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Overview

Most non-perturbative methods for QCD are formulated in Euclidean space, since the
indefinite metric of the Minkowski space generates many dificulties.

The primary tool for investigating QCD in Euclidean space is the lattice, but relevant
advancements have been achieved with a continuum approach.

The continuum approach is based on the combination of the Bethe-Salpeter equation
(BSE) for two and three-body systems (Faddeev-BSE), and the set of Dyson-Schwinger
equations (DSEs).

Results of the hadron spectra and dynamical observables have been favorably compared
with available experimental results and lattice calculations.

BUT the physical observations are obtained in Minkowski space, and therefore, it could
be helpful to attempt to replicate in Minkowski space an analog program: i.e. combining
BSE and a truncated tower of DSEs.

) The approach we are pursuing is based on using the Nakanishi Integral
Representation to calculate observables in Minkowski space.
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Pion as a quark-antiquark bound state

Bethe-Salpeter equation (0�) :

�(k ;P) = S
�
k + P

2

� Z d4k 0

(2⇡)4
Sµ⌫(q)�µ(q)�(k

0;P)b�⌫(q)S
�
k � P

2

�

b�⌫(q) = C �⌫(q) C
�1

where we use: i) bare propagators for the quarks and gluons;
ii) ladder approximation with massive gluons,
iii) an extended quark-gluon vertex

S(P) =
i

/P �m + i✏
, Sµ⌫(q) = �i

gµ⌫

q2 � µ2 + i✏
, �µ = ig

µ2 � ⇤2

q2 � ⇤2 + i✏
�µ ,

We consider one of the Longitudinal components of the QGV

We set the value of the scale parameter (300 MeV) from the combined analysis of
Lattice simulations, the Quark-Gap Equation and Slanov-Taylor identity.

Oliveira, WP, Frederico, de Melo EPJC 78(7), 553 (2018) & EPJC 79 (2019) 116 & EPJC 80 (2020) 484
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NIR for fermion-antifermion 0� Bound State
BSA for a quark-antiquark 0� bound state:

�(k ;P) =
4X

i=1

Si (k ;P)�i (k ;P)

Dirac structures for a pseudoscalar system is given by

S
1

= �
5

, S
2

=
/P

M
�
5

, S
3

=
k · P
M3

/P�
5

� /k

M
�
5

, S
4

=
i

M2

�µ⌫Pµk⌫�5

Using the NIR for each scalar functions

�i (k ;P) =

Z
1

�1

dz 0
Z 1

0

d�0
gi (�0, z 0;2)

[k2 + z 0(P · k)� �0 � 2 + i✏]3

System of coupled integral equations
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Projecting BSE onto the LF hyper-plane x

+ = 0

Light-Front variables: xµ = (x+, x�, ~x?)

LF-time x+ = x0 + x3

x� = x0 � x3

~x? = (x1, x2)

Within the LF framework, one introduces LF-projected amplitudes for each
�i (k ,P) through their integral on k� () s.t. x+ = 0, with x+ relative LF-time)):

 i (�, ⇠) =

Z
dk�

2⇡
�i (k , p) = � i

M

Z 1

0

d�0
gi (�0, z ;2)

[� + �0 +m2z2 + (1� z2)2]2

By LF-projecting both sides of BSE (after applying the suitable traces on Dirac
indexes) one gets a coupled integral-equation system.
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The coupled integral-equation system (see also NIR+covariant LF, Carbonell and
Karmanov JPA 2010) in ladder approximation, reads (cf. de Paula,et al, PRD 94,
071901 (2016) & EPJC 77, 764 (2017))

Z 1

0

d�0
gi (�

0, z ;2)

[� + �0 +m

2

z

2 + (1� z

2)2]2
= iMg

2

X

j

Z 1

0

d�0
Z

1

�1

dz

0Lij(�, z ; �
0, z 0) gj(�

0, z 0;2)

In ladder approximation, the Nakanishi Kernel, Lij , has an analytical expression and
contains singular contributions that can be regularized ’a la Yan (Chang and Yan,
Quantum field theories in the infinite momentum frame. II. PRD 7, 1147 (1973)).

