Running in 2011 -Luminosity

Mike Lamont Verena Kain

Presentations

Many thanks to all the speakers!

- Experiments' expectations
 - Massi Ferro-Luzzi
- Pushing the limits: beam
 - Elias Métral
- Pushing the limits: crossing angles, aperture and beta*
 - □ Werner Herr
- Luminosity analysis
 - Giulia Papotti
- Luminosity calibration
 - □ Simon White
- Heavy ions in 2011 and beyond
 - John Jowett
- Operational schedule 2011 & potential performance
 - Malika Meddahi

- Very nice explanation of impedances and single-beam instabilities
- Small lattice nonlinearities => 1 "detrimental" and 1 beneficial effect:
 - Landau octupoles are needed to stabilize the single-bunch instability from transverse impedance
 - The head-on beam-beam tune shift can be ~ 2 times larger than nominal

Electron cloud

- 2010 observations are certainly due to ~ 2 < SEY < ~ 2.5, whereas 1.7 was usually the max value studied in the past
- Miguel Jimenez: confident that rapid cleaning will be seen

Elias Métral

Bunch spacing	From Booster	Np/bunch	Emittance H&V [mm.mrad]	No. of bunches from SPS	
150	Single batch	1.1 x 10 ¹¹	< 2.5 (1.6)	1 – 4 x 12	
75	Single batch	1.2 x 10 ¹¹	2	1 – 4 x 24	
75	Double batch	1.2 x 10 ¹¹ (?)	1.2 (?)	1 – 4 x 24	
50	Single batch	1.45 x 10 ¹¹	3.5	1 – 4 x 36	
50	Double batch	1.2 x 10 ¹¹ (?)	1.5 (?)	1 – 4 x 36	
25	Double batch	1.15 x 10 ¹¹	3.6	1 – 4 x 72	

Note: delivered emittance depends on the bunch spacing and batch scheme

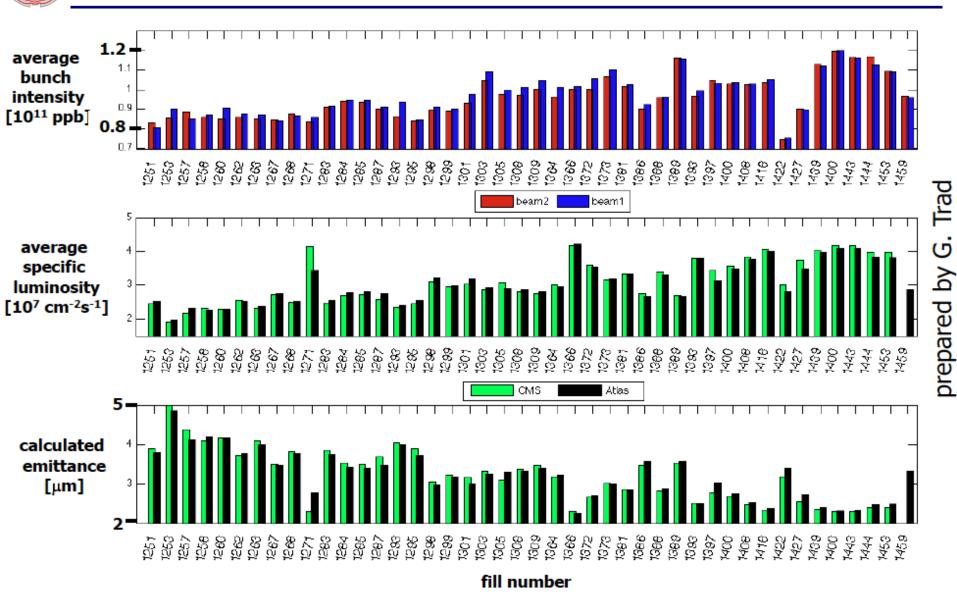
Chamonix - session 7 summary

4

IP1&5

ϵ_n	β^*	β^*	α	α
Energy	$(3.5 { m TeV})$	$(4.0 \mathrm{TeV})$	$(3.5 { m TeV})$	$(4.0 \mathrm{TeV})$
$1.5 \ \mu { m m}$	1.4 m	1.4 m	\pm 120 μ rad	\pm 120 $\mu { m rad}$
$2.0 \ \mu m$	$1.5 \mathrm{m}$	1.4 m	\pm 120 $\mu { m rad}$	\pm 120 $\mu { m rad}$
$2.5 \ \mu m$	1.6 m	$1.5 \mathrm{~m}$	\pm 120 $\mu { m rad}$	\pm 120 $\mu { m rad}$
$3.75 \ \mu m$	1.8 m	1.6 m	\pm 140 $\mu { m rad}$	\pm 140 $\mu { m rad}$

