Accessing Yang-Mills in the complex momentum plane with the spectral DSE

15.06.2023 | Physics Department | Institute of Nuclear Physics (IKP) | Nicolas Wink | 1

TECHNISCHE UNIVERSITÄT

DARMSTADT

Exploring QCD

Consider a simple scalar theory in the broken phase

Consider a simple scalar theory in the broken phase

Insert spectral representations for everything

$$G(p_0) = \int_0^\infty \frac{d\lambda}{\pi} \frac{\lambda \,\rho(\lambda, |\vec{p}|)}{p_0^2 + \lambda^2}$$

Consider a simple scalar theory in the broken phase

Insert spectral representations for everything

$$G(p_0) = \int_0^\infty \frac{d\lambda}{\pi} \frac{\lambda \, \rho(\lambda, |\vec{p}|)}{p_0^2 + \lambda^2}$$

$$\Gamma^{(2)}(p) = Z_{\phi,0}(\mu) \left(p^2 + m_{\phi,0}^2(\mu) \right) + g^2 \int_{\lambda_1,\lambda_2} \lambda_1 \lambda_2 \,\rho(\lambda_1) \rho(\lambda_2) F(p,\mu;\lambda_1,\lambda_2) \qquad G = ----$$

Consider a simple scalar theory in the broken phase

Insert spectral representations for everything

$$p_0) = \int_0^\infty \frac{d\lambda}{\pi} \frac{\lambda \,\rho(\lambda, |\vec{p}|)}{p_0^2 + \lambda^2}$$

G(

Reordering of integrals can be incorporated with renormalization

EN TS

Renormalization

Two options:

Subtract Taylor series in all momenta at renormalization scale

Subtract Taylor series in all momenta at renormalization scale

TECHNISCHE

UNIVERSITÄT DARMSTADT

15.06.2023 | Physics Department | Institute of Nuclear Physics (IKP) | Nicolas Wink | 14

All singularities of gauge variant correlation functions have to cancel

15.06.2023 | Physics Department | Institute of Nuclear Physics (IKP) | Nicolas Wink | 15

All singularities of gauge variant correlation functions have to cancel

Local quantum field theory dictates domain of holomorphicity

All singularities of gauge variant correlation functions have to cancel

Local quantum field theory dictates domain of holomorphicity

Wightman functions are defined as the boundary of holomorphic functions

$$A_{i_1,\ldots,i_n} = \left\{ (t_{i_1},\ldots,t_{i_n}) \middle| \Im(t_{i_n}) \ge \ldots \ge \Im(t_{i_1}) \ge \Im(t_{i_n} - \mathbf{i}\beta) \right\}$$

All singularities of gauge variant correlation functions have to cancel

Local quantum field theory dictates domain of holomorphicity

Wightman functions are defined as the boundary of holomorphic functions $A_{i_1,...,i_n} = \left\{ (t_{i_1}, \dots t_{i_n}) \middle| \Im(t_{i_n}) \ge \dots \ge \Im(t_{i_1}) \ge \Im(t_{i_n} - i\beta) \right\}$

Implies existence of Fourier transform, assuming tempered distributions

Spectral functions

Can we make domain of analyticity manifest

Spectral functions

Can we make domain of analyticity manifest

Spectral representations!

Spectral functions

Can we make domain of analyticity manifest

Spectral representations!

Systematic construction possible

Start with time ordered correlation functions

 $\mathcal{T}A(t)B(0) = \Theta(t)A(t)B(0) + (-1)^{\mathbf{AB}}\Theta(-t)B(0)A(t)$

Start with time ordered correlation functions

 $\mathcal{T}A(t)B(0) = \Theta(t)A(t)B(0) + (-1)^{\mathbf{AB}}\Theta(-t)B(0)A(t)$

Rewrite Heaviside functions with integral representation

$$\Theta(x) = \lim_{\varepsilon \to 0} \frac{1}{2\pi \mathrm{i}} \int_{y} \frac{1}{y + \mathrm{i}\varepsilon} e^{-\mathrm{i}xy}$$

Start with time ordered correlation functions

 $\mathcal{T}A(t)B(0) = \Theta(t)A(t)B(0) + (-1)^{\mathbf{AB}}\Theta(-t)B(0)A(t)$

Rewrite Heaviside functions with integral representation

$$\Theta(x) = \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{y} \frac{1}{y + i\varepsilon} e^{-ixy}$$

