

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spectral reconstruction from Lattice correlator: Photons and Quarkonia

Dibyendu Bala

Bielefeld University

Sajid Ali, Olaf Kaczmarek, Anthony Francis, Greg Jackson, Tristan Ueding, Jonas Turnwald, Nicolas Wink, Hai-Tao Shu HotQCD Collaboration

Outline

Motivation

2 Lattice Details and Temperature

Thermal photons

- Observable
- Lattice Data-Continuum Extrapolatiom
- Comparison with perturbation Theory
- Spectral function reconstruction

Quarkonia

- Pseudo Scalar
- Static potential
- Heavy Quark Diffusion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation

- Photon and Di-lepton produced from QGP is an important probe to study Quark-Gluon-Plasma.
 - Direct photon measurements show a large yield of photons with large anisotropy.
 - Υ suppression in the di-lepton channel.
 - Theoretical understanding requires space-time integration of photon/dilepton production rate from each stage of the plasma evolution.

$$\frac{dN}{d^3k} \propto \int d^4X \frac{d\Gamma}{d^3k}(k, T(X), ...)$$

A. Adare et al, PRC 91,064904

CMS Collaboration, PLB 790 (2019) 270

The photon production rate (Γ_γ) and di-lepton production rate (Γ_{I+I}-)
 L.D. McLerran and T. Toimela, PRD 31 (1985) 545.

$$\frac{d\Gamma_{\gamma}}{d^{3}\vec{k}} = \frac{\alpha_{em}n_{b}(\omega)}{2\pi^{2}k}g^{\mu\nu}\rho_{\mu\nu}(\omega = |\vec{k}|,\vec{k})$$
$$\frac{d\Gamma_{l+l^{-}}}{d\omega d^{3}\vec{k}} = \frac{\alpha_{em}^{2}n_{b}(\omega)}{3\pi^{2}(\omega^{2} - k^{2})}g^{\mu\nu}\rho_{\mu\nu}(\omega,\vec{k})$$

• Transport coefficients

$$\sigma, D, \eta, \zeta \propto \lim_{\omega o 0} rac{
ho_{\mathcal{O}}(\omega)}{\omega}$$

$$\rho_O(K = (\omega, \vec{k})) = \int d^4 X \exp\{i K.X\} \langle [O(X), O(0)] \rangle_T$$

イロト 不得 トイラト イラト 一日

Motivation

- On the lattice, we calculate the correlation function in Euclidean time. $G^{E}(\tau, \vec{k}) = \int d^{3}\vec{x} \exp\left(i\vec{k}.\vec{x}\right) \langle O(\tau, \vec{x})O(\vec{0}, 0) \rangle$
- Relation with spectral function

$$G_O^E(\tau, \vec{k}) = \int_0^\infty \frac{d\omega}{\pi} \rho_O(\omega, \vec{k}) \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh[\frac{\omega}{2T}]}$$

- Numerically ill-posed problem. Small number of data points and statistical errors.
- $\frac{1}{T}$ Di-lepton or $O(\tau)$ **Photon**: $O(\tau, \vec{x}) =$ $J_{\mu}(\tau, \vec{x}) = \psi \gamma_{\mu} \psi$ Pseudo-Scalar: $O(\tau, \vec{x}) = \bar{\psi} \gamma_5 \psi$ τ O(0)Viscosity: $O(\tau, \vec{x}) = T_{\mu\nu}(\tau, \vec{x})$ Heavy-Quark Diffusion coefficient: \vec{x} $O(\tau, \vec{x}) = E(\tau, \vec{x}) \dots$ Dibyendu Bala (Bielefeld University)

• We calculated correlation function in pure gluonic theory and in $N_f = 2 + 1$ flavor QCD ($m_{\pi} = 320 MeV$).