beta^{*} = 10 m in IP2 beta^{*} = 3 m in IP8


Werner Herr

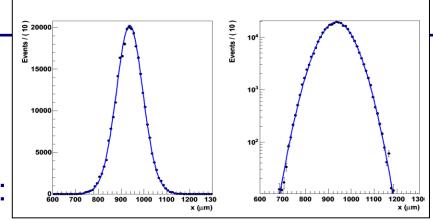
Chamonix - session 7 summary

- Small emittance important for overall performance
 - □ Allows lower beta* with moderate crossing angle
 - □ Allows more flexibility for LHCb spectrometer
 - Allows full field for LHCb spectrometer (at all times and configurations)
 - Werner's recommendation: rather give up on higher intensity than on small emittance
- Should find the head-on beam-beam limit early
 - □ will tell us the good parameter range
- Luminosity leveling in LHCb must be tested

Luminosity analysis: statistics across fills

Chamonix - session 7 summary

Giulia Papotti



Excellent single beam before collisions ~200 - 300 hours

With colliding beams:

- Luminosity lifetime ~15 20 hours
 Reasonably well given by emittance growth and intensity decay
 Minimal drifts in overlap beams very stable
- Intensity lifetime ~90 hours
 Luminosity burn, losses on collimators
- Emittance growth (x ~ 30 hours, y ~ 20 to 40 hours)
 - Intra Beam Scattering
 - □ and something else at least sometimes "the hump"

Giulia Papotti

- Very well motivated!
- Machine parameters methods:
 - Very successful first experience, Expect to reach 5% accuracy for 2010, aim for <5% in 2011
- Special fills: 2 requested, conditions to be discussed, try to reduce setup time
- Developments & beam studies: a lot on the list, set priorities
- Hardware: lots of efforts already done and very much appreciated. Beam intensity measurements still limits the precision: set priority on the Bunch Current Transformers and Longitudinal Density Monitors

High beta* experiments

- Forward detectors at CMS (TOTEM) and ATLAS (ALFA) interaction points will provide independent luminosity calibration based on optical theorem
- TOTEM is commissioned and ready for physics at 90 m
- ALFA expects to be ready for summer
- 90 m. optics are ready for commissioning, operational challenges very different from squeezed optics:
 - □ start commissioning as soon as possible (~5 shifts)
- Physics with 90 m.:
 - 4 fills, expect to reach 3% accuracy on the cross section (TOTEM)

10

lons – conclusions

- The 2010 Pb-Pb run showed that the LHC can work well with heavy ions
- Beam physics is complex!
 - □ Needs more resources for study, analysis of data
- Substantial factor in luminosity possible for 2011
 - Options for filling etc, will be clarified in injector commissioning, experiments are flexible
- 2012 appears to be a good opportunity for p-Pb
 - □ Otherwise it will be a long time ... interesting energy
 - Feasibility test in MD can be tried in 2011. If this realistically is to be considered for a run – a lot of effort needs to be made this year
- Upgrades critical to sustain performance ramp-up
 - Installation of DS collimators in IR2 should not be allowed to slip too far into the future

John Jowett

Luminosity factors with respect to 2010
 3.5/1.5 from beta*
 2 to 2.5 from bunch number and intensity

L = 1 to 1.4 x 10²⁶ cm⁻²s⁻¹

Integrated luminosity: 30 to 50 \square b⁻¹ to each of IP1, IP2 and IP5

John Jowett

Motivation is clear!

fast, secure and far-reaching!

- 1 fb⁻¹ delivered to each of IP1, IP5 and IP8 at 3.5 TeV
 Can probably do better for IP1 and IP5
- It will be a challenge to deliver 1 fb⁻¹ to IP8
 - □ Maximum luminosity : from 2e32 to 3e32
 - □ Luminosity leveling via separation required to get close
- Alice
 - □ pp run: 5e29 < L < 5e30, $\mu < 0.05$

Massimiliano Ferro-Luzzi

Intermediate energy

- □ Beam energy 1.38 TeV
- □ 24b equalitarian scheme; 16 collisions at each IP => 200kJ
- □ 3 shifts to commission; 4 days running at 50 M events to tape
- Run was recommended by LHCC and endorsed by RB
- beta* = 90m runs
 - □ beta* = 90 m IP1/5 (10m IP2/8)
 - □ Setup time (MD): 5 shifts including RP beam-based alignment
- Luminosity calibration runs
- Totem & Alpha
 - Set-up & special runs

Massimiliano Ferro-Luzzi

Assumed beam parameters for Physics

Beam parameters	
Energy	3.5 TeV
β* : IP1 – 5 – 2 – 8	1.5 – 1.5 – 10 – 3 m for 2.5 μm
Separation (Injection)	± 2 mm
Separation (Physics)	± 0.7 mm (reduction during the ramp)
B1 ½ external crossing angles (Inj.)	±170 μrad (all IPs)
B1 ¹ ⁄ ₂ external crossing angles (Phys.)	+120 μrad (IP1&5); ± 80 μrad (IP2); - 235 μrad (IP8)