Fourier transform to frequency space

Start with time ordered correlation functions

 $\mathcal{T}A(t)B(0) = \Theta(t)A(t)B(0) + (-1)^{\mathbf{AB}}\Theta(-t)B(0)A(t)$

Rewrite Heaviside functions with integral representation

$$\Theta(x) = \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{y} \frac{1}{y + i\varepsilon} e^{-ixy}$$

Fourier transform to frequency space

Use cyclicity/KMS to order terms $\Gamma_{123}^{(3)}(\omega_1, \omega_2, \omega_3) = e^{-\beta\omega_3}\Gamma_{312}^{(3)}(\omega_3, \omega_1, \omega_2)$

Start with time ordered correlation functions

$$\mathcal{T}A(t)B(0) = \Theta(t)A(t)B(0) + (-1)^{\mathbf{AB}}\Theta(-t)B(0)A(t)$$

Rewrite Heaviside functions with integral representation

$$\Theta(x) = \lim_{\varepsilon \to 0} \frac{1}{2\pi \mathrm{i}} \int_{y} \frac{1}{y + \mathrm{i}\varepsilon} e^{-\mathrm{i}xy}$$

Fourier transform to frequency space

Use cyclicity/KMS to order terms $\Gamma_{123}^{(3)}(\omega_1, \omega_2, \omega_3) = e^{-\beta\omega_3}\Gamma_{312}^{(3)}(\omega_3, \omega_1, \omega_2)$

Two-point function

Two-point function

$$G(p_0, \vec{p}) = \int \frac{\mathrm{d}\eta}{2\pi} \, \frac{\rho(\eta, \vec{p})}{\eta - \mathrm{i}p_0} = \int_{\eta > 0} \frac{\mathrm{d}\eta}{2\pi} \, 2\eta \frac{\rho(\eta, \vec{p})}{\eta^2 + p_0^2} \qquad \Longrightarrow \qquad \rho(p_0, \vec{p}) = 2 \,\mathrm{Im} \, G_{RA}(p_0, \vec{p})$$

Two-point function

Three-point function

Two-point function

Three-point function

$$\Gamma^{(3)}(p_0, r_0) = \int \frac{\mathrm{d}\eta_1}{2\pi} \frac{\mathrm{d}\eta_2}{2\pi} \frac{-1}{(\eta_1 + \eta_2) - \mathrm{i}(p_0 + r_0)} \left[\frac{\rho_1(\eta_1, \eta_2)}{\eta_1 - \mathrm{i}p_0} + \frac{\rho_2(\eta_1, \eta_2)}{\eta_2 - \mathrm{i}r_0} \right]$$

Two-point function

Three-point function

$$\Gamma^{(3)}(p_0, r_0) = \int \frac{\mathrm{d}\eta_1}{2\pi} \frac{\mathrm{d}\eta_2}{2\pi} \frac{-1}{(\eta_1 + \eta_2) - \mathrm{i}(p_0 + r_0)} \left[\frac{\rho_1(\eta_1, \eta_2)}{\eta_1 - \mathrm{i}p_0} + \frac{\rho_2(\eta_1, \eta_2)}{\eta_2 - \mathrm{i}r_0} \right]$$
$$\rho_1 = 2 \operatorname{Re} \left(\Gamma^{(3)}_{ARA} + \Gamma^{(3)}_{AAR} \right)$$
$$\rho_2 = 2 \operatorname{Re} \left(\Gamma^{(3)}_{RAA} + \Gamma^{(3)}_{AAR} \right)$$

Two-point function

Three-point function

Situation is more complicated for n>3

Situation is more complicated for n>3

Number of analytic continuations grows faster than retarded/advanced basis

Situation is more complicated for n>3

Number of analytic continuations grows faster than retarded/advanced basis

Analytically continue with $p_i \rightarrow -i(\omega_i + i\varepsilon_i)$

Situation is more complicated for n>3

Number of analytic continuations grows faster than retarded/advanced basis

Analytically continue with $p_i \rightarrow -i(\omega_i + i\varepsilon_i)$

 $\Gamma^{(4)}_{\rm RRAA} \quad \mbox{is given by} \quad \begin{tabular}{c} \varepsilon_1 > 0, \varepsilon_2 > 0 \\ \varepsilon_3 < 0, \varepsilon_4 < 0 \end{tabular} \quad \mbox{which is ambiguous} \end{tabular}$

