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Talk outline
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3. Causal spectral representations
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6. Spectral properties from Euclidean data
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● QFTs can be defined using a core set of physically-motivated axioms   
  

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1996).]

1. QFT in the vacuum

→ Applies to simple QFTs, but generally a work in progress...

● Conclusion: correlation functions                             encode all of 
the dynamical information → what properties do these have? 
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2. QFT beyond the vacuum
● To describe physical phenomena in “extreme environments” one 

must understand of how QFT applies to systems that are hot, 
dense, or both            

● Therefore need to figure out how the inclusion of temperature T=1/β or 
density modifies the standard QFT assumptions, and what effect this 
has on the correlation functions. 

       → In this talk I will restrict to T > 0 and vanishing density   

[Brookhaven National Lab] [Skyworks Digital Inc.] 
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2. QFT beyond the vacuum

● Idea: Look for a generalisation of the standard axioms that is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

→

→

→

H
β
 is defined for fixed β=1/T

Replaced by the KMS condition

Instead, thermal background state |Ω
β
>

Fields are still distributions  

The fields no longer transform 
under general unitary Lorentz 

transformations  

Locality is unaffected by the 
properties of the background state. 

This is important!  

 ✓

→

 ✓
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● At finite T spectral functions ρ( ,ω p) play a particularly important role        
      

● Spectral functions also enter into the calculation of numerous important 
observables (transport coefficients, particle production rates, etc.) 

 

 

             

Peak locations and their 
dispersion are related to the 
dynamics of the medium and 

the underlying degrees of 
freedom of the theory  

2. QFT beyond the vacuum

Important question:  Can general spectral function characteristics be 
                             disentangled from model-dependent effects?
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3. Causal spectral representations

● Let’s consider the general properties of the spectral function of a scalar field

Imposing Lorentz invariance ⇒

● Note: the splitting                                     does not uniquely relate the    
(p-space) two-point function to the spectral function ρ( ,ω p)  

But… if we impose the spectral condition ⇒

● From this, all the standard vacuum QFT results follow,                           
including the propagator Källén-Lehmann representation     

 

    

Field locality ⇒
[Φ(x),Φ(y)]=0 
for (x-y)2< 0

→  “Jost-Lehmann-Dyson (JLD) representation” [R. Jost, H. Lehmann Nuovo Cim. 5, 1957; 
       F.J. Dyson, Phys. Rev. 110, 1958]: precursor to all causal spectral representations!  

e.g. ρ(s)=δ(s-m2) 
for free theory  
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● But what about the situation when T > 0 ? 

● Taking all of the T > 0 constraints into account one finds*

● This is the T > 0 generalisation of the Källén-Lehmann representation
→ In position space the two-point function can be written: 

“Thermal spectral density” 

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys.Theor. 64 (1996)

3. Causal spectral representations

➢ Field locality ✓   →  the JLD representation is still valid
➢ Lorentz invariance ✘  → but can retain rotational invariance
➢ Spectral condition ✘  → replaced by the KMS condition, which      

                                  implies the relation: 

Superposition of free correlators 
modulated by the factors Dβ(x,s)  
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● Just like in vacuum, for T > 0 the correlation functions can be analytically 
continued to imaginary time τ. In this case:  

       

● It then follows from the spectral representation for ρ( ,ω p) that the Fourier 
coefficients satisfy the relation [P.L., PRD 106 (2022)]:   

where ωN = 2 NT π are the corresponding Matsubara frequencies

 

 

4. Euclidean characteristics

Field locality + KMS condition  ⇒ WE(τ,x) is β-periodic in τ   

                                            ⇒ Fourier expansion:

→  Conclusion: The analytic structure of WE(τ,x) can be entirely     
                      reconstructed from the properties of Dβ(x,s)       
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● The previous results demonstrate that understanding Dβ(u,s) is key to 
unravelling the non-perturbative structure of T > 0 correlation functions  

● From the various constraints we know (among other things) that:

● But how does the structure of Dβ(u,s) relate to the possible excitations that 
can exist in a thermal medium?

5. The thermal spectral density

→ But what properties do Dβ(u,s) satisfy?~

~

~

~

    →  In the vacuum limit

    →  Dβ(u,s) is a (tempered) distribution with support in R3 
x R+ 

    →  Positivity of Dβ(u,s) guarantees positivity of two-point function  

    →  KMS condition implies that Dβ(x,s) is analytic in x    

~
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● Proposition: the medium contains “Thermoparticles”: particle-like constituents 
which differ from collective quasi-particle excitations, and show up as discrete 
contributions [Bros, Buchholz, NPB 627 (2002)]

 

→ Thermoparticle components Dβ(u)δ(s-m2) reduce to those of a vacuum particle state    
    with mass m in the limit T → 0

→ Non-trivial “Damping factor” Dβ(u) results                                                         
    in thermally-broadened peaks in the spectral                                                       
    function, i.e. parametrises the effects of                                                             
    collisional broadening 

→ Component Dc,β(u,s) contains all other                                                              
    types of excitations, including those that                                                            
    are continuous in s

             

5. The thermal spectral density

 Broadening from Dm,β(u) 
is model dependent 

~

~

~
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● In many instances Euclidean data is used to calculate T > 0 observables, 
e.g. spectral functions ρΓ( ,ω p) from                                where OΓ is 
some particle-creating operator                  

● Another quantity of interest in lattice studies is the spatial correlator 

 

             

→  Determine ρΓ( ,ω p) given CΓ(τ,p): problem is ill-conditioned, need more information!