• Photon:

Gluonic theory: $120^3 \times 30$, $96^3 \times 24$ and $80^3 \times 20$ (T = 470 MeV) Full QCD: $96^3 \times 32$ (T = 220 MeV)

- The available momentum for gluonic theory $\frac{k}{T} = \frac{\pi n}{2}$ and for full QCD $\frac{k}{T} = \frac{2\pi n}{3}$. $m_q \ll T$ **Pseudo Scalar**(Quarkonia): **Full QCD**: T = 220 MeV and T = 251 MeV
- Static potential:

Gluonic: T = 470 MeV and T = 704 MeV**Full QCD**: T = 251 MeV and T = 352 MeV

- For Photon and PS correlator: Clover improved Wilson fermion .
- For heavy quark diffusion: T = 195 MeV to 352 MeV.
- Gluonic: $T_c = 313 \text{ MeV}$ and Full QCD: $T_c = 180 \text{ MeV}$

イロト 不得 トイヨト イヨト 二日

Thermal Photons

Dibyendu Bala (Bielefeld University)

2

イロン イ理 とく ヨン イ ヨン

Photon rate

$$rac{d\Gamma_{\gamma}}{d^{3}ec{k}} \propto g^{\mu
u}
ho_{\mu
u}(\omega=|ec{k}|,ec{k})$$

• $\rho_{\mu\nu}$ can be decomposed,

$$\rho_{\mu\nu}(\omega, \vec{k}) = P_{\mu\nu}^{T} \rho_{T}(\omega, \vec{k}) + P_{\mu\nu}^{L} \rho_{L}(\omega, \vec{k})$$
$$\rho_{V}(\omega, \vec{k}) = \rho_{\mu}^{\mu}(\omega, \vec{k}) = 2\rho_{T}(\omega, \vec{k}) + \rho_{L}(\omega, \vec{k})$$

• At the photon point $\rho_L(|\vec{k}|,\vec{k}) = 0.$

$$\frac{d\Gamma_{\gamma}}{d^{3}\vec{k}} \propto 2\rho_{T}(|\vec{k}|,\vec{k})$$

$$\frac{d\Gamma_{\gamma}}{d^{3}\vec{k}} \propto 2\left(\rho_{T}(|\vec{k}|,\vec{k}) - \rho_{L}(|\vec{k}|,\vec{k})\right)$$

3

イロト 不得 トイヨト イヨト

Properties of T - L correlator

• At
$$T = 0$$
, $\rho_{\mu\nu} = (k_{\mu} k_{\nu} - g_{\mu\nu} k^2)\rho(k^2)$
Possible when $\rho_T = \rho_L$ at $T = 0$

- $\rho_H = 2 \left(\rho_T \rho_L \right)$ displays pure thermal contribution.
- ρ_H is UV suppressed,

$$\rho_H \sim \frac{k^2 O_4}{\omega^4}$$

• Sum rule,

$$\int_0^\infty d\omega\,\omega\,\rho_H(\omega)=0$$

M. Ce et al., PRD 102, 091501

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Free result for ρ_T and ρ_L , G. Aarts and J.M. Resco, Nucl. Phys. B 726 (2005) 93

ρ_V = 2ρ_T + ρ_L has large UV part. G^E_V has large UV contribution.
ρ_H = 2(ρ_T - ρ_L) has small UV part. G^E_H has less UV contribution.

3

(日)

• Lattice data has cut-off effects and need continuum extrapolation.

$$\frac{G_H}{2\chi_q T}(a) = \frac{G_H}{2\chi_q T}(a=0) + \frac{b}{N_\tau^2}$$

• Smaller cut-off dependence for G_H .

• Dominant contribution to G_H comes from the infrared part.

- For LPM resummation, LO light cone potential has been used.
- Renormalization scale $\mu = \sqrt{|\omega^2 k^2| + (2\pi T\zeta)^2}$

Coupling is maximum at the light cone. S. Caron-Huot, PRD 79, 065039

< □ > < □ > < □ > < □ > < □ > < □ >

Scale setting:

$$T_c/\Lambda_{\overline{MS}} = 1.24$$
 for $N_f = 0$
 $T_c/\Lambda_{\overline{MS}} = 0.521$ for $N_f = 3$

 χ_q = 0.897 T² for N_f = 0 (using non-perturbative parametrization) H-T Ding, O. Kaczmarek, and F. Meyer, PRD 94, 034504 χ_q = 0.872 T² for N_f = 3 (from g⁶log(g)) A. Vuorinen, PRD 67, 074032

Non-pertubative effects are important.

