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I’ll assume you all know that ...

@ The relativistic version of Quantum Mechanics is Quantum
Field Theory (non-conservation of the particle number in

reactions)

e QFT’s are completely determined by symmetry properties
(hinted by experiments)

e Gauge invariance plays a special role.

... but I’ll be happy to answer questions!
bldg. 4 room 2-050, phone 72447
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Lay-out:

. The standard model: A model of leptons* (and hadrons)

Spontaneous breaking of the gauge symmetry

. Explicit breaking of accidental symmetries

. Are we happy? Experimental tests and future prospects

aThe title of S. Weinberg’s paper, PRL 19 (1967) 1264.



1. Construction of the standard model

e Phenomenological input: § and i decays, parity violation,

production and decays of strange particles.

e Theoretical constraints: unitarity and perturbative

renormalizability.

Our attitude towards renormalizability has changed in time ...



The idea of interpreting the Fermi four-fermion interaction vertex
as originated by vector boson exchange dates back to Fermi
himself.

There is only one way to build a unitary and renormalizable field

theory of vectors: a gauge theory.

An endless list of experimental confirmations of this fact. The

most striking one: universality of couplings.



The gauge symmetry suggested by early data (and later
confirmed) is based on the invariance group

SUR2)r®U(1)y
which requires four gauge vector bosons:

Wia=1,2,3 for SU(2)r
B'u for U(l)y

Vector boson dynamics is governed by the usual Yang-Mills

action
1
v
EYang—Mills — _Z /LI/FILL

which contains cubic and quartic interaction vertices.



Next, one must associate fermion matter fields to representations

of the gauge group.

Six flavours of quarks:

Three charged leptons:

and three neutrinos:

(I’m making a long story VERY short!)



Data are consistent with the following scheme:

i - Vi |
Qr=1{ up dp Lp=1 R
d X
L L
Vi vy s V4 vy
A family structure emerges:
W,
The index i labels fermion generations: i =1,...,3 (as far as we

know).

The index r labels group representations



Comments:

e Fermion fields with different chiralities transform differently:

v g=y

L4

V= —

Parity is not conserved by weak interacions.

e Left-handed quarks ); and leptons L; transform as SU(2)
doublets (r =1 and r = 4), right-handed fermions as SU(2)
singlets (r = 2,3,5). No right-handed fermion participate in

charged-current interactions.

e Different representations have different values of the

hypercharge quantum number (more on this later).

e neutrinos are massless: no right-handed neutrinos around.

Much more on this later.



A unique gauge-invariant lagrangian density can now be written:

N 5
Lsn = Lyang—Mills + Z Z WL iDL
1=1 r=1
with
o Y,
DI =0t —igT"Wl — g ?B“
,7_0,

T = 5 for SU(2) doublets (r =1,4)

T

T* =0 for SU(2) singlets (r=2,3,5)
e Hypercharge values undetermined so far

e Axial anomaly cancelled if n, = ny = N (a prediction of the

standard model.)



The interaction lagrangian density includes a charged-current

term which can be written as
L.. = \/ii [ZL’YMT+LL WJ —I—ZL”)/’U’T_LL Wu_
+ QT QLW + QT QLW |
with the definitions
1

. 1 .
Wf = E(Wﬁ $2W3); 7+ = 5(7'1 + i7y)

This interaction term accounts for all processes described by the

Fermi theory. For example

9 _ — g _ _
ECC = —U K 1 - dW —I_ —€ H 1 - I/e W —I_ o o e
2\/5 Y ( ’75) 7 2\/5 Y ( ’Y5) 0



Electro-weak unification

The neutral-current interaction term is

_ _ Y
&w=g¢7¢&¢wﬁ“+d¢%f§¢3“

where

T3 = (13),
(T3), = ;—3 for doublets (r =1,4)
(T3), =0 for singlets (r = 2,3,5)
Y=Y, (r=1,...,5)



Reparametrization of the neutral sector:

W = A" sin Oy + Z* cos Oy

B = A¥ cosOy — Z" sin Oy

(an orthogonal transformation, in order to keep kinetic terms

diagonal in the vector fields).

_ Y
Lrne = Yy, gSineng—Fg/COS@WE v AH

- Y
+ Yy, gcos@WTg—g'sinQWE W ZH

We may identify A, with the photon field provided

Y
e = gsin Oy T; +g’cos<9W§



Choosing ¢ and ¢’ so that
gsinby = g’ cosby = e

we obtain

Y
Q=15+ —
2
for all fermions:
2 1 1
Y p— —_ — — = —
(ur) (3 2)
1 1
Y o 2 —_— — =
(dp) ( 3 + 2)



[Alternatively: choose e.g. Y = —1 for the lepton doublets, and

solve
—|—%gsin6’w — %g’ cosOy =0

—1gsinfy — 3¢  cosOy = —e

with respect to ¢gsinfy, ¢ cosOy,. You get gsinfy = ¢’ cosOy = e,
and @Q = T5 + Y/2 follows.]