Spectral representations

Situation is more complicated for n>3

Number of analytic continuations grows faster than retarded/advanced basis

Analytically continue with $p_i \rightarrow -i(\omega_i + i\varepsilon_i)$

which is ambiguous

Signs of combinations not chosen

 $\Gamma_{\rm RRAA}^{(4)}$ is given by $\begin{array}{c} arepsilon_1 > 0, arepsilon_2 > 0 \\ arepsilon_3 < 0, arepsilon_4 < 0 \end{array}$

$$\varepsilon_1 + \varepsilon_4$$

 $\varepsilon_2 + \varepsilon_3$

Evans, Phys.Lett. B249 (1990) Evans, Nucl.Phys. B374 (1992) NW, PhD thesis

Back to spectral DSE

Works very well in a scalar theory

$$S[\varphi] = \int d^d x \left[\frac{1}{2} (\partial_\mu \varphi)^2 + \frac{m_{\phi,0}^2}{2} \varphi^2 + \frac{\lambda_{\phi,0}}{4!} \varphi^4 \right]$$

Back to spectral DSE

Works very well in a scalar theory

Back to spectral DSE

Works very well in a scalar theory

$$\begin{aligned} [\varphi] &= \int d^d x \left[\frac{1}{2} (\partial_\mu \varphi)^2 + \frac{m_{\phi,0}^2}{2} \varphi^2 + \frac{\lambda_{\phi,0}}{4!} \varphi^4 \right] \\ 1. \text{ Make initial guess } \rho_0 \\ & \bullet \end{aligned}$$
2. Calculate $\Gamma^{(2)} \text{ via DSE} \bullet \\ & \bullet \end{aligned}$
3. Compute ρ from propagator literate until convergence

S[

with classical vertices

Horak, Pawlowski, NW, PRD102 (2020)

Incorporating Vertices

Take one channel into account

$$= -\frac{1}{2} + \frac{1}{4} - \dots$$

Incorporating Vertices

Take one channel into account

$$= -\frac{1}{2} + \frac{1}{4} - \dots$$

Resummed vertex

$$\rho_{4,0}(\omega) = 2 \operatorname{Im} \frac{\lambda_{\phi}}{1 + \lambda_{\phi} \Pi_{\operatorname{fish},0}(\omega)}$$

Single channel approx keeps system manageable

Horak, Pawlowski, NW, PRD102 (2020)

Scalar theory

15.06.2023 | Physics Department | Institute of Nuclear Physics (IKP) | Nicolas Wink | 43

Horak, Pawlowski, NW, PRD102 (2020)

Yang-Mills

Gauge Fixing

Described by Action

$$S_{\rm YM} = \int_x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu}$$

15.06.2023 | Physics Department | Institute of Nuclear Physics (IKP) | Nicolas Wink | 46

Gauge Fixing

Described by Action

$$S_{\rm YM} = \int_x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu}$$

Functional Methods require gauge fixing

$$S_{\rm YM} = \int_x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{1}{2\xi} \int_x (\partial_\mu A^a_\mu)^2 + \int_x \bar{c}^a \partial_\mu D^{ab}_\mu c^b$$

Landau Gauge

$$S_{\rm YM} = \int_x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{1}{2\xi} \int_x (\partial_\mu A^a_\mu)^2 + \int_x \bar{c}^a \partial_\mu D^{ab}_\mu c^b$$

Preferred choice: Landau gauge $\xi \to 0$

Landau Gauge

$$S_{\rm YM} = \int_x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{1}{2\xi} \int_x (\partial_\mu A^a_\mu)^2 + \int_x \bar{c}^a \partial_\mu D^{ab}_\mu c^b$$

Preferred choice: Landau gauge $\xi \to 0$

Transverse system decouples $\Gamma_{(n)}^{\perp} = \operatorname{funRel}_{(n)}^{\perp} [\{\Gamma_{(2 \le m \le n+2)}^{\perp}\}]$

$$\Pi^{\perp}_{\mu\nu}(p) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right)$$

Landau Gauge

$$S_{\rm YM} = \int_x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{1}{2\xi} \int_x (\partial_\mu A^a_\mu)^2 + \int_x \bar{c}^a \partial_\mu D^{ab}_\mu c^b$$

