − Q/2)Γπ(krπ−, p + Q/2)

Sd(k + p)Γ̃π(krπ+, Q/2 − p)
]

+

+ ... (4)
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Figure 4: F for q2 = −Q2 < 0 and omparison with experiment and asymptoti predition

(Lepage/Brodsky)
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Appart of greement with QCD PT (Lepage-Brodsky) G → 4π2fπ
Q2 one gets

the proof of dispersion relation for the pion EMF

Fπ(q
2) =

∫

dx
ρF (x)

q2 − x+ iε

(5)

ρF =

∫

σd(1)σd(2)ρπ(3)ρπ(4)K(1, 2, 3, 4, 5)+ (6)

For another DSE/BSEs realization of the ρ meson resonane see: R. Alkofer,

A.S. Miramontes, PRD 2021



Figure 6: γ∗γ∗ → πo

, Pion Transition form fator

Tµν(k1, k2) =
e2

4π2
ǫµναβk

α
1 k

β
2G(k21, k

2
2) ,

Tµν(k1, k2) = i

∫

d4q

(2π)4
Γπ(q1, q2)Gµν(q1, q2; k1, k2)+ ,
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Figure 7: Gauge Tehnique ontribution to the pion transition form fator

G(q2) = G(q2, 0) for the timelike argument s = q2

. Thik line stands fot the square,

the same type of lines is used for the real and absorptive parts. Eah line labeled by I II and III

use a di�erent interpolator for the pion vertex funtion (V.S. PRD2020
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Figure 8: Details



Re�etions of on�nement

Color modes are on�ned in QCD , how it is re�eted in properties of QCD

GFs?

No free propagating modes <-> no real poles at S-matrix <- no real poles in

assoiated GFs

gluon propagator : V.S. PRD (106) 2022



0 1 2 3 4
s 

-10

-5

0

5

s 
d
(s

)

Re
Im

(a)

--

0 5 10 15 20

t

0

0.5

1

1.5

2

t 
d
(t

)

lattice fit
DSE

(b)

Figure 9: a)ξ = 0 Gluon propagator for timelike momentum b) and for Eulidean momenta

ompared to lattie data (O.Olivera... PRD)



Quarks in QCD Solution for a given �avour

To identify the solutions for S, σ for the individual �avor, one need to solve

also bound state equation for O−−

mesons (pion and ηc harmonium till now)

Trunation of DSEs: LRA out of the Landau gauge (with non-zero longitudinal

gluon propagator)

Bethe-Salpeter equation for pseudosalars (pion And ηc harmonium):

Γ(p, P ) =

∫

k
S(k − P/2)Γ(k, P )S(k + P/2)V (k, p, P )

Γ(p, P ) = γ5[1E(p, P )+ 6 pF (p, P )+ 6 PG(p, P ) + [ 6 p, 6 P ]H(p, P )] (7)

P -total momentum,P 2 = M2
meson p- relative momentum of the quark-

antiquark pair,



V is the interation kernel- neessarily idential to the one in the SDE for the

quark propagator <-> e�etive LRA gluon in not-prede�ne gauge

V (l) = γµ × γν

(

g
µν

VV (l) −
4g2

3
ξ
Lµν(l)

l2

)

,

VV (l) =
4N

3
[(l

2 − m
2
g + iε)

−1 − (l
2 − Λ

2
g + iε)

−1
] ,

L
µν

(l) = l
µ
l
ν
/l

2
,

V is simpli�ed �t of the solution for the gluon propagator extrapolated naively

to nontrivial gauges and determined by solving BSE/DSE simultaneously. Overall

prefator is adjusted in order to get orret meson properties in given gauge.



3000 3500 4000 4500 5000
M [MeV]

1e-06

0.0001

0.01

1

 σ2 :

 λ :

 η 
c 
(3)

 η 
c 
(2)  η 

c 
(4) η 

c 
(1)
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(Yennie gauge ??)V is �avour dependent (sine Γ is) , mg = 0.6;ML = 2 for the pion...