The value of sinfy can only be extracted from the observation of
weak neutral-current phenomena, induced by interactions with
the Z° boson:

»Cnc — 677; Y Q ¢ AF

C?S@W T - sin Oy Z » 7
sin Oy cos Oy 2

+ GQE Y
Historical example: neutral-current deep inelastic scattering.

NC: v,+H—-v,+X
CC: v, +H—pu +X

P aéNC) — O',(/NC) N 1 — 2sin? O
O_l(jCC) B O',(/CC) T 2




The most precise determinations of sin 6y, come from

forward-backward asymmetries measured in eTe™ collisions:

App(f) = o087 = £5) = fopspq dotete” — 1)

o(ete — ff)

where f is any charged fermion. Present result:
sin” fy = 0.23116(13)

It follows that ¢, ¢’ are of the same order of magnitude as e.



Not yet a realistic theory

e The gauge symmetry must be (spontaneously) broken,
SU2)L @U(1)y = U(1)em

because weak vector bosons are observed to be massive (short

range of weak interactions).

e The fermionic sector has a large global symmetry which is not

observed. An explicit breaking
UN)] —-U1)peU1).2U(1),2U(1),

or

UN)P - UMpeU1)L

i1s needed.



Addendum n. 1

1 v 1 a v
£Yang—1\/[ills — _ZB;U/BM — ZWILLI/WG/:L

B" = 9"B¥ — 8 B"
W,L-MV = 8“Wi’/ — 8VW,L-M -+ geijka’W,Z

The corresponding expressions in terms of W:E, Z,, and A, can be

easily worked out:

1
1 —
9 1 + —
WM_E(WM _Wu)

Wif = A, sinfy + Z,, cos Oy

B, = A, costw — Z, sin Ow



1 L
7 [W;,/ +ig sin Oy (WA, — W A,)

+ ig cosbw (W, Z, — W, Z,)| +h.c.
?

7 Wi, +ig sinbw (WA, — WA,

+ ig cosOw (W Z, — WS Z,)| +h.c.
F,,sinOy + 2, cos by — ig(WJW; — W/;Wj)

FH = grAY — 9” A
Zm = 9hzY — 9 7
W = WY — oW



It follows that

1 1 1 ,,
»CYang—Mills — _Z ,LWF'MV — ZZ/,WZMV — §WJ,/W£L

+igsin Oy (W, WEAY — W, WHAY + F,, WEWY)
+igcos Ow (WL WHEZY — W WEZY + Z,, WEW?)
2

g 1% (o2 Vo o UV 1 — —
+5 (29"9" = g""g"7 = g"7g"") | W WIW W

—W;Wu_ (A,A, sin? Oy + Z,Z s cos? Oy + 2A,Z, sin Oy cos Oy )



Addendum n. 2

Why did I say that

N

5
Lsn = Lyang—Mills + Z Z s/

has a global [U(N)]® invariance?
For each »r =1,...,5 consider the transformation
N
Yi = U]
j=1
where U" is a constant unitary N x N matrix. This
transformation leaves Lg); unchanged. There are 5 symmetries of

this kind, one for each representation r. The full global symmetry

is therefore [U(V)]°, as announced.



2. Spontaneous breaking of the gauge symmetry

A simple argument shows that the W boson must be massive.

The amplitude for 5 decay in the Fermi theory is given by

In the standard model, the same process is induced by the

exchange of a W boson:

g _ 1 g _
MM = “d ‘
(ﬁ“” ) 0 — miy (ﬂ” )




We have
¢° < (mn —mp)* ~ (1.3 MeV)?

Hence, the two amplitudes coincide in the limit m3, > ¢* if

Gr _ (g) 1
V2 o \2v2/) miy
A lower bound on the W mass can be set: since

€

sin Oy

we obtain

2 \/592 \/562
Gr 8 Gr 8

quite a large value, compared to the nucleon mass, and an

(40 GeV)?

enormous number, compared to the present upper bound on the

photon mass
m, <2-107%eV.



Breaking gauge invariance explicitly with a mass term

1
m%VW;W_“ + imQZZMZ“

leads to a non-renormalizable and non-unitary theory.

The gauge symmetry of the standard model must be
spontaneously broken, in order to introduce masses for the W and

Z vector bosons without spoiling unitarity and renormalizability.