Preferred choice: Landau gauge $\ \xi \to 0$

Transverse system decouples $\Gamma_{(n)}^{\perp} = \operatorname{funRel}_{(n)}^{\perp} [\{\Gamma_{(2 \le m \le n+2)}^{\perp}\}]$

Longitudinal system solved subsequently

$$\Gamma_{(n)}^{\parallel} = \operatorname{funRel}_{(n)}^{\parallel} [\{ \Gamma_{(2 < m \le n+2)}^{\parallel} \}, \{ \Gamma_{(2 \le m \le n+1)}^{\perp} \}]$$

$$\Pi^{\perp}_{\mu\nu}(p) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right)$$

$$\Pi^{\parallel}_{\mu\nu}(p) = \frac{p_{\mu}p_{\nu}}{p^2}$$

The ghost DSE is rather simple

The ghost DSE is rather simple

The ghost-gluon vertex is surprisingly boring in the Euclidean domain

The ghost DSE is rather simple

The ghost-gluon vertex is surprisingly boring in the Euclidean domain

Take constant ghost-gluon vertex

The ghost DSE is rather simple

The ghost-gluon vertex is surprisingly boring in the Euclidean domain

Take constant ghost-gluon vertex

Use gluon spectral function input

Gluon input

Reconstruction based on fRG data

Horak, Pawlowski, NW, PRD104 (2021)

Gluon input

Reconstruction based on fRG data

Features exact IR, UV asymptotic and sum rule

Horak, Pawlowski, NW, PRD104 (2021)

Ghost spectral function

Perfectly fine, purely negative spectral function and massless pole at zero frequency

Horak, Pawlowski, NW, PRD104 (2021)

Keep vertices constant

Keep vertices constant

Neglect two-loop diagrams

Difficult to find solution, but possible

BPHZ renormalization

Standard renormalization conditions

$$Z_A(\mu_{
m RG}) = 1 + rac{m_A^2}{\mu_{
m RG}^2}$$

$$Z_c(\mu_{\rm RG}) = 1 \, .$$

Initial conditions

But YM should have no free parameters?

Initial conditions

But YM should have no free parameters?

Classical vertices $\lambda_{Aar{c}c},\lambda_{A^3},\lambda_{A^4}$

Initial conditions

But YM should have no free parameters?

Classical vertices $\lambda_{Aar{c}c},\lambda_{A^3},\lambda_{A^4}$

One used for scale setting

Two fixed by (modified) Slavnov–Taylor identities

Gluon mass parameter $\,m_A^2\,$

Related to non-perturbative gauge fixing?

Running couplings

The remaining free parameter

Assume complex conjugated poles in the gluon

Complex-conjugate poles gluon propagator

Horak, Pawlowski, NW, arXiv:2202.09333

Assume complex conjugated poles in the gluon

Assume complex conjugated poles in the gluon

Numerical solution

Dynamic mass gap generation

Still far from the interesting regime of the theory

Horak, Pawlowski, NW, arXiv:2202.09333

Extend ordinary KL representation

$$G(z_0) = \frac{1}{2\pi i} \oint_{\gamma} dz \frac{G(z)}{z - z_0}$$

capable to capture cc poles/cuts

Extend ordinary KL representation

$$G(z_0) = \frac{1}{2\pi i} \oint_{\gamma} dz \frac{G(z)}{z - z_0}$$

Calculation procedure still works (in principle)

capable to capture cc poles/cuts

$$G(z_0) = \frac{1}{2\pi i} \oint_{\gamma} dz \frac{G(z)}{z - z_0}$$

Calculation procedure still works (in principle)

Absorb deviations by fitting cc poles

Procedure breaks down when approaching interesting region of theory

capable to capture cc poles/cuts

All hell breaks loose

4 0.1 3 χ [GeV] $\mathbf{v}_{\mathbf{v}}^{\chi}$ 2 • X $\square Z_{\chi}$ 2.6 2.7 2.8 ξ^{-1} [GeV]

Simple cc poles are NOT the solution

All hell breaks loose

Simple cc poles are NOT the solution

All hell breaks loose

Personal gut feeling

Artefact of unphysical region of theory

- All hell breaks loose Simple cc poles are NOT the solution Personal gut feeling
 - Artefact of unphysical region of theory
- Ways forward