- 4 回 ト 4 ヨ ト 4 ヨ ト

• For $\omega \leq \omega_0$

$$\rho_{H}(\omega) = \frac{\beta\omega^{3}}{2\omega_{0}^{3}} \left(5 - 3\frac{\omega^{2}}{\omega_{0}^{2}}\right) - \frac{\gamma\omega^{3}}{2\omega_{0}^{2}} \left(1 - \frac{\omega^{2}}{\omega_{0}^{2}}\right) + \delta\left(\frac{\omega}{\omega_{0}}\right) \left(1 - \frac{\omega^{2}}{\omega_{0}^{2}}\right)^{2}$$

J. Ghiglieri, O. Kaczmarek, M. Laine, and F. Meyer, PRD 94, 016005.

• Constrained fit with $\delta_0 \ge 0, \rho_H(k, \vec{k}) \ge 0$ and $\frac{\partial G_H}{\partial \tau} \le 0$

< □ > < □ > < □ > < □ > < □ > < □ >

Fitting of Mock Data

- Ten perturbative data points between 0.1875 to 0.5 in τT .
- An artificial error was introduced to the order $\delta G/G = 0.001$ and tried to reconstruct the spectral function.

• The exact spectral function can be approximately captured by the systematic uncertainty between $\omega_0 = \sqrt{k^2 + \pi^2 T^2}$ and $\omega_0 = \sqrt{k^2 + 5\pi^2 T^2}$

(日)

Fitting of Lattice Data

Dibyendu Bala (Bielefeld University)

16/38

э

< □ > < □ > < □ > < □ > < □ >

Polynomial estimated spectral function

э

A D N A B N A B N A B N

Pade Ansatz

۲

$$\rho_{H}^{PADE}(\omega, \vec{k}) = A \frac{\tanh(\omega/2T) (1 + B\omega^{2})}{(a^{2} + \omega^{2})((\omega - \omega_{0})^{2} + b^{2})((\omega + \omega_{0})^{2} + b^{2})}$$

M. Ce et al., PRD 102, 091501(R)

- The sum rule relates *B* with *a*, ω_0 and *b*.
- The fit has been performed on A, a, ω_0 , and b.

DB, S. Ali , O.Kaczmarek et al, Lattice PoS 2022, arxiv:2212.11509

Photon production rate,

$$\frac{d\Gamma_{\gamma}}{d^{3}\vec{k}} = \frac{\alpha_{em}n_{b}(\omega)\chi_{q}}{\pi^{2}}Q_{i}^{2}D_{eff}(k)$$

• The effective diffusion coefficient, $D_{eff}(k) = \frac{\rho_H(|\vec{k}|,\vec{k})}{2\chi_q|\vec{k}|}$ $\lim_{k\to 0} D_{eff}(k) = D$

э

A D N A B N A B N A B N

Quarkonia: Pseudo Scalar

2

イロン イ理 とく ヨン イ ヨン

$$C_{>}(t;\vec{r},\vec{r}') = \int d^3\vec{x} \langle \bar{\psi}(t,x)\gamma_5\psi(t,x)\bar{\psi}(0,\vec{0})\gamma_5\psi(0,\vec{0})\rangle_T$$

- Pseudo scalar channel does not have a transport peak. Easy to study bound state modification.
- $\rho_{v} \sim 3\rho_{p}$, $\omega \sim 2M$
- Away from $\omega \gg 2M$ Vaccuma perturbation theory.
- $\omega \sim 2M$ perturbation theory breaks down. Need resummation.

Y.Burnier et al, JHEP 1711 (2017) 206

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$C_{>}(t;\vec{r},\vec{r}') = \int d^{3}\vec{x} \langle \bar{\psi}(t,x+\frac{\vec{r}}{2})\gamma_{5} U\psi(t,x-\frac{\vec{r}}{2})\bar{\psi}(0,-\frac{\vec{r}'}{2})\gamma_{5} U\psi(0,-\frac{\vec{r}'}{2})\rangle_{T}$$