A flavour of the argument: a mass term inserted by hand

(explicit breaking) leads to a massive gauge boson propagator

' R
12 _ 2 (_gu + 2 )

For large k, the term proportional to £#k¥ dominates, and

A (k) =

A(k) ~ k° rather than k~?: the behaviour of this propagator at
large k is much worse than that of the scalar propagator. This
suggests a worse UV behaviour of the Feynman integrals, which

leads to a non-renormalizable theory.



A related problem: unitarity of the scattering matrix. The
amplitude for a generic physical process with the emission or the
absorption of a vector boson with four-momentum £ and

polarization vector ¢(k) has the form
M = Mte, (k).

A massive vector (contrary to a massless one) may be polarized
longitudinally. In this case, choosing the z axis along the
direction of the 3-momentum of the vector boson, the

polarization is given by

[ K] k m?
6L<m00m m—|—0 E2 y

(recall that the transversity condition k- € =0 and the

normalization € = —1.)

The amplitude M grows indefinitely with the energy FE, and
eventually violates the unitarity bound.



Both sources of power-counting violation are rendered harmless if

the vector particles are coupled to conserved currents, so that
ErM, =0

Gauge invariance provides such conservation relations.



Spontaneous symmetry breaking is not really a way of breaking a
symmetry: rather, it is a different realization of the symmetry
itself.

More precisely, SSB takes place whenever the ground state is not
invariant under symmetry transformations. As a consequence,
the lagrangian density is symmetric, but the spectrum of physical

states i1s not.

The prototype: ferromagnetism.



In quantum field theory, SSB takes place when some operator
with non-trivial transformation properties under the gauge group

has non-vanishing vacuum expectation value:

(0l¢;10) = v; # 0

Easy to prove: after an infinitesimal transformation

Qi — ¢i + 10" 105 = ¢ + 10 [Q7, ¢

t:;(01¢;10) = (01 [Q", #:]|0) # 0 < Q*|0) # 0
which is the condition for spontaneous symmetry breaking, i.e.

non-invariance of the vacuum state.



Observations:

e (0|¢;|0) is a constant if the vacuum is invariant under

translations:

(0]s(x)]0) = (0]e""*¢;(0)e~*""*|0) = (0]¢;(0)|0)

e ¢» must be a scalar, otherwise its vacuum expectation value is

frame-dependent.

® ¢ is not necessarily an elementary field



The simplest realization: the Higgs mechanism

N 5
ESM — EYang—Mills =+ Z Z ZEZ: Z;Dr wqin_FEHiggs
1=1 r=1
»CHiggs — (Du¢)TDM¢ _ m2 ‘¢|2 — A |¢‘4
The simplest among simplest: ¢ is an SU(2); doublet:

Dyé = 9, — W“ agp — iy(,5 B,¢

If m? < 0 the scalar potential has a minimum at

2
V. _ . m 2

(0]9]0) = NG



The value of the hypercharge Y, is dictated by the requirement
that Uy, (1) remains unbroken:

eV =V

or
QV:%(TB—I—Y)VZO & Yo+1)(Y,—1)=0

where Y =Y, ;. Two solutions:

0 v
Ypy=1, V= Yy=-1, V=
v 0

We choose Y, = 1, so that



The |D¢|* term contains a term

1 1

a 2 i i
Logvv = Z(QQWC’;‘WM +9 " B"B,)¢ ¢ + 599’B“WM¢TT ¢
— 1 2 Z(WMW1+Wﬂw2)_'_1 Z(W,u B,u) 92
99
_|_
Mass terms for the I and the Z appear:
2_122 2_1(2+/2)2 2 _
my =9V mz =3 g )v mZ =




2

The value of the order parameter v is obtained from matching

with the Fermi theory of 3 decay: from
Gr _ 9 L 5 5

_ . o 1
V2 8mZ,’ w9l

we get

v=(V2Gr) Y2 ~ (247 GeV)?
where we have used the measured value Gr ~ 1.1 x 1075 GeV 2.

Weak interactions have a characteristic energy scale of the order
of a few hundred GeV.



Three of the four scalar degrees of freedom in ¢ are unphysical:

they can be eliminated from the spectrum by a gauge choice.

An easy (but slightly deceptive) way to see it: parametrize ¢ by

g Lo L

V2 v+ H(x) V2 v+ H(x)

after a suitable gauge transformation. The massive gauge boson

propagators take the form

' EHEY

L2 _ 2 m2

It looks like we are in troubles again with renormalization!



This is not true: we are working with a renormalizable theory, so
renormalizability must arise in calculations, even though it is not
manifest (the propagator does not respect the usual

power-counting rule).