● Large-x3 behaviour CΓ (x3) ~ exp(-mscr|x3|)  
used to extract “screening masses” mscr(T ) [HotQCD collaboration, 

PRD 100 (2019)]

6. Spectral properties from Euclidean data

~
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● Causality implies a general connection between the spatial correlator and 
thermal spectral density [P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]

● Once the damping factors of these states are know one can use the T > 0 
spectral representation to compute their analytic contribution to ρ( ,ω p)  

  

             

→  Thermoparticle states give rise to C(x3)       
      contributions that are particularly              
      significant in the large-x3 region

6. Spectral properties from Euclidean data

Goal: Use the additional constraints imposed by causality to better understand 
        how spectral features manifest themselves in Euclidean data

Thermal spectral density 
in position space 
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Step 1: Perform fits to CPS(x3) data to obtain the functional dependence at different            
temperatures (T = 220-960 MeV) → c1 exp(-m  π x3) + c2 exp(-m * π x3) describes data well  

       

Step 2: If π and π* are thermoparticle-type states for T > 0, then: 

Step 3: Using Dm,β(x) and spectral representation one can compute ρPS( ,ω p) contributions: 

● Can now apply these relations to QCD lattice data [P.L., O. Philipsen, 2022] 

 → Use data [Rohrhofer et al. PRD 100 (2019)] for spatial correlator CPS(x3) of light-      
     quark pseudo-scalar meson operator

Contribution of 2 lowest-lying states, π and π*

→  Fit ansatz implies                           with screening masses  

6. Spectral properties from Euclidean data

π

π*
π

π*

π peak at 
T ~1.2 Tpc
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Test: Since procedure gives the full analytic structure of ρPS(ω,p) due to 
thermoparticle contributions, one can use this to predict the form of the 
corresponding temporal correlator CPS(τ,p)

● The spatial and temporal correlators have very different ρPS(ω,p) 
dependencies → a highly non-trivial check!

● Using the T = 220 MeV p = 0 temporal data from [Rohrhofer et al. PLB 802 
(2020)] one obtains:

● No matter the procedure, comparing temporal and spatial correlator 
predictions is an important test for any extracted spectral function  

~

6. Spectral properties from Euclidean data

Prediction matches the data well for 
large ,τ  and then begins to undershoot 
→ Missing contributions from higher   
    excited states
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● Work is ongoing [D. Bala, O. Kaczmarek, P. Lowdon, O. Philipsen, and T. Ueding] to 
apply this approach to pseudo-scalar mesons involving heavier quarks 
(light-strange and strange-strange)

● The temporal correlator predictions are now also compared for p > 0       
→ Consistent predictions are obtained in both light-strange and strange-    
     strange channels! 

● This approach is straight-forwardly generalisable to higher spin states 

6. Spectral properties from Euclidean data

Preliminary
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Summary & outlook 

● Causality imposes non-perturbative constraints for T > 0 which have 
significant implications

       →  Spectral properties of thermal correlation functions

      →  Connection between real-time observables and Euclidean correlators     

● So far, only real scalar fields Φ with T > 0 have been considered, but this 
approach can be extended

      →  Other hadronic states (baryons, exotic states, ...)

      →  Higher spin fields/states (fermions, vectors, ...)

      →  Non-vanishing density, |μ|>0

● Ultimately, these constraints and methods can help in gaining a better 
understanding of physically relevant theories, including QED and QCD 

Work in progress!
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● The (Wightman) Axioms 1-6 are known to apply to relatively simple QFTs

● For theories of physical interest, i.e. gauge theories, significant complications 
arise → Gauge invariance implies a “local Gauss law”:

● An important consequence of this equation is that any field which is charged 
(i.e. transforms non-trivially under the action of Qa) must violate locality

● So Axiom 6 cannot hold! What now? There are two options:

        

  

Backup: Gauge theory complications

1.  Allow non-local fields (e.g. Coulomb gauge QED)

2.  Preserve locality (e.g. Landau gauge QCD)
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● In option 2 one can preserve locality by explicitly modifying the form of the 
local Gauss law (gauge fixing). However, to keep the physics the same one 
must maintain this constraint for physical states

● This procedure necessarily introduces states with <Ψ|Ψ>= 0, or even states 
where <Ψ|Ψ> < 0 (ghosts!) 

● So the original axioms must be modified: “Pseudo-Wightman” 

● This has many implications, including potential presence of generalised pole 
terms in spectral density: 

  

Backup: Gauge theory complications

Gupta-Bleuler (QED)

BRST (QCD) 

→  See: [N. N. Bogolyubov, A. A. Logunov, A. I. Oksak and I. T. Todorov, General principles of QFT ]

Looked for in ghost & gluon propagators: S.W. Li, P.L., O. Oliveira, and P.J. Silva, PLB 803 (2020);  PLB 823 (2021) 
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Backup: Revisiting T > 0 perturbation theory

● It has long been understood that finite-temperature perturbation theory has 
complications: non-analytic contributions, IR divergences, ...  