- In free-limit. $\left\{i\partial_t \left[2M \frac{\nabla_r^2}{M}\right]\right\} C_>(t; \vec{r}, \vec{r'}) = 0$
- In the presence of Interaction,

$$\left\{i\partial_t - \left[2M + V_T(r) - \frac{\nabla_{\vec{r}}^2}{M}\right]\right\} C_>(t; \vec{r}, \vec{r'}) = 0$$

with $C_{>}(0; \vec{r}, \vec{r'}) = \delta^{3}(\vec{r} - \vec{r'})$

$$\rho_{\rho}(\omega) \propto \lim_{r \to 0, r' \to 0} \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \, C_{>}(t; \vec{r}, \vec{r'})$$

• • = • • = •

Y.Burnier et al, JHEP0801:043,2008

• Static potential $M \to \infty$, $C_{>}(t,r) \propto W(r,t)$

$$V_T(r) = i \lim_{t \to \infty} \frac{\partial \log W(r, t)}{\partial t}$$

 (LO result) M.Laine et al, JHEP 0703:054,2007 Real part: Screening. (Thermal mass shift of bound state.)

$$V_T^{re}(r) = -\frac{g^2}{4\pi}C_F\left[m_d + \frac{\exp(-m_d r)}{r}\right]$$

< 回 > < 回 > < 回 >

Imaginary part: Landau damping (Peak width of bound state)

$$V_T^{re}(r) = \frac{g^2}{4\pi} C_F T \int_0^\infty \frac{z dz}{(z^2 + 1)^2} \Big[1 - \frac{\sin(z m_d r)}{z m_d r} \Big]$$

•
$$\rho_p^{model}(\omega) = A \rho_p(\omega - B)$$

イロト イポト イヨト イヨト

25 / 38

æ

Dibyendu Bala (Bielefeld University)

イロト イポト イヨト イヨト

э

Quarkonia: Static Potential

Dibyendu Bala (Bielefeld University)

э

イロト イヨト イヨト イヨト

At $T \sim T_c$ non-perturbative effects are important,

- Static potential needs to be calculated non-perturbatively.
- Non-perturbative formulation, A. Rothkopf et al., PRL. 108 (2012) 162001

$$W(r, \tau) = \int_{-\infty}^{\infty} d\omega \, \rho(\omega, T) \exp(-\omega \, \tau)$$

$$W(r,t) = \int_{-\infty}^{\infty} d\omega \, \rho(\omega,T) \exp(-i\omega t)$$

- $\rho(\omega, T)$ should have a form which is consistent with potential, $i \lim_{t \to \infty} \frac{\partial \log W(r,t)}{\partial t}$ should exist.
- Gaussian spectral function does not have this limit.
 Simple Lorentzian does have this limit. But result depends on the lower cut-off.

Bayesian analysis has a higher systematic error.

$$\log(W(r,\tau)) = -V_{re}(r)\tau - \int_{-\infty}^{\infty} du \,\sigma(r,u) \left[\exp(u \,\tau) + \exp(u \,(\beta - \tau))\right] + \dots$$

$$\begin{array}{c} \text{DB and S. Datta, PRD 101, 034507} \\ \text{DB, O. Kaczmarek, et al., PRD 105, 054513} \\ \text{o} i \lim_{t \to \infty} \frac{\partial \log W(r,t)}{\partial t} = \\ \text{finie} \\ \text{o} 1000000 \\ \text{m} \\ \text{m}$$

Quarkonia

Static potential

• Color Screening supported by Lattice data

Dibyendu Bala (Bielefeld University)

Heavy Quark Diffusion

Dibyendu Bala (Bielefeld University)

э

イロト イヨト イヨト イヨト

$$G_{E}(\tau) = -\frac{ReTr(U(\beta,\tau)E_{i}(\tau)U(\tau,0)E_{i}(0)))}{3Tr(U(\beta,0))}$$

Langevin Equation

$$\frac{dp}{dt} = -\eta_D p + \zeta(t)$$

$$\langle \zeta(t)\zeta(t')=k\,\delta(t-t')$$

- Momentum Diffusion Coefficient, $k_E = 2T \lim_{\omega \to 0} \frac{\rho_E(\omega)}{\omega}$
- Position Space Diffusion, $D = \frac{2T^2}{k_E}$