This is called the unitary gauge: unitarity is manifest, in the
sense that unphysical degrees of freedom are removed from the

spectrum, but manifest renormalizability is lost.

Useful in tree-level calculation.



When loop corrections become relevant, it is advisable to adopt a
renormalizable gauge. The starting point is a linear
parametrization of the scalar field:

¢® = @1 + P,

by — s 0 by — s Gi(x) + iGa(x)
RZAR V2 H@) +iGs(2)

A convenient gauge-fixing term (suggested by ’t Hooft) is

Lor = L "W — fffi(ﬁb)]Q - %

T 0" By — £ (9)]°

with

Fi(@) = Lioirion —alrie))  f(0) = L (olon — slo)



Two main advantages:

e No mixing between vector fields and derivative of the scalar
field

e Manifest renormalizability:

’ _g,ul/ (1 B f)kukl/
k2 — m?2 k2 £m2

ALY (k) =

(the unitary gauge is recovered in the limit £ — o).

Draw-back: the unphysical scalars GG, G5, G3 are in the game.
They cannot appear as asymptotic states (external lines in
Feynman diagrams), and their contributions as internal lines is

cancelled by the unphysical singularity in the vector boson

propagators (not easy to prove).



Physical interpretation: massless vector bosons have two physical
degrees of freedom: the two helicity states (no longitudinal

polarization).

After SSB, vector bosons become massive: the longitudinal
modes are provided by the three would-be Goldstone bosons,

which disappear from the spectrum.

The existence of longitudinally polarized W and Z is the most

striking evidence of spontaneous gauge symmetry breaking.



The scalar potential simplifies considerably in the unitary gauge:

Vig) = m?o]>+ Aol
2

A
= 5 (0 H)? 4 (ot B

1 A
= H(m?v+ \°) + 5[-12(777,2 + 3\v?) + v H? + ZH4

Since m? = —\v?, the linear term vanishes, and the quadratic term
has a coefficient

1

—2\v?

2

and can be interpreted as a true mass term for the scalar field H.



What do we know about the Higgs boson mass?

e At tree level, m?%, = 2\v?. We do not know the value of )\, but
v? is fixed, so if ) is in the perturbative domain, m; must be
something similar to my,mz. In any case, it grows with .

e An upper bound of about ~ 1 TeV on my comes from
unitarity considerations (perturbative unitarity of
WiWr — Wi Wy, similar to the upper bound on my, in the
Fermi theory).



The quartic running coupling A\(;1) becomes negative for u large

enough; then, at some large values of ;1 it has a Landau pole:

0.3 | I I | I I | I I | I I |

m, = 174.3 GeV

- my=115, 130, 150 GeV -
0.2 —

A(u)

_0.1 | | | | | | | | | | | | |

p (GeV)



One lesson:

The standard model can not be valid up to arbitrarily large

energy scales: it can only work up to some energy scale A
and two consequences:

e since m% ~ —2m? ~ 2)\(v)v?, the smaller my, the smaller A.

e On the other hand, the larger my the larger A\(v): if we insist

on )\ being in the perturbative domain, an upper bound on

mpy is generated.



400 | I “ I | I I | I I | I I | |
i . triviality upper bound on my (GeV) ]
300 — solid: A < 1 for uw < A —
) .. dotted: A < 10 for u < A ]
200 — _
ol - T T T T _
N - - - )
V4 g P ~ dashed: stability lower bound .
ke dot—dashed: metastability lower bound |

- | | | | | | | | | | | | |

0
103 108 109 1012 1019
A (GeV)

The lower stability bound increases with my,.



Global fit to precision

data.

The minimum shifts to

larger values of my as myo, o

becomes larger.

A precise determination of

Miop 1S very important

this respect.

in

6 July 2010 m . = 158 GeV

| (6) _ i
5 | Aahad a ]

— 0.02758+0.00035

i ---- 0.02749+0.00012 7
4 - + incl. low Q° data —
3 —
2 —
1 - _
0 Excluded .. /#  Preliminary

1 1 1 1 1 1 _l 1
30 100

300



Indications that the SM Higgs mass is something between 100
and 200 GeV are definitely quite strong.

Very difficult to build extensions of the standard model in which
the effects of a heavier Higgs are compensated by some kind of

new physics.

Warning: the global SM fit is not particularly good [P(x?) ~ 25%)].
Lepton asymmetries and my, favour values of my below the
exclusion limit ~ 114 GeV; hadron (especially b) asymmetries
prefer much higher values of my.



