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Intro

Spectral DSEs= Set of DSEs soved within Minkowski space Integral Repre-
sentation

DSEs- Functional fromalism leading to set of DSEs, usually using SM degrees
of freedom, hadrons are bound states of quarks, or they can be identified by its
resonant shape in given spin channel of ammplitude

Exclusive hadron production=>timelike momenta, Minkowski space, 99.99%
based on EFT (CHPT), from 2017 -spectral gap equations



Content

o V. Sauli,PRD 2022 Timelike behaviour of the pion EFF in the functional

formalism

e V.S EJP 2023- Quark spectral functions from spectra of mesons and vice versa

o V.S PRD 2022- Confinement within the use of Minkowski space IR
e V.S PRD 2020- GT approximation to the 7, production and ...

e V.S FBS 61, 2020- The quark spectral function and the HVP from application
of DSEs in the Minkowski space
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Fermion Spectral Function for extreme walking gauge theory



Functional formalism for calculations of hadronic form factors

It is nonperturbative QFT approach

It as based on skeleton expansion in terms of loops with dressed (exact) quark
propagators and dressed SM vertices A Bender... Phys. Lett. B 380,7 (1996);P. Maris , Tandy,
PRC C 62(2000) 055204

Applicable to exclusive QED/QCD processes (applied hundreds times to pro-
cesess, transitions at spacelike (Euclidean) domain of energy and momenta,
including mesonic as well as baryonic excitations)

Spectral gap equations- solution of DSEs in Minkowski space, suited to deal
with QCD resonances, suited for confinement study in strong QFT
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Figure 1: a)eTe™ — 7%y, 0 ~ GG*; G, (¢°,0) b) eTe” = ny o ~ GG*; G, (4%, 0)



O [nb]

100

1400 7
+ selected data E
— fit 2
1200 £
1000 £
. 800F
=} £
2 E
E
o 600F
400 -
n 200
N R N R N R oE
1010 1015 1020 1025 1030 1035 1040 g
172 .
s [MeV] —- E [GeV]

(a) (b)
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example of the leading skeleton for v* — w7~



TP, Q) = eFr(Q*)p"

4
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Salk + P)Trlkr) | + .. (1)

Dressing of I'Vs S’s is essentialy crucial for a correct description of ete™ —
7tr since 0 ~ FFx , ( note for " — ~* _one gets ordinary, but quite
incorrect description by 1-loop Feynman diagram)



Functional formalism of DSEs

QFT approach | functional differentation of QFT generating functional Itzyk-
son,Zuber QFT; C.D. Roberts, A.G. Williams Prog.Part. N.P, 1994

Like WTI , the SDEs are functional relation between Green'’s function (vacuum
expectation of time ordered product of fields)
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Figure 3: a)YM DSEs b) quark DSEs



Integral representation (IR) of Green's function

e IR is a usefull tool to solve SDEs (Including BSE for b.s.)
e allows analytical renormalization, avoids numerical regularization (no cutoff),

e allows symmetry preserving truncation of the DSEs set



Integral representations in QCD and SM

-selfconsistent NP generalization of Nakinishi's Perturbation Theory Integral

representation N. Nakanishi- Graph Theory and Feynman Integrals, 1971

propagators:
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Higher vertices are not generaly known, however those known, they satisfy
generalized form of Nakanishi IR. For gqy semi amputated gauge vertex (proved
for LRA DSEs in V.S. Phys Rev. D106 2022

He . — 1 1 NPT
Mg Q) = [ v o @@
4 longitudinal (fixed by the gauge technique above) + 8 transverse components

of proper v.

(v p(x))

T (g, Q) = /1 dz /OO doda pil0, 2 a) T (3)
A 9°> +2q.Q + aQ?/4 — o + ic

etc.... for other vertices




Spectral DSEs

Instead of seeking for Sg(kg),G% ... the DSEs are solved (also!) for
O'f(O),O'g(O)

IR emerges as a selfconsitent solution of spectral DSEs (backward check is

needed)

minimal set to calculate form factor we need:

QCD ghosts, gluons, quarks+ photons and their vertices Details will come later. DSEs

truncation used for purpose of form factor calculations:



Pion EMG form factor

After finding IR for the BSE meson vertex as well, the evaluation of continuous

hadronic form factors at the timelike domain of momentum is possible. v* —
_|_ —
T

TP, Q) = eFr(Q*)p"

2N, d*k
= 3 e Wt’f’ [G%M,U(R+Q/2,k_Q/2)F7T(kT‘7T_7p+Q/2)

Sa(k + p)Pr(krmy, Q/2 = p)]| +
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Figure 5. Calculated magnitude of the pion electromagnetic form factor for s = g* > 0 and
comparison with experiments. The error bars are not shown, they are within the visible size of
the line and are much smaller then the deviation of presented calculations. The solid line is

rescaled by a constant as described in the paper
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Appart of greement with QCD PT (Lepage-Brodsky) G — gs one gets
the proof of dispersion relation for the pion EMF
FW(QQ) _ /d:z: IOF(CU) (5)
g2 — x +ie
pr= [ aa(DouDpr (3o (WK (12,3, 4.5)+ (6

For another DSE/BSEs realization of the p meson resonance see: R. Alkofer,
A.S. Miramontes, PRD 2021



Figure 6: v"~" — 7°, Pion Transition form factor
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Figure 7.  Gauge Technique contribution to the pion transition form factor
G(q®) = G(q¢*,0) for the timelike argument s = ¢®. Thick line stands fot the square,
the same type of lines is used for the real and absorptive parts. Each line labeled by | Il and Il
use a different interpolator for the pion vertex function (V.S. PRD2020
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Reflections of confinement

Color modes are confined in QCD |, how it is reflected in properties of QCD
GFs?