Simple cc poles are NOT the solution

All hell breaks loose

- Personal gut feeling
 - Artefact of unphysical region of theory
- Ways forward
 - Monitor mSTIs in parallel

All hell breaks loose
Simple cc poles are NOT the solution
Personal gut feeling
Artefact of unphysical region of theory
Ways forward

- Monitor mSTIs in parallel
- Advanced numerical methods

All hell breaks loose

Simple cc poles are **NOT** the solution

Personal gut feeling

Artefact of unphysical region of theory

Ways forward

Monitor mSTIs in parallel

Advanced numerical methods

Horak, Pawlowski, NW, arXiv:2202.09333

Include vertices and/or Keldysh contour

Proceed similar to ghost equation

Proceed similar to ghost equation

Use input for gluon from reconstruction

Gluon prop from 2+1 flavour Lattice data with GPR

Proceed similar to ghost equation

• Use input for gluon from reconstruction

Const quark-gluon vertex

Gluon prop from 2+1 flavour Lattice data with GPR

Proceed similar to ghost equation

Const quark-gluon vertex

Gluon prop from 2+1 flavour Lattice data with GPR

One loop pert. theory features complex conjugated poles

One loop pert. theory features complex conjugated poles

One loop pert. theory features complex conjugated poles

Very small imaginary part

Approximation

$$\rho(\omega) = R\,\delta(\omega - \omega_0) + \tilde{\rho}(\omega)$$

resonance-scattering split

One loop pert. theory features complex conjugated poles

Very small imaginary part

Approximation

$$\rho(\omega) = R\,\delta(\omega - \omega_0) + \tilde{\rho}(\omega)$$

resonance-scattering split

Quark spectral function

Quark spectral function

Negative scattering tail necessitated by sum rule

$$G_q(q)\Gamma_{\mu}(q,p)G_q(p) \approx g_s \int_{\lambda} \frac{1}{\mathrm{i} \not\!\!\! q - \lambda} \gamma_{\mu} \frac{1}{\mathrm{i} \not\!\!\! p - \lambda} \rho_q(\lambda)$$

Slavnov-Taylor identities

Regularization introduces modification of STIs

$$\int_{x} \Gamma_{Q_i} \Gamma_{\Phi_i} = \int_{x,y} (R G)_{\Phi_i \Phi_j} \Gamma_{Q_j \Phi_i}$$

A first study in the fRG

Slavnov-Taylor identities

Regularization introduces modification of STIs

$$\int_{x} \Gamma_{Q_i} \Gamma_{\Phi_i} = \int_{x,y} (R G)_{\Phi_i \Phi_j} \Gamma_{Q_j \Phi_i}$$

A first study in the fRG

Calculate long. sector directly and from STI

Slavnov-Taylor identities

Regularization introduces modification of STIs

$$\int_{x} \Gamma_{Q_i} \Gamma_{\Phi_i} = \int_{x,y} (R G)_{\Phi_i \Phi_j} \Gamma_{Q_j \Phi_i}$$

A first study in the fRG

Calculate long. sector directly and from STI

Only one vertex fulfills STI (numerically) exactly

Pawlowski, Schneider, NW, arXiv:2202.11123

Hints towards gauge consistency of functional setups

Positive news

Hints towards gauge consistency of functional setups

Positive news

Large deviations in the IR of gluonic vertices

But: No irregularities in the

 long sector (we also didn't look for them)

Hints towards gauge consistency of functional setups

Positive news

Large deviations in the IR of gluonic vertices

But: No irregularities in the

 long sector (we also didn't look for them)

Agreement up to numerical precision in ghost-gluon vertex

➡ Why?

Pawlowski, Schneider, NW, arXiv:2202.11123

Thanks

Spectral DSE

Ghost and Gluon spectral functions

Modified Slavnov-Taylor identities

15.06.2023 | Physics Department | Institute of Nuclear Physics (IKP) | Nicolas Wink | 108

Euclidean three point function

$$\Gamma_{\text{Eucl}}^{(3)}(p_0, r_0, \vec{p} = 0, \vec{r} = 0)$$

1st iteration for a scalar field

ki. NW. work in proare

EM S

15.06.2023 | Physics Department | Institute of Nuclear Physics (IKP) | Nicolas Wink | 110

Imaginary part of analytic continued three-point function

Three-point spectral density

 $\rho_1(\omega_1,\omega_2)$

Reconstruction three-point function