Numerical solutions are obtained by discretizing the system using a polynomial basis,
given by the Cartesian product of Laguerre(�) ⇥ Gegenbauer(z). One remains with a
Generalized eigenvalue problem, where a non-symmetric matrix and a symmetric one are
present

A

~
c = � B

~
c

N.B. the eigenvector ~c contains the coe�cients of the expansion of the Nakanishi weight
functions gi (z , �;

2).
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LF Momentum Distributions

The fermionic field on the null-plane is given by:

 (+)(x̃ , x+ = 0+) =

Z
dq̃

(2⇡)3/2
✓(q+)p
2q+

X

�

h
U(+)(q̃,�) b(q̃,�)e i q̃·x̃ + V (+)(q̃,�) d†(q̃,�)e�i q̃·x̃

i
,

where
U(+)(q̃,�) = ⇤+u(q̃,�) , V (+)(q̃,�) = ⇤+v(q̃,�)

Hence, d† and b are the fermion creation/annihilation operators

The LF valence amplitude is the Fock component with the lowest number of
constituents:

'
2

(⇠, k?,�i ;M, J⇡, Jz ) = (2⇡)

3

p
Nc 2p+

q
⇠(1 � ⇠) h0|b(q̃

2

,�
2

) d(q̃
1

,�
1

)|p̃,M, J⇡, Jz i ,

where q̃
1

⌘ {q+
1

= M(1� ⇠),�k?}, q̃2 ⌘ {q+
2

= M⇠, k?} and ⇠ = 1/2+ k+/p+.
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The LF valence amplitude is the Fock component with the lowest number of
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LF Momentum Distributions

LF valence amplitude in terms of BS amplitude is:

'
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(⇠, k?,�i ;M, J⇡, Jz ) =

p
Nc

p+

1

4

ū↵(q̃
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,�
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)

Z
dk�

2⇡

h
�+

�(k, p) �+

i

↵�
v� (q̃

1

,�
1

) .

which can be decomposed into two spin contributions:

Anti-aligned configuration:

 "#(�, z) =  
2

(�, z) +
z
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3

(�, ⇠) +
i

M3

Z 1

0

d�0
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Aligned configuration:

 ""(�, z) =  ##(�, z) =

p
�

M
 
4

(�, z)

with the LF amplitudes given by

 i (�, z) = � i

M

Z 1

0

d�0
gi (�0, z)

[� + �0 +m2z2 + (1� z2)2]2
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ū↵(q̃
2

,�
2

)

Z
dk�

2⇡

h
�+

�(k, p) �+

i

↵�
v� (q̃

1

,�
1

) .

which can be decomposed into two spin contributions:

Anti-aligned configuration:

 "#(�, z) =  
2

(�, z) +
z

2
 
3

(�, ⇠) +
i

M3

Z 1

0

d�0
@g

3

(�0, z)/@z

� + �0 + z2m2 + (1� z2)2

Aligned configuration:

 ""(�, z) =  ##(�, z) =

p
�

M
 
4

(�, z)

with the LF amplitudes given by

 i (�, z) = � i

M

Z 1

0

d�0
gi (�0, z)

[� + �0 +m2z2 + (1� z2)2]2

Wayne de Paula (ITA) Pion mom. dist. in MS. 9 / 32



LF Momentum Distributions

LF valence amplitude in terms of BS amplitude is:

'
2

(⇠, k?,�i ;M, J⇡, Jz ) =

p
Nc

p+

1

4
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Valence probability

The Fock expansion allows to restore a probabilistic framework.

The Valence Probability is:

Pval =
1

(2⇡)3

X

�
1

�
2

Z
1

�1

dz

(1� z2)

Z
dk?

���'n=2

(⇠, k?,�i ;M, J⇡, Jz)
���
2

In terms of the aligned and anti-aligned LFWF, we have

Pval =

Z
1

�1

dz

Z 1

0

d�

(4⇡)2

h
| "#(�, z)|2 + | ""(�, z)|2

i
,

The contribution to the PDF from the LF-valence WF is

uval(z) =

Z 1

0

d�

(4⇡)2

h
| "#(�, z)|2 + | ""(�, z)|2

i
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Quantitative results: Static properties

WP, Ydrefors, Nogueira, Frederico and Salme PRD 103 014002 (2021).