Forward-Backward Pole Asymmetry

A0,£||
0.0173 £ 0.0016

e 0.0187 = 0.0019
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1
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1
1
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1
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1
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1
1
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1
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1
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0
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Mass of the W Boson (preliminary)

Experiment
ALEPH
DELPHI
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LEP

e B
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M, [GeV]
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The possibility of a strongly interacting Higgs

Since
2
_imy
2 2

a large value of my corresponds to a large value of )\, eventually

A

outside the perturbative domain. What should we expect if this

is the case?

A first consequence:

3
3 my

3272 2

for my ~ 1.4 TeV. No longer a narrow resonance.

lg_vv = ~ My

Also, unitarity is violated at tree level in V;V} scattering for mpy
above 1 TeV.



A question arises:

Does a large value of \ generate large radiative corrections on
observables?

The answer is no: the typical example is the ratio

9
B msy
p= m2 cos2 6
A %%

which is 1 at tree level, and receives a one-loop correction

11g° 2 my
— tan” Oy log —+
4873 mé,

Ap =

which grows only logarithmically with m?.

This arises from a symmetry property of the scalar potential,

called the custodial symmetry.



A different way to state the problem: after the inclusion of

radiative corrections,
L, 1H 11,1 by Lot pu
Linass = §mW(W W,+W WM)+§(W3 B*)

with M2 = MM", M? + M"? = m?%. Hence

3 2
m2 — M
tan Oy = \/ Z .
W M
and
my, My

p= =
m?%, cos? Oy M?’

that is, p = 1 only if M? = m3,.

M2
M'?

M'?
M//2

Wi,
BM



The reason is that the scalar potential posesses an O(4) invariance,
larger than the gauge symmetry. Indeed, the scalar field

3 0

can be shown to be an SU(2), doublet with Y; = —1. Hence the

matrix

—¢~ @

transforms as
' a4 a
H(x) — exp [57‘ o) (a:)] H(x)

H@yeﬂ@mwlfgm@mr

under gauge transformations.



The scalar potential can be written

va:%m%ﬁUﬂH)+iADkwﬂHﬂ2

which is invariant under the SU(2); x SUr(2) transformations
H — URV'

where V € SU(2).

We also have

(Du0) Do = ST [(D, M) DPH]

with

9 a a ig’
D,H =0, H — EWMT H + 7BMH7'3



Clearly
D,H — (UDUNYUHVT)

1 — ig'
= U@OH— S Wir )V + - BUHV

# U(D/H)VT

because of the last term.

The full lagrangian has a custodial symmetry only for ¢’ = 0.



Due to spontaneous breaking of SU(2);, the vacuum expectation

value

v |10
0[H|0) = —=
<|Hﬂo1

is not O(4) invariant. However, there is a residual O(3) ~ SU(2)

symmetry

H — UHUT

that leave the vacuum expectation value unchanged. The only

mass term for the le fields allowed by this residual symmetry is

2
w

proportional to W.W/, which in turn implies M* =m;, and p = 1.

7 2



If the Higgs boson is too heavy to be produced directly, the study
of longitudinal gauge bosons can be useful.

Scattering amplitudes can be computed in the standard way, but
it proves easier and more instructive to use the so called

equivalence theorem:

Scattering amplitudes for longitudinal vector bosons are equal to
the corresponding amplitudes for would-be goldstone bosons, up
to corrections of order my /E:

MW Wi Z, ) = MGG, Gy, .. )+ O (mfw)

We can build an effective theory, which describes correctly the
dynamics of longitudinal vector bosons (i.e. Goldstone bosons G;)

in the range of intermediate energies my < £ < my.



[A simple proof of the equivalence theorem is based on the use of

the ’t Hooft gauge-fixing term.]

In this regime, the dynamics of (Goldstone bosons is governed by
the scalar potential. By analogy with chiral effective theories in
the strong interactions, we may find a nonlinear realization of the
custodial symmetry, such that the Goldstone fields are removed
from the scalar potential, and take up only derivative couplings

among themselves.



This can be done as follows. Since

o 0
2ty — P'o
0 ¢'¢
we may parametrize H as |¢| times a unitary matrix >:
H ' a a
T +ﬂ(:€)z(:€); 5 — exp [’LG EJZC)T ]
so that . .
V(g) = 5m® Tr (HIH) + 7 [Tr (HIH)]”

does not contain the fields G,(z) any more.



The effective lagrangian for Goldstone bosons is therefore

2
v
L= Tr (D,%)"DHy)]

up to terms involving the Higgs field H(x), which we neglect by
the assumption that my is so large that it does not enter the

low-energy dynamics of (Goldstone bosons.

