Quantum strings and

the gauge/gravity duality

Valentina Giangreco Puletti
Science Institute, University of Iceland

Fifth conference of Nordic Network for Diversity in Physics May 24-25, 2023
NBI, Copenhagen, Denmark

Outline

- Gauge/gravity duality and its main features
- Localisation and its power
- Quantum strings

Based on works in collaboration with

- Frið̌rik Freyr Gautason (Uol) 2021, Frið́rik Freyr Gautason and Jesse van Muiden (SISSA) 2023
- Davide Astesiano (Uol), Pieter Boman (Oxford), Friðrik Freyr Gautason and Alexia Nix (Uol) (work in progress)
- Friðrik Freyr Gautason and Konstantin Zarembo (NORDITA) (work in progress)

Gauge/gravity duality (AdS/CFT): a bit of history

- Black hole thermodynamics (Bekenstein-Hawking formula for black hole entropy '73-'75)
- '97 Maldacena: AdS/CFT correspondence - completely changed our view of the nature of spacetime (and field theories) as well as contributed to a multidisciplinarity between different areas of physics

AdS/CFT: what?

- It is a duality between quantum field theory (non-gravitational) in ddimensions and string theory on negatively curved background in (d+1)dimensions (Anti de Sitter \rightarrow AdS)
- The original string formulation by Maldacena involves supersymmetry and conformal symmetries (conformal field theories \rightarrow CFT)
- The field theory "lives at the boundary" of AdS

AdS/CFT: what?

- Duality: Observables should match on both side.
- Example: vacuum expectation value of Wilson loops vs string partition function (Maldacena '98)

String worldsheet ends on the loop C which is the loop described by an external heavy quark from the field theory side

AdS/CFT: a strong/weak coupling duality

- There are two parameters in the game:
- Field theory: N is number of colours of the particles and λ is the 't Hooft coupling constant
- String theory: the string coupling is $g_{s} \sim \frac{\lambda}{N}$ and the tension of the string is $T \sim \sqrt{\lambda}$
- When $N \rightarrow \infty$ the field theory is planar (only planar Feynman diagrams survive) and the string is non-interacting. Still λ can be everything. For very large $\lambda(N \gg \lambda \gg 1)$ the string is classical but the field theory is strongly interacting.

AdS/CFT: why?

- We want to extend and understand gauge/gravity duality beyond the most symmetric paradigm but still in a mathematically detailed level
- We want to progress in understanding strongly correlated field theories

Example: quark-antiquark potential

$$
\langle W\rangle \sim e^{-\mathbf{T} E(L)} \sim e^{-S_{c l}}=e^{-A_{r e g}}=e^{-c \sqrt{\lambda} \mathbf{T} / L}
$$

- Field theory: potential of a quark and anti-quark (colour charges) at distance L (when $\mathbf{T} \rightarrow \infty$)
- String theory: the string ends at the boundary at $\pm L / 2$ and extends in the bulk
- At the leading order for $\lambda \rightarrow \infty$: the energy of the quark-antiquark is given by the minimal area of the 2 d worldsheet swept by the string (classical contribution)

(Supersymmetric) Localisation

- 2007 Pestun: localisation allows to compute exactly certain observables at any value of the coupling constant λ in (susy) quantum field theories
- Example: in Yang-Mills (SYM) theories in 5D, the circular Wilson loop has vev*

$$
\langle W\rangle=N \frac{2 \pi}{\lambda}\left(e^{\frac{\lambda}{2 \pi}}-1\right)+\mathcal{O}\left(N^{-1}\right)
$$

- Examples: Free energy and WL's for $\mathcal{N}=4$ and $\mathcal{N}=2$ (S)YM in 4D (Pestun 2007), for Chern-Simons-matter theory in 3D (Marino \& Putrov 2009, 2011, Drukker, Marino \& Putrov 2010),...

[^0]
Localisation and AdS/CFT

- These gauge theories have a dual string theory description: $\langle W\rangle=Z_{\text {string }}$
- This opens up a unique possibility: from weakly to strongly coupled regime
weak coupling: the gauge theory is weakly coupled but string regime is non-perturbative

Localisation and AdS/CFT

- What is going on with our dual string? Let's use a saddle point approximation
- at leading order for $\lambda \gg 1$: the leading order of the vev of WL is given by the area of the worldsheet $\left(S_{c l}\right)$
- at the next to leading order for $\lambda \gg 1$: quadratic fluctuations ϕ around the classical solution

$$
Z_{\text {string }} \approx e^{-S_{c l}} \int[\mathscr{D} \phi] e^{-\int \phi K \phi}
$$

and the answer is...

- It matches but it is not that simple...
- Quantising strings in curved backgrounds (not necessarily AdS) and with fluxes have its challenges - as for the SYM in 5D [Gautason, VGMP 2021]
- But we learn a lot about string theory beyond the classical regime and beyond more symmetric frameworks
- We can use this to understand non-perturbative corrections (in λ) for other observables as the free energy of strongly correlated field theories (where other string methods have failed) [Gautason, VGMP, van Muiden 2023]
- We learn about gauge/gravity duality and strongly coupled field theories in less symmetric systems

Thanks!

Bonus track: Localisation in very simple terms

- Compute the integral $\quad I=\frac{1}{2} \int_{-\pi / 2}^{\pi / 2} e^{i s \sin \theta} \cos \theta d \theta=\frac{\sin t}{t}, \quad t \in \mathbb{R}$
- It can be computed by using the stationary phase approximation: at very large t only the two stationary points $\pm \frac{\pi}{2}$ contribute: the integrand "localises" at the north and south pole

- at leading order in $t: e^{ \pm i t}$
- looking at the fluctuations around the two saddle points, we recover the full exact answer for any t

Bonus track: Localisation

- Supersymmetry generated by $Q: Q$ (boson)=fermion and Q (fermion)=boson
- Our action S is invariant under Q-symmetries: $Q S=0, \quad Q^{2}=0$
- We have an observable W which is Q-exact: $W=Q O$ for some operator O, then*

$$
\langle W\rangle=\langle Q O\rangle=\int[\mathscr{D} X] Q O e^{-S[X]}=\int[\mathscr{D} X] Q\left(O e^{-S[X]}\right)=0
$$

- It behaves as a total derivative

Bonus track: Localisation

- We can deform the action by a Q-exact term: $S[X]+t S_{l o c}[X]$ where $S_{l o c}=Q V$ for some V
- The partition function is independent of $t \quad Z=\int[\mathscr{D} X] e^{-S[X]-t S_{l o c}[X]}$
- To evaluate Z we can use the same technique as before: as $t \rightarrow \infty$ only the stationary points matter: X_{0} such that $S_{l o c}\left[X_{0}\right]=0$ (before $X_{0}= \pm \pi / 2$)
- The classical contribution: $Z_{c l}=e^{-S\left[X_{0}\right]}$
- Expanding around the stationary points $X_{0}+t^{-1 / 2} \delta X$ and computing the path integral for the fluctuations δX gives a final result which is actually non-perturbative in t

Bonus track: Localisation

- This is the crucial point of localisation: the final result is exact in t (for us this is the coupling constant λ)
- Summary: the path integral is deformed by localising the action and the semi-classical approximation is exact (the integral localises at zeros of $S_{l o c}=Q V$
- The difficult part is computing V and then the path integral for δX

[^0]: *The vev for this WL is known also at any N and at any λ