The set VIII reproduces the pion decay constant

mq = 255MeV,mg = 637.5MeV and ⇤ = 306MeV

The contributions beyond the valence component are important, ⇠ 30%
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Pion em form factor in ladder approximation

Ydrefors, WP, Nogueira, Frederico and Salmè PLB 820, 136494 (2021)

The elastic FF is given by

F (Q2) = �i
Nc

M2 (1 + ⌧)

Z
d4pq̄
(2⇡)4

Tr
⇥
(�/pq̄ �m)�̄(k 0;P 0)(/P + /P 0) �(k ;P)

⇤
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Pion em form factor in ladder approximation
Ydrefors, WP, Nogueira, Frederico and Salmè PLB 820, 136494 (2021)

mq = 255MeV,mg = 637MeV and ⇤ = 306MeV

Good agreement with experimental data (black solid curve).
For high Q2 we obtain the valence dominance (dashed black curve)

Right Panel: Dash-dotted line; asymptotic expression from Brodsky-Lepage PRD

22 (1980): Q2F
asy

(Q2) = 8⇡↵s(Q2)f 2⇡ . Our results recover the pQCD for large

Q2
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Pion charge radius

Ydrefors, WP, Nogueira, Frederico and Salmè PLB 820, 136494 (2021)

Pion charge radius and its decomposition in valence and non valence
contributions.

where r2⇡ = �6 dF⇡(Q2)/dQ2

���
Q2

=0

Pval(nval) r
2

val(nval) = �6 dFval(nval)(Q
2)/dQ2

���
Q2

=0

The set I is in fair agreement with the PDG value:

rPDG
⇡ = 0.659± 0.004 fm
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Pion Transverse Momentum-Dependent Distributions

One can define the T-even subleading quark uTMDs, starting from the decomposition of
the pion correlator (Mulders and Tangerman, Nucl. Phys. B 461, 197 (1996)).

twist -2 uTMD:

f

q
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�/2� k? · y?.
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Parton distribution function
W. de Paula et al., PRD 105, L071505 (2022).
From the charge-symmetric expression for the leading-twist TMD f

S
1

(�, ⇠), one gets the
PDF at the initial scale u(⇠)

f

S(AS)
1

(�, ⇠) =
f

q
1

(�, ⇠)± f

q̄
1

(�, 1� ⇠)
2

) u(⇠) =

Z 1

0

d� f

S
1

(�, ⇠).
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 ξ
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2

u(
 ξ
)

Solid line: full calculation of the BSE at
the model scale
Dashed line: The LF valence contribu-
tion .
At the initial scale, for ⇠ ! 1, the expo-
nent of (1 � ⇠)⌘0 is ⌘

0

= 1.4. N.B JAM
collaboration (PRL 121 (2018)) found a
preferential exponent ⌘JAM ⇠ 1.
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Parton distribution function II
Low order Mellin moments at scales Q = 2.0 GeV and Q = 5.2 GeV.

LQCD, Q = 2.0 GeV: hxi - Alexandrou et al PRD 103, 014508 (2021)
hx2i and hx3i - Alexandrou et al PRD 104, 054504 (2021)

LQCD, Q = 5.0 GeV: hxi - Alexandrou et al PRD 103, 014508 (2021)

N.B. following Cui et al EPJC 2020 80 1064, lowest order DGLAP equations used for
evolution. One needs:

Hadronic scale and e↵ective charge for dealing with DGLAP
Q

0

= 0.330± 0.030 GeV

Within the error, we choose Q

0

= 0.360 GeV to fit the first Mellin moment.
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Parton distribution function III

Comparison with the data at 5.2 GeV scale
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 ξ
u(

 ξ
)

Solid line: full calculation of the BSE
evolved from the initial scale Q

0

=
0.360 GeV to Q = 5.2 GeV
Dashed line: The evolved LF valence
contribution
Full dots: experimental data from E615
Full squares: reanalyzed experimental
data from Aicher et al PRL 105, 252003
(2010) evolved to Q = 5.2 GeV
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Parton distribution function IV
Comparison with other theoretical calculations
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 ξ
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0.4

0.5

 ξ
u(

 ξ
)

Solid line: full calculation of the BSE
evolved from the initial scale Q

0

=
0.360 GeV to Q = 5.2 GeV
Dashed line: DSE calculation from Cui
et al, Eur. Phys. J. A 58, 10 (2022)
Dash-dotted line: DSE calculation with
dressed quark-photon vertex from Bed-
nar et al PRL 124, 042002 (2020)
Dotted line: BLFQ collaboration, PLB
825, 136890 (2022)
Gray area: LQCD results from C.
Alexandrou et al (2021)
Black and Orange vertical lines from
JAM collaboration, private communica-
tion.