Goldstone bosons couplings are now purely derivative:

amplitudes are computed as expansions in powers of momenta.



3. Breaking of accidental symmetries

Consider n, = ny = 1 for simplicity. Then

5
['SM — ['Yang—l\/[ills =+ Z QET lefr wr_'_['Higgs

r=1

has a [U(1)]° global invariance:

Yy — €7 4,

The corresponding conserved currents are

J/J«

urpylur + dpyPtdy
upY"upr
dry"dR
vpytvp +epyter

erY"er

Jy = Zi:1 %Jﬁ
J) = Jy + JE = oyt + eyte

Joy = J§ — Ji = 0ytysv + eytase

Ty = 51+ JY + J) = 5(ay u + dytd)

Jig = J5 4+ J§ — JI' = aytysu + dytysd.



Conserved charges:

Y local symmetry
N — Nj OK
Np — Nz OK

Np + Ny not observed
Np + Nj not observed

With N families, the symmetry is much larger: generation

mixings also allowed,
v = U2l UlU =1

A global [U(N)]°> symmetry which is not present in observed

phenomena. This is called an accidental symmetry.



Accidental symmetries are an accidental consequence of gauge
invariance and renormalizability. For example, fermion mass

terms would break accidental symmetries explicitly:

—mypp = —m(YrYL + YrLYR)

but they are forbidden by gauge invariance.



Accidental symmetries can be broken (while preserving gauge
invariance) by fermion couplings to ¢:

5
[fSM »CYang Mills 1 Z Z ZD 77b +£H1ggs+£Yukawa

i _ i uy, , i g, i _ i . v , i _ i
Y1 = QL = Ji ;  Yg =upR; Y3 =dg; ¢4— L= /i N
L L

ﬁYukawa:_Qihgu%$_éghzjd%{¢_zz Z]ﬁ? ¢+hc

Pt 1 0 . oy 1 [ v+ H(z)

= - — 6= - —

A0 V2 \ v+ H(z) —¢~ V2 0



® Lvukawa 1S allowed by Lorentz invariance, gauge symmetry and

renormalizability.

e Each term in Lyv,w. breaks part of the accidental symmetry
explicitly; for example, the first term is not invariant under
independent U(N) rotation of right-handed up quarks and
left-handed quark doublets

QLHUQL; uR—>VuR
(although still invariant under the subgroup U =1V).

e Important remark: For the same reason, removing one or
more term from Ly, k.wa increases the symmetry of the theory.
Yukawa couplings are protected from receiving large radiative

corrections.



In matrix notation

Lyvakawa = —Qr huurd — QL hgdr ¢ — L hylr ¢ + h.c.

h.,hq, hy are generic complex N x N matrices.

A theorem in linear algebra: Any generic complex squared

matrix h can be diagonalized by a bi-unitary transformation
h=U"hV

where U,V are unitary matrices, and h is diagonal with real

positive entries.

Thus, for example, we may redefine the lepton fields by
LL%ULL; KR%VKR

with U,V such that
he=U"hV

is diagonal with real and positive entries.



The theory is otherwise unaffected, because this operation leaves

the rest of Lg); unchanged. Hence, in the leptonic sector,

. 1 _ .
L = —Lphelré+he — —ﬁ& helgr (v+ H) +h.c.
_ _ _ H -~ s
= —meee —myfijt —m, 7T — —=(heee + hyfipn + h7TT)
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. h
e Lepton masses m;, = \g are generated

e The original global symmetry is broken, but a residual [U(1)]

invariance
Ei N eiai 67,
is still present. This symmetry corresponds to the

conservation of individual (e, i, 7) leptonic numbers.



The same argument does not apply to the hadron sector:
L o =—Qrhyur ¢ —Qrhadr é +h.c.
We may transform the quark fields
urp, — Urup; dp — Vpdrp; ur — Urpugr; ur — VeRug
with Uy g, V7 r chosen so that

hy = Ul hy Ug; hag =V hq Vg

are diagonal, but this is not a symmetry for the rest of the

Lagrangian.



Only one term is affected by such a rotation: the charged-current

interaction term in the hadron sector

L. = " d W+ dp v ur W, |

Qe e

ur, Y (U}JVL)CZL W;—I—CZL’}/M (VgUL)UL WM_}
The matrix
V=UV;

is a unitary N x N matrix, usually called the

Cabibbo-Kobayashi-Maskawa matrix.