Property of solutions for propagators

Those solutions for S, whih are onsistent with meson spetra and meson

properties show up on�nement!: Quark propagator has not on mass shell pole, it

has only a single ut. Spetral funtion starts (almost) smoothly from beginning

of px. plane of p2.
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for the harm quark.
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Figure 12: Dimensionless quark spetral funtions oσv(o) (solid line) and

√
oσs(o) (dashed

line) for the light and harm quark.

No sign for deviations from spetral form, omplex onjugated poles are not

seen (p are still popular analytial senario for the on�nement of quark) , SR

is ahieved with unlimited (in priniple) auray.

Bump is positioned at M ≃ 265MeV (1GeV ) for u,d,() quarks, i.e. at

their onstituent quark model value.



Note: onsensus not yet ahived! Alhtough published and aepted, other

groups have found quark spetral funtions J. Horak,J. Papavasilliou... PRD 104(2021),

C.Mezrag, G. Salme, EPJC 81 (2021) with the real pole presented in ( not heked against

mesons prop)



Walking bak to the beginning (prepared for pub.)

Spetral gap equation for extreme wallking= quenhed gauge theory.

Quenhed= onstant oupling, no asymptoti freedom and no Landau poles.

Realization by non-Abelian QFT with tuned number of fermions, for instane

Nf = 11
2 Nc for SU(N)

S(p) = Sd(p
2) 6 p + Sb(p

2) = A(p) 6p+B(p)
p2A(p2)−B(p2)

suh that A(p) = Z − a(p);

B(p) = mb + b(p)

Σ(p) =
∫

γSγG +assumed SR= 6 pa(p) + b(p) Spetral gap equation (in ξ

gauge ) is extremely simple

→ b(p) = λ(3 + ξ)

[

∫ ∞

p2
dq2Sb(q

2) +

∫ p2

0

dq2Sb(q
2)
q2

p2

]



a(p) = −λξ

[

∫ ∞

p2
dq2Sd(q

2) +

∫ p2

0

dq2Sd(q
2)

[

q2

p2

]2
]

Method of solution for TrT a2α = 4/3 > αc. Now taking p2 = −p2E one

sees that :

spetral gap equation <=> DSE for eletron in quenhed QED derived in

Eulidean spae. Comparing to D.C. Curtis and M.R. Pennington, Nonperturbative

study of the fermion propagator in quenhed QED in ovariant gauges using a ...

Eg. 7a+b Exat equivalene is proved for onsidered trunation of DSEs.
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Minkowski spae solution, hek of the existene of SR

S is omplex valued funtion with a ut on the real axis. Look for (possibly

�nite) renormalization at the timelike sale whih omplies with SR. (Note ,

spetral gap equations have in�nite many solutins whih do not obey SR and

hene do not orrespond with original momentum spae DSEs). Suesfull searh

is the main goal of last years!
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Figure 14: a)Spetral funtions of the massive quark for SU(2Nf/11) theory in various gauges

b) Spetral funtions of the massive quark for SU(2Nf/11)
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Obstales with SR in strongly oupled theory

However...

The quality/suess is strongly gauge dependent. While the solution exists for

all negative linear gauges, inluding perhaps Landau gauge, it beomes quikly

unreliable for positive gauges and already Feynman gauge is suspiious.

Searh is based on the minimization of the error

σ2 = N

∫

dx

[

ℜS(x)− P.

∫

dy

π

ℑS(y)

x− y

]2

(8)

σ2

- Deviation from the expeted analytial behaviour

In literature [Horak,Pawlowski,Wink℄:



νspec = N

∫

dx

[

SE(xE)−

∫

dy

π

ℑS(y)

xE + y

]1

(9)
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Conlusion

Wtihin QCD degrees of freedom , the �rst few meson form fators have been

alulated at the timelike domain of momenta

At large Eulidean transfer momenta agreement with PT QCD was ahieved

Unobservabele orrelators exhibit on�nement for strong oupling

Longstanding future prospet:

The existene of SR depends on trunation , but also on the sheme (gauge)

Open questions: Thresholds, Reasons of fails of SR in some gauges (WTI and

multipliative renormalization ?)

Calling for BS and DSE verties in terms of IR and (mainly) simpli�ation

of form fator evaluation within the use of generalization of Cutkosky rules for

on�ned (non-on shell) internal lines??