For the evolved ⇠ u(⇠), the exponent of (1� ⇠)⌘5 is ⌘
5

= 2.94, when ⇠ ! 1,

LQCD: Alexandrou et al PRD 104, 054504 (2021) obtained 2.20± 0.64

Cui et al EPJA 58, 10 (2022) obtained 2.81± 0.08
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Transverse Momentum-Dependent Distributions II
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Solid line: quark twist-3 uTMD e(⇠)
Dashed line: Sym. twist-3 uTMD e

S(⇠)
Dotted: AS twist-3 uTMD e

AS(⇠)

Solid line: quark twist-3 uTMD f

?(⇠)
Dashed line: Sym. twist-3 uTMD f

?S(⇠)
Dotted: AS twist-3 uTMD f

?AS(⇠)

The corresponding symmetric and antisymmetric collinear PDFs are:

e

S(AS)(⇠) =

Z 1

0

d� e

S(AS)(�, ⇠) , f

?S(AS)(⇠) =

Z 1

0

d� f

?S(AS)(�, ⇠)

For the quark ones: eq(⇠) = e

S(⇠) + e

AS(⇠) and f

?q(⇠) = f

? S(⇠) + f

? AS(⇠)
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Twist-2 uTMD f

S
1

(�, ⇠) Twist-3 uTMD e

S(�, ⇠)

Twist-2 Twist-3

i) the peak at ⇠ = 0.5 for any �/m2 Double-hump: smooth for larger �/m2.
ii) the vanishing values at the end-points
iii) the order of magnitude fall-o↵ already for �/m2 > 2
Similar behavior in comparison with DSE calculations (Shi, Bednar, Cloët, PRD 101(7), 074014 (2020))

Di↵erent behavior in comparison to ”LF constituent model” (Pasquini, Schweitzer, PRD 90(1), 014050 (2014)) and ”LF

holographic models” ( Bacchetta, Cotogno, Pasquini, PLB 771, 546 (2017). )
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A view of the pion from the light-cone
W. de Paula,et al, PRD 103, 014002 (2021) The probability distribution of the quarks

inside the pion, sitting on the the hyperplane x

+ = 0, tangent to the light-cone, is
evaluated in the space given by the Cartesian product of the Io↵e-time and the plane
spanned by the transverse coordinates b?.

Why? In addition to the usual the infinite-momentum frame one can study the
deep-inelastic scattering processes in the target frame, adopting the configuration space,
so that a more detailed investigation of the space-time structure of the hadrons can be
performed. The Io↵e-time is useful for studying the relative importance of short and
long light-like distances.

x

0

x

3

x

2

h

y

p

e

r

p

l

a

n

e

x +
=
0

The covariant definition of the Io↵e-
time is z̃ = x ·Ptarget , and it becomes
z̃ = x

�
P

+

target/2 on the hyper-
plane x

+ = 0

Wayne de Paula (ITA) Pion mom. dist. in MS. 22 / 32



The pion on the light-cone

Density plot of |b?|2 | (z̃ , bx , by )|2, with  (z̃ , bx , by ) obtained from our solutions of the
ladder Bethe-Salpeter equation [W. de Paula et al PRD 103, (2021) 014002]

z̃ ⌘ Io↵e-time
{bx , by} ⌘ transverse coordinates
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Dressed quark propagator

After completing the investigation of the pion BSE with fixed-mass quark, i.e. a qq̄

bound system, we are addressing the running-mass case
Wave-function renorm. constant Z(p2) = 1 and a
running-mass,M(p2

E ) = m

0

�m

3/(p2

E � �2), with m

0

= 0.008GeV, m = 0.648GeV and
� = 0.9GeV adjusted to LQCD calculations by O. Oliveira, et al, PRD 99 (2019)
094506. First results in A. Castro et al, arXiv:2305.12536

The quark running-mass, M(p2), as a
function of the Euclidean momentum
pE =

p
�p

2, in units of the IR massM(0) =
0.344GeV. Solid line: our model. Dashed
line: accurate fit of the LQCD calculations .
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0� Bound State with Running quark mass function
Abigail Castro, WP, Ydrefors, Frederico, Salmè - arXiv:2305.12536

Dressed quark propagator: S(p) = SV (p2)/p + SS(p2)

Integral Representation: SV (p2) =
R1
0

ds ⇢V
(s)

p2�s+i✏ ; SS(p2) =
R1
0

ds ⇢S
(s)

p2�s+i✏

Using the Nakanishi integral representation for �i (k , p), performing the loop
integral and projecting onto the LF, one obtains the BSE as

Z 1

0

d�0
gi (�0, z)h

� + z2M2/4 + �0 + 2 � i✏
i
2

=
↵

2⇡

⇥
X

j

Z
1

�1

dz 0
Z 1

0

d�0Lij(�, z ; �
0, z 0) gj(�

0, z 0) .
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0� Bound State with Running quark mass function
Abigail Castro, WP, Ydrefors, Frederico, Salmè - arXiv:2305.12536