With the Yukawa couplings in diagonal form we have

‘C%l(?ﬁ(gwa — _QL ilu ”UJRQ;— QL iLd dRq5—|—hC
1 ~ A
- _E(U_FH) [ﬂL h,ur +dy, hddR} + h.c.

e Quark mass terms appear:

A

1 1.4
ht v - hdv

i:u mb —
U \/§ d \/§

e The original global symmetry is lost; the residual symmetry is

now a U(1l) symmetry
(YOI )

uy — e ur; d; — e T up — €% up; dp — e dp

with a common phase o for all flavours, because of the CKM

mixing matrix. Baryon number conservation.



The entries of the CKM matrix are fundamental parameters of

the theory: they must be extracted from experiments.

How many independent numbers does VV contain? A generic

N x N unitary matrix depends on N? independent real
parameters. Some (/N4) of them can be thought of as rotation
angles in the N-dimensional space of generations, and they are as

many as the coordinate planes in N dimensions:

N 1
Ny = =—-N (N —-1).
2 2



The remaining
. 1
Np =N?—- Ny = 5N(N+1)

parameters are complex phases. Some can be removed by a
redefinition of left-handed quarks:

f iy |, g iBg 9
up — e uyp; d; — e"”9d}

hadr
L

which leaves all terms inLgy; unchanged except , and

therefore amount to a redefinition of the CKM matrix:

Vig — et (Bg—ay) Vig

The 2N constants oy, 3, can be chosen so that 2NV — 1 phases are

eliminated from the matrix V, since there are 2n — 1 independent

differences , — ay. The number of really independent complex

phases in V is therefore

Np:Np—(zN—n:%(N—n(N—z)



To summarize, the total number of independent parameters in
the CKM matrix is

Na+ Np = (N —1)% Np:%(N—l)(N—Q)

Comments:

e with N =1 or N =2 the CKM matrix can be made real. In
particular, for N = 2 it is fixed by one rotation angle, the
Cabibbo angle.

e The first case with non-trivial phases is N = 3, which
corresponds to Np = 1.

e The presence of complex coupling constants implies violation
of the CP symmetry.



Much effort devoted to investigations in the flavour sector. A
subject of special interest: CP violation in B systems and the

unitarity relation

VudVJb + VchSZ) + V;dV;g =0
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Very nice:
e Fermion masses generated

e All global symmetries broken except global baryon number

and individual lepton numbers (no right-handed neutrinos)

e FCNC effects suppressed (flavour mixing confined in the

charged-current sector)
e CP violated for N > 3

Not easy to achieve the same result in different contexts.



(Slightly) beyond the Standard Model: neutrino masses

In the standard model, neutrinos are massless. With good

reasons: the experimental upper bounds on neutrino masses are
m,, < 3eV; my, < 0.19 MeV; m,_ < 18.2 MeV,

so m, < my, and m, = 0 is an excellent approximation.

However: non-zero neutrino masses are now a solid experimental
evidence, thus we must ask how to modify the standard model in

order to keep this evidence into account.



Standard neutrinos are massless because right-handed neutrinos
do not exist (more precisely, they transform trivially under the
gauge group, and therefore undergo no interaction: they are

sterile objects).

Let us now assume right-handed neutrinos do exist (only one

generation, for simplicity) with a covariant derivative term
UR ZJDZ/R = VR ’L@ VR.

A Dirac mass term can be generated as in the case of up-type

quarks:
»CYukawa — »CYukawa — hu [EL QBVR + pR QBT KL

contains a term

—m (ﬁLVR—FDRVL); m =



The see-saw mechanism

Why are neutrino masses so much smaller than other fermions’

masses? Indeed, the experimental bound implies

difficult to understand.

However, right-handed neutrinos also admit a Majorana mass

term:

1
—§M (VL VR + VR VE)

where v; = 70725%: is the charge-conjugated spinor (not true for

other fermions, e.g. vy, because of gauge invariance).



Majorana mass terms induce violation of lepton number
conservation, typically suppressed by inverse powers of M. It is
natural to assume that M is of the order of the energy scale
characteristic of the unknown phenomena (e.g. the effects of

grand unification) experienced by right-handed neutrinos.



The most general neutrino mass term:

1 0 m 1%
— (V] UR) "1 +he
- m M v,

‘Cl/ 1Mass

diagonalized by a linear transformation

m 0
— U ! U
m M 0 mo

0O m

with U/ unitary, and mq, ms real and positive:

' 0 —isinf 2
i 7 COS 7 8in ; tan26’:—m
sin 6 cos
and
1 1
my 5(\/M2+4m2+M) m—§(\/M2+4m2 M)



For m < M, 6 ~m/M, and

mq1 >~ M; Mo ~ —
One eigenstate not observed at low energy; the other is lighter
than ordinary fermions by a factor m/M.
This is the see-saw mechanism.