● In fact, more specifically, Weldon [PRD 65 (2002)] showed that the perturbative 
procedure in Φ4 theory fails at 2-loop order because the self-energy Π(k) has a 
branch point on the perturbative mass shell k0=E(k)

→ This is a generic feature of perturbative                                             
    computations that use free thermal                                                   
    propagators, or in fact any propagators                                               
    that have a real dispersion relation p0=E(p) 

● Physically, this arises due to the incompatibility of the KMS condition with 
on-shell states and non-zero interactions [Landsman, Ann. Phys. 186, 141 (1988)] 
(Narnhofer-Requardt-Thirring Theorem [Commun. Math. Phys. 92, 247 (1983)])  
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Idea: Start with propagators that are off shell [Weldon, 2002]

● The logic is that interactions with the thermal medium persist, even for large 
times x0  → need to take into account in the definition of scattering states

→ But how does one decide what form these propagators should take?

● With decomposition                                     one can prove that the 
thermoparticle component dominates the two-point function                        
at large x0  [Bros, Buchholz, NPB 627 (2002)]          

x0 

 

∞-∞

→ Thermoparticles are a natural asymptotic thermal state candidate!

Backup: Revisiting T > 0 perturbation theory



 22

Idea: thermal scattering states are defined by imposing an asymptotic field 
condition [Bros, Buchholz, NPB 627 (2002)]:

    

● The thermoparticle damping factor Dm,β(u) is uniquely fixed by the asymptotic 
field equation

→ This means that the non-perturbative effects experienced by                    
    thermoparticle states are controlled by the asymptotic dynamics

● Given Dm,β(u) one can simply combine this together with the spectral 
representation to compute the explicit form of the thermoparticle propagator 
or spectral function    

  

            

●  

Asymptotic fields Φ0 are assumed to satisfy 
dynamical equations, but only at large x0

In Φ4 theory

“Asymptotic mass”

~

Backup: Revisiting T > 0 perturbation theory
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● Can then start to perform perturbative calculations with this propagator 
instead of a free field propagator → suggested that this could give rise to an 
IR-regularised perturbative expansion for T > 0 [Bros, Buchholz hep-th/9511022]  

Example: Φ4 theory [PL, O. Philipsen, in preparation]

→ Thermoparticle propagator:

 

→ Spectral function already has a width                                                
    at 1-loop order (and is renormalisable)

→ At 2-loop the thermoparticle peak                                                    
    plays a dominant role at low energies                                               

(Width parameter              )

Backup: Revisiting T > 0 perturbation theory
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● Applying the asymptotic field condition for Φ4 theory, the resulting damping 
factors have the form [Bros, Buchholz, 2002]:

where  κ is defined with r =m/T:

● Now that one has the exact dependence of Dm,β(x) on the external physical 
parameters, in this case T, m and λ, one can use this to calculate observables 
analytically                

 

→  For λ < 0: →  For λ > 0:

    →  The parameter  has the interpretation of a thermal             κ
         width: κ→0 for T→0, or equivalently κ-1 is mean-free path    

Backup: Damping factors from asymptotic dynamics
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● Of particular interest is the shear viscosity η, which measures the resistance of 
a medium to sheared flow

→ This quantity can be determined from the spectral function of the            
    spatial traceless energy-momentum tensor 

     ... and η is recovered via the Kubo relation

● Using Dm,β(x) for  λ < 0, the EMT spectral function ρ  ππ has the form: 

● The presence of interactions causes resonant 
peaks to appear → peaked when p0 ~ =κ 1/   ℓ

● For λ→0 the free-field result is recovered, as 
expected

● The dimensionless ratio m/T controls the 
magnitude of the peaks    

Backup: Analytic shear viscosity computation
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● Applying Kubo’s relation, the shear viscosity η0 arising from the asymptotic 
states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, PRD 104 (2021)] 

      

Dominant component 
for small |λ| For large |λ|, η0 ~ |λ|

Global minima

Magnitude of large |λ| 
growth controlled by m/T  

→  For fixed coupling, η0/T 
3 is entirely controlled by functions of m/T 

Backup: Analytic shear viscosity computation
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Backup: Shear viscosity from FRG data

● Locality constraints imply that particle damping factors Dm,β(x) can also be 
calculated from Euclidean momentum space data [P.L., PRD 106 (2022)]

● In [P.L., R.-A. Tripolt, PRD 106 (2022)] pion propagator data from the quark-
meson model (FRG calculation) was used to compute the damping factor 
at different values of T via the analytic relation above

● Fits to the resulting data were consistent with the form:
● Dm,β(x) can then be used as input for                                    

calculations, e.g. shear viscosity      

   

 

             

p-space Euclidean 
propagator

Holds for large separation |x|

mπ=106 MeV

Similar qualitative features to results 
from chiral perturbation theory
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