Phenomenological model: M(p2) = m
0

� m3

p2��2

+i✏

⇢S(V )(s) =
3X

a=1

RS(V )

a �(s �m2

a) ,

where R
S(V )

a are the residues, that read

RV
a =

(�2 �m2

a)
2

(m2

a �m2

b)(m
2

a �m2

c)
,

RS
a = RV

a M(m2

a),

with the indices {a, b, c} following the cyclic permutation {1, 2, 3}.
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0� Bound State with Running quark mass function

Abigail Castro, WP, Ydrefors, Frederico, Salmè - arXiv:2305.12536

Longitudinal momentum distribution

Parameters: ⇤ = 0.12GeV, µ = 0.469GeV.
Thick solid line: running mass model for M = 0.653 GeV.
Thick dashed Line: fixed quark mass (344 MeV) for M = 0.653 GeV.
Thin solid line: running mass model for M = 0.516GeV.
Thin dashed line: fixed quark mass (344 MeV) for M = 0.516GeV.
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0� Bound State with Running quark mass function

Abigail Castro, WP, Ydrefors, Frederico, Salmè - arXiv:2305.12536

Transverse momentum distribution

Parameters: ⇤ = 0.12GeV, µ = 0.469GeV.
Thick solid line: running mass model for M = 0.653 GeV.
Thick dashed Line: fixed quark mass (344 MeV) for M = 0.653 GeV.
Thin solid line: running mass model for M = 0.516GeV.
Thin dashed line: fixed quark mass (344 MeV) for M = 0.516GeV.
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Dressing the Quark: Schwinger-Dyson equation

The model: Bare vertices, massive vector boson, Pauli-Villars regulator

The rainbow ladder Schwinger-Dyson equation in Minkowski space is:

S�1

q (k) = /k �mB + ig2

Z
d4q

(2⇡)4
�µ(q, k)Sq(k � q)�⌫D

µ⌫(q) ,

where mB is the quark bare mass and g is the coupling constant.
The massive gauge boson is given by

Dµ⌫ (q) =
1

q2 �m2

g + ı✏


gµ⌫ � (1� ⇠)qµq⌫

q2 � ⇠m2

g + ı✏

�
,

where we have introduce an e↵ective gluon mass mg , as suggested by LQCD
calculations (see Dudal, Oliveira and Silva, PRD 89 (2014) 014010 ).
The dressed fermion propagator is

Sq (k) =
h
/k A

�
k2

�
� B

�
k2

�
+ i✏

i�1

.
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Schwinger-Dyson equation in Rainbow ladder truncation
The vector and scalar self-energies are given by the KLR, respectively as:

A
�
k2

�
= 1 +

Z 1

0

ds
⇢A (s)

k2 � s + i✏
,

B
�
k2

�
= mB +

Z 1

0

ds
⇢B (s)

k2 � s + i✏
.

The quark propagator can also be written as:

Sq(k) = R
/k +m

0

k2 �m2

0

+ i✏
+ /k

Z 1

0

ds
⇢v (s)

k2 � s + i✏
+

Z 1

0

ds
⇢s (s)

k2 � s + i✏
,

where m
0

is the renormalized mass.
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Phenomenological Model
Duarte, Frederico, WP, Ydrefors PRD 105, 114055 (2022)

We can calibrate the model to reproduce Lattice Data for M(p2)

Lattice data from: Oliveira, Silva, Skullerud and Sternbec, PRD 99 (2019) 094506

Next step: To use a solution of the DSE to obtain the Fermion-Antifermion
bound state
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Conclusions and Perspectives

The near future will o↵er an innovative view of the dynamics inside the
hadrons, thanks to the experimental activity planned at the Electron-ion
colliders, and plenty of measurements pointing to the 3D tomography of
hadrons will become available.

For the pion, many results, em form factor, PDF, TMDs, Io↵e-time⇥
transverse plane distribution, have been obtained by using the
ladder-approximation of the qq̄-BSE.

The 3D imaging is in line with the goal of the future Electron Ion Collider.

The pion has an important role, given its dual nature: qq̄ bound-system and
Goldstone boson. Our aim is to implement a framework analogous to the
one already developed in Euclidean space.

Minkowski space, phenomenological investigations, once the approach
composed by BSE and gap-equations will be fully available, could o↵er fresh
insights in hadron dynamics and possibly implement an interplay with
well-established lattice and continuous QCD communities.
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