- G. D. Moore and D. Teaney PRC 71, 064904
- S. Caron-Huot, M. Laine, and G. D. Moore, J. High Energy Phys. 04 (2009) 053 . Caron-Huot, M. Laine, and G. D. Moore, J. High Energy Phys. 04 (2009) 053 . Caron-Huot, M. Laine, and G. D. Moore, J. High Energy Phys. 04 (2009) 053 . Caron-Huot, M. Laine, and G. D. Moore, J. High Energy Phys. 04 (2009) 053 . Caron-Huot, M. Laine, and G. D. Moore, J. High Energy Phys. 04 (2009) 053 . Caron-Huot, M. Laine, and G. D. Moore, J. High Energy Phys. 04 (2009) 053 . Caron-Huot, M. Laine, and G. D. Moore, J. High Energy Phys. 04 (2009) 053 . Caron-Huot, M. Caron-Huot,

Dibyendu Bala (Bielefeld University)

• Gradient flow has been performed for noise reduction.

Model

$$\begin{split} \rho_{UV}(\omega) &= \mathcal{K}\rho(\omega)_{NLO,LO} \\ \rho_{IR}(\omega) &= \frac{k_E\omega}{2T} \\ \text{Various forms of interpolation} \\ \text{between them.} \end{split}$$

L. Altenkort, O. Kaczmarek, R. Larsen et al, PRL. 130, 231902

T = 293 MeV14 $N_f = 2 + 1 \text{ QCD } \blacksquare$ model $N_f = 0 \text{ QCD } \Theta$ 12ALICE 😣 max_{NLO} 10 Bavesian $-\max_{LO}$ $2\pi TD_s$ 8 -smax_{NLO} 6 -smax_{LO} T-matrix -plaw_{NLO} 4 pert. NLO -plaw_{LO} 2 κ/T^3 AdS/CFT n 5 $1'_{0}$ 15Ô 1.21.4 1.61.8 2 2.22.42.6 T/T_c

L. Altenkort, O. Kaczmarek, R. Larsen et al, PRL 130, 231902 $N_f=0$

- N. Brambilla, V. Leino, P. Petreczky, and A. Vairo, PRD 102, 074503
- L. Altenkort, A. M. Eller, O. Kaczmarek et al, PRD 103, 014511
- D. Banerjee, R. Gavai, S. Datta, and P. Majumdar, arXiv:2206.15471 [hep-ph].

< □ > < □ > < □ > < □ > < □ > < □ >

Summary

- Photon production rate estimated from T L correlator.
 Non-perturbative estimate suggest a Lower photon production rate.
- PS scalar correlator can be fitted with perturbative motivated model spectral function. It shows a non-perturbative thermal mass shift is required.
- Thermal potential shows screening in Quenched and as well as Full QCD.
- The first calculation of the Heavy quark diffusion coefficient in Full QCD predicts a smaller value than quenched studies.

(日)

Back up

3

<ロト <回ト < 回ト < 回ト -

• Backus Gilbert's estimate of the spectral function,

G. Backus, F. Gilbert, Geophysical Journal of the Royal Astronomical Society 16, 169 (1968)

•
$$G_{H}(\tau) = \int_{0}^{\infty} \frac{d\omega}{\pi} \frac{\rho_{H}(\omega)}{f(\omega)} f(\omega) \frac{\cosh[\omega(\tau - \frac{1}{2\tau})]}{\sinh[\frac{\omega}{2\tau}]}$$

• $\frac{\rho^{BG}(\omega)}{f(\omega)} = \sum_{i} q_{i}(\omega) G(\tau_{i}) = \int_{0}^{\infty} d\bar{\omega} \delta(\omega, \bar{\omega}) \frac{\rho(\bar{\omega})}{f(\bar{\omega})}.$
• $\delta(\omega, \bar{\omega}) = \sum_{i} q_{i}(\omega) K(\bar{\omega}, \tau_{i}) f(\bar{\omega}).$
• Minimize $F(\omega) = \lambda$ Width $[\delta(\omega, \bar{\omega})] + (1 - \lambda) var[\rho_{BG}(\omega)]$

$$f(\omega) = rac{ anh(\omega/\omega_0)}{(\omega/\omega_0)^4}$$

where, $\omega_0 = \sqrt{k^2 + \nu \pi^2 T^2}$.

3

イロト 不得 トイヨト イヨト