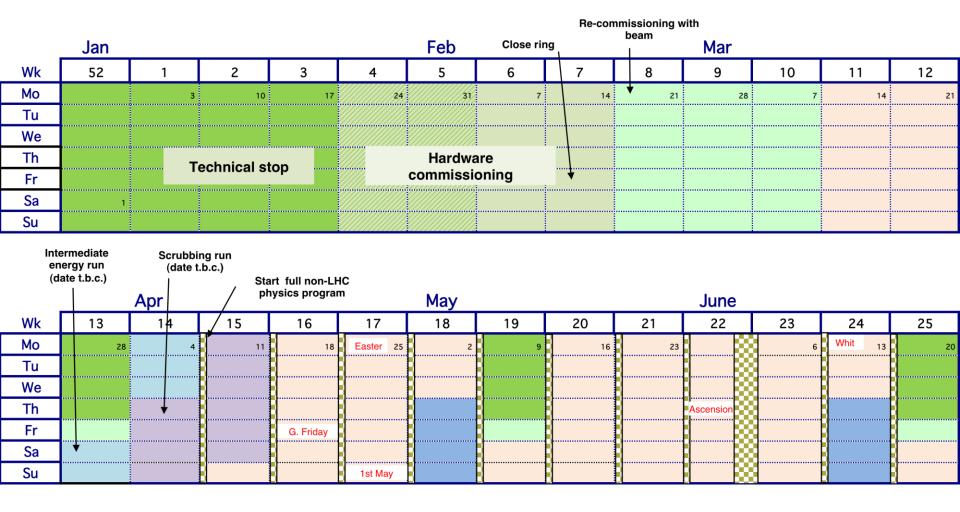
Beam parameters	150 ns	75 ns	50 ns
Bunch intensity [e11 p/b]	1.2	1.2	1.2
Normalised Emittance [µm]	2.5	2.5	2.5
Colliding bunches	368*	936	1404

Malika Meddahi

2011 - Days for Luminosity operation

PHASE	Days
Total proton operation	264
5 MDs (4 days)	- 20
6 TS (4+1 days)	- 30
Special physics runs	- 10
Commissioning	- 20 to -30
Intensity ramp up	- 30 to -40
Scrubbing run	- 10
Total at around peak intensity	125 to 145

Malika Meddahi



- Beam commissioning: 3 4 weeks
 Exit stable beams with low number of bunches
- Ramp-up to ~200 bunches (75 ns): 2 weeks
 Multi-bunch injection commissioning continued
 - □ Stable beams
- Technical Stop 4+1 days
- [Intermediate energy run 5 days]
- Scrubbing run: 10 days including 50 ns injection comm.
- Resume 75 ns operation and increase no. bunches: 3 weeks

 $\hfill\square$ 300 – 400 – 600 – 800 – 930 - MPS and OP qualification

Physics operation 75 ns: ~930 bunches

Possible 2011 LHC schedule QQ1/Q2

Estimated Peak and Integrated Luminosity

Energy		3.5 TeV			
Beta*		1.5 m			
Bunch space	cing	75 ns			
Bunch inter	nsity	1.2 x 10 ¹¹			
Stored bear	Stored beam energy			75 MJ	
Days at pea	Days at peak luminosity			135	
Hübner factor			0.2		
Hübner fact	tor			0.2	
Hübner fact Emittance [mm.mrad]	or Beam-beam parameter	Lum	Peak hinosity h ⁻² s ⁻¹]	0.2 Integrated Luminosity [fb ⁻¹]	
Emittance	Beam-beam	Lum [cn	inosity	Integrated Luminosity	
Emittance [mm.mrad]	Beam-beam parameter	Lum [cn 1.3	n ⁻² s ⁻¹]	Integrated Luminosity [fb ⁻¹]	

Malika Meddahi

Chamonix - session 7 summary

150 ns: ~1.9 fb⁻¹ 50 ns: ~2.8 fb⁻¹

Conclusions

- Good understanding of instabilities, electron cloud and why the LHC needs octupoles
- Beam from injectors in good shape
 - some characteristics to be established
- Minimum beta* 1.5 m in 1 & 5
- Excellent progress in luminosity calibration
 work in progress, BE-BI working hard on BCT improvements
- Physics goals for 2011 clearly defined...
- Luminosity of 10³³ cm⁻² s⁻¹ could be within reach with 75 ns beams, beta* = 1.5 m and emittances supplied by injectors
- 1 to 3 fb⁻¹ looks achievable in 2011
 - Remembering the incoming challenges: stored beam energy, UFOs, e-cloud, R2E...