No free propagating modes <-> no real poles at S-matrix <- no real poles in
associated GFs

gluon propagator : V.S PRD (106) 2022
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Figure 9: a)€ = 0 Gluon propagator for timelike momentum b) and for Euclidean momenta

compared to lattice data (O.Olivera... PRD)
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Quarks in QCD Solution for a given flavour

To identify the solutions for S, o for the individual flavor, one need to solve
also bound state equation for O™~ mesons (pion and 7. charmonium till now)

Truncation of DSEs: LRA out of the Landau gauge (with non-zero longitudinal
gluon propagator)

Bethe-Salpeter equation for pseudoscalars (pion And 7. charmonium):

T(p, P) = /kS(k — P/2)['(k, P)S(k + P/2)V (k,p, P)

I'(p,P) = ~s[1E(p, P)+ pF(p, P)+ PG(p, P)+ [p, P1H(p, P)] (7)

P -total momentum P? = an relative momentum of the quark-

antiquark pair,

eson P~



V' is the interaction kernel- necessarily identical to the one in the SDE for the
quark propagator <-> effective LRA gluon in not-predefine gauge

y 4g% LM (1
VA = xw (g“ Vi) - e lﬁ) ,
V) = U@ md i) - (02— A2 i)Y
™ = MR,

V is simplified fit of the solution for the gluon propagator extrapolated naively
to nontrivial gauges and determined by solving BSE/DSE simultaneously. Overall
prefactor is adjusted in order to get correct meson properties in given gauge.
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(Yennie gauge 77)V is flavour dependent (since I' is) , mg = 0.6; M}, = 2 for the pion...



Property of solutions for propagators

Those solutions for .S, which are consistent with meson spectra and meson
properties show up confinement!: Quark propagator has not on mass shell pole, it
has only a single cut. Spectral function starts (almost) smoothly from beginning

of cpx. plane of p?.
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Figure 11: Quark spectral functions. The left two blobs are for light quarks, the one on the right
for the charm quark.
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Figure 12: Dimensionless quark spectral functions oo, (0) (solid line) and y/oos(0) (dashed
line) for the light and charm quark.

No sign for deviations from spectral form, complex conjugated poles are not
seen (ccp are still popular analytical scenario for the confinement of quark) , SR
is achieved with unlimited (in principle) accuracy.

Bump is positioned at M ~ 265MeV (1GeV) for u,d,(c) quarks, ie. at

their constituent quark model value.



Note: consensus not yet achived! Alhtough published and accepted, other
groups have found quark spectral functions J. Horak J. Papavasilliou.. PRD 104(2021),
C.Mezrag, G. Salme, EPJC 81 (2021) with the real pole presented in ( not checked against
mesons prop)



Walking back to the beginning (prepared for pub.)
Spectral gap equation for extreme wallking= quenched gauge theory.

Quenched= constant coupling, no asymptotic freedom and no Landau poles.
Realization by non-Abelian QFT with tuned number of fermions, for instance

Ny =L1N, for SU(N)

S(p) = Sa(p?) b+ So(p?) = AL such that A(p) = Z — a(p),
B(p) = mp + b(p)

3(p) = [ vSYG +assumed SR= pa(p) + b(p) Spectral gap equation (in £
gauge ) is extremely simple

2

o0 D q2
/ dq*Sy(q”) + / dq*S(q*) =
D 0 p

2

= b(p) = AB +¢)




Method of solution for TrT%*a = 4/3 > a,.. Now taking p*> = —p% one
sees that :

spectral gap equation <=> DSE for electron in quenched QED derived in
Euclidean space. Comparingto D.C. Curtis and M.R. Pennington, Nonperturbative
study of the fermion propagator in quenched QED in covariant gauges using a ...
Eg. 7a+b Exact equivalence is proved for considered truncation of DSEs.
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Figure 13: Dynamical fermion mass in quenched SU(2Nf/11) theory in various gauges



Minkowski space solution, check of the existence of SR

S is complex valued function with a cut on the real axis. Look for (possibly
finite) renormalization at the timelike scale which complies with SR. (Note |
spectral gap equations have infinite many solutins which do not obey SR and
hence do not correspond with original momentum space DSEs). Succesfull search
is the main goal of last years!
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Figure 14: a)Spectral functions of the massive quark for SU (2N /11) theory in various gauges
b) Spectral functions of the massive quark for SU(2N;/11)
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Obstacles with SR in strongly coupled theory
However...

The quality/success is strongly gauge dependent. While the solution exists for
all negative linear gauges, including perhaps Landau gauge, it becomes quickly
unreliable for positive gauges and already Feynman gauge is suspicious.

Search is based on the minimization of the error

02 =N / do [3%5(:6) _P / dy S5 (y>r (8)

T x—Y

o? - Deviation from the expected analytical behaviour

In literature [Horak,Pawlowski, Wink]:
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Conclusion

Wtihin QCD degrees of freedom | the first few meson form factors have been
calculated at the timelike domain of momenta

At large Euclidean transfer momenta agreement with PT QCD was achieved
Unobservabele correlators exhibit confinement for strong coupling
Longstanding future prospect:

The existence of SR depends on truncation , but also on the scheme (gauge)

Open questions: Thresholds, Reasons of fails of SR in some gauges (WTI and
multiplicative renormalization 7)

Calling for BS and DSE vertices in terms of IR and (mainly) simplification
of form factor evaluation within the use of generalization of Cutkosky rules for
confined (non-on shell) internal lines??