The mass term takes the form

1 1
»Cl/mass = —5 mq (I?f V1 + 11 Vf) — §m2 (175 Vo + U9 Vg),

where

v = vy, sinf 4+ vy cos6

vy = —ivy, cos b + ivg sinf



General case: N species of left-handed neutrinos, (N = 3 as far as
we know), plus K right-handed neutrinos (not necessarily N = K).

m is a K x N matrix, and M a K x K matrix.

Choosing K = N we have
ﬁl;pt = — [ZL O hger + €r qu ]’LE KL]
- {ZL ¢ hx VR + Vg ¢ h, EL}
The Majorana mass terms for right-handed neutrinos are

—% (D}:{CMVR—F?RMTV}{C)



Lepton flavour eigenstates are linear combinations of mass
eigenstates. Neutrinos produced with a definite flavour (e.g.

nuclear 3 decays in the Sun produce electron neutrinos)

A neutrino beam of definite flavour, is a linear combination of

mass eigenstates:

‘Voz Z ‘Vz

with U a unitary matrix. Time evolutlon in the rest frame is
given by

vi(7)) = e7"™ 7 1(0))
or, in the laboratory frame,

(1) = e E Jy (0)

where L is the distance travelled in the time interval ¢.



Since neutrinos are almost massless,

m2

L ~t: Ei:\/2 2~ p; -
pi My =pit op

where F ~ p, >~ p;. Hence,

2

v (L Z ~exp (—Z?EL) 1;(0))

The probability amplitude of observing the flavour § at distance

L is given by

alva(L) = Z | exp (—@—EL)ZUﬁg (v,

71=1

Zﬁ?ﬁ exp (—ie; L),
i=1

where we have used the unitarity of U, and we have defined

m2

B 7* Ua .
fz ai Y B € 2E




The corresponding probability is given by

Pas(L) = |(vslva(D)? = 6a8—-43 Y Re (g;“ﬁg;faﬁ) SiﬂQ%(ej—ei)L

i=1 j=i+1
—22 Z Im (gf‘ﬁ §;aﬁ> sin(e; — ¢€;) L.
i=1 j=i+1

Not very rigorous: Quantum states with definite momentum have
an infinite uncertainty in position, and therefore it makes no
sense to talk about observation at distance L. We should
introduce wave packets, and check that a sizable overlap among

packets survives at distance L from the source.

If this is the case, the oscillation probability is correctly given by

the above formula.



A simple case: CP invariance + mixing between two flavours.
this case

%2 — %1 — —cosfi9sin b9

%2 — %1 — +cos 019 sin H15.

and therefore

5 LAm%Q
4F

The results of neutrino oscillation experiments are usually

PlQ(L) = Pgl(L) = SiIl2 2612 sin

In

displayed in the form of allowed regions in the (Am?,,6012) plane.

The following units are often adopted:




To summarize:

e Massive neutrinos bring us out of the Standard Model

e Heavy sterile neutrinos + see-saw mechanism: a satisfactory

scenario

e New parameters needed, but no radical modification



First experimental confirmations

1974 charm quark and weak neutral currents observed
1977 bottom quark

1983 W and Z bosons observed

1994 top quark observed



Precision data in

agreement with

dictions.

The

model tested at

excellent
SM pre-
standard
the level

of one-loop corrections.

N, = 2.9841 £+ .0083

Measurement Fit  10™2-Q"/g™?

o 1 2 3
m,[GeV] 91.1875:0.0021 91.1874
I,[GeV]  2.4952:0.0023  2.4959
op.g[Nb]  41.540£0.037  41.479
R, 20.767 +0.025  20.742
A 0.01714 + 0.00095 0.01645
A(P,) 0.1465 + 0.0032  0.1481
R, 0.21629 = 0.00066 0.21579
R, 0.1721£0.0030  0.1723
AP 0.0992 = 0.0016  0.1038
AL 0.0707 + 0.0035  0.0742
A, 0.923 + 0.020 0.935
A, 0.670 + 0.027 0.668
A(SLD) 0.1513 £ 0.0021  0.1481
sin’67'(Q,,) 0.2324 £0.0012  0.2314
my [GeV] 80.399+0.023  80.379
r,[GeV]  2.085:x0.042 2.092
m, [GeV] 173.3 = 1.1 173.4

July 2010 0 2 3



4. Open questions

. Why so many (18) free parameters?
e Is there a grand unification?

e What is the origin of flavour mixing?

. Why is the Higgs boson so light?

e Hierarchy and Naturalness

. Cosmology-related questions:
e the value of the cosmological constant
e baryogenesis

e dark matter

. Gravity



