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I’ll assume you all know that ...

• The relativistic version of Quantum Mechanics is Quantum

Field Theory (non-conservation of the particle number in

reactions)

• QFT’s are completely determined by symmetry properties

(hinted by experiments)

• Gauge invariance plays a special role.

... but I’ll be happy to answer questions!

bldg. 4 room 2-050, phone 72447



Lay-out:

1. The standard model: A model of leptonsa (and hadrons)

2. Spontaneous breaking of the gauge symmetry

3. Explicit breaking of accidental symmetries

4. Are we happy? Experimental tests and future prospects

aThe title of S. Weinberg’s paper, PRL 19 (1967) 1264.



1. Construction of the standard model

• Phenomenological input: β and µ decays, parity violation,

production and decays of strange particles.

• Theoretical constraints: unitarity and perturbative

renormalizability.

Our attitude towards renormalizability has changed in time ...



The idea of interpreting the Fermi four-fermion interaction vertex

as originated by vector boson exchange dates back to Fermi

himself.

There is only one way to build a unitary and renormalizable field

theory of vectors: a gauge theory.

An endless list of experimental confirmations of this fact. The

most striking one: universality of couplings.



The gauge symmetry suggested by early data (and later

confirmed) is based on the invariance group

SU(2)L ⊗ U(1)Y

which requires four gauge vector bosons:

W a
µ , a = 1, 2, 3 for SU(2)L

Bµ for U(1)Y

Vector boson dynamics is governed by the usual Yang-Mills

action

LYang−Mills = −
1

4
FµνF

µν

which contains cubic and quartic interaction vertices.



Next, one must associate fermion matter fields to representations

of the gauge group.

Six flavours of quarks:

u d s c b t

Three charged leptons:

e µ τ

and three neutrinos:

νe νµ ντ

(I’m making a long story VERY short!)



Data are consistent with the following scheme:

Qi
L =





ui
L

di
L



 ui
R di

R Li
L =





νi
L

$iL



 $iR

ψi
1 ψi

2 ψi
3 ψi

4 ψi
5

A family structure emerges:

ψr
i

The index i labels fermion generations: i = 1, . . . , 3 (as far as we

know).

The index r labels group representations



Comments:

• Fermion fields with different chiralities transform differently:

ψR =
1 + γ5

2
ψ ψL =

1 − γ5
2

ψ

Parity is not conserved by weak interacions.

• Left-handed quarks QL and leptons LL transform as SU(2)

doublets (r = 1 and r = 4), right-handed fermions as SU(2)

singlets (r = 2, 3, 5). No right-handed fermion participate in

charged-current interactions.

• Different representations have different values of the

hypercharge quantum number (more on this later).

• neutrinos are massless: no right-handed neutrinos around.

Much more on this later.



A unique gauge-invariant lagrangian density can now be written:

LSM = LYang−Mills +
N

∑

i=1

5
∑

r=1

ψ̄i
r iD/r ψ

i
r

with

Dµ
r = ∂µ − igT a

r W µ
a − ig′

Yr

2
Bµ

T a
r =

τa

2
for SU(2) doublets (r = 1, 4)

T a
r = 0 for SU(2) singlets (r = 2, 3, 5)

• Hypercharge values undetermined so far

• Axial anomaly cancelled if nq = n# = N (a prediction of the

standard model.)



The interaction lagrangian density includes a charged-current

term which can be written as

Lcc =
g√
2

[

LLγ
µτ+LL W+

µ + LLγ
µτ−LL W−

µ

+ QLγ
µτ+QL W+

µ + QLγ
µτ−QL W−

µ

]

with the definitions

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ); τ± =

1

2
(τ1 ± iτ2)

This interaction term accounts for all processes described by the

Fermi theory. For example

Lcc =
g

2
√

2
ūγµ(1 − γ5)d W−

µ +
g

2
√

2
ēγµ(1 − γ5)νe W−

µ + . . .



Electro-weak unification

The neutral-current interaction term is

Lnc = g ψ̄ γµ T3 ψW µ
3 + g′ ψ̄ γµ

Y

2
ψBµ

where

ψ = ψi
r, r = 1, . . . , 5

T3 = (T3)r

(T3)r =
τ3
2

for doublets (r = 1, 4)

(T3)r = 0 for singlets (r = 2, 3, 5)

Y = Yr (r = 1, . . . , 5)



Reparametrization of the neutral sector:

W µ
3 = Aµ sin θW + Zµ cos θW

Bµ = Aµ cos θW − Zµ sin θW

(an orthogonal transformation, in order to keep kinetic terms

diagonal in the vector fields).

Lnc = ψ̄ γµ

[

g sin θW T3 + g′ cos θW
Y

2

]

ψAµ

+ ψ̄ γµ

[

g cos θW T3 − g′ sin θW
Y

2

]

ψ Zµ

We may identify Aµ with the photon field provided

eQ = g sin θW T3 + g′ cos θW
Y

2



Choosing g and g′ so that

g sin θW = g′ cos θW = e

we obtain

Q = T3 +
Y

2
for all fermions:

Y (uL) = 2

(

2

3
−

1

2

)

=
1

3

Y (dL) = 2

(

−
1

3
+

1

2

)

=
1

3

Y (eL) = 2

(

−1 +
1

2

)

= −1

. . .



[Alternatively: choose e.g. Y = −1 for the lepton doublets, and

solve

+ 1
2g sin θW − 1

2g′ cos θW = 0

− 1
2g sin θW − 1

2g′ cos θW = −e

with respect to g sin θW , g′ cos θW . You get g sin θW = g′ cos θW = e,

and Q = T3 + Y/2 follows.]



The value of sin θW can only be extracted from the observation of

weak neutral-current phenomena, induced by interactions with

the Z0 boson:

Lnc = eψ̄ γµ QψAµ

+ eψ̄ γµ

[

cos θW
sin θW

T3 −
sin θW
cos θW

Y

2

]

ψ Zµ

Historical example: neutral-current deep inelastic scattering.

NC : νµ + H → νµ + X

CC : νµ + H → µ− + X

R =
σ(NC)
ν̄ − σ(NC)

ν

σ(CC)
ν̄ − σ(CC)

ν

&
1 − 2 sin2 θW

2



The most precise determinations of sin θW come from

forward-backward asymmetries measured in e+e− collisions:

AFB(f) =

∫

cos θ>0 dσ(e+e− → ff̄) −
∫

cos θ<0 dσ(e+e− → ff̄)

σ(e+e− → ff̄)

where f is any charged fermion. Present result:

sin2 θW = 0.23116(13)

It follows that g, g′ are of the same order of magnitude as e.



Not yet a realistic theory

• The gauge symmetry must be (spontaneously) broken,

SU(2)L ⊗ U(1)Y → U(1)em

because weak vector bosons are observed to be massive (short

range of weak interactions).

• The fermionic sector has a large global symmetry which is not

observed. An explicit breaking

[U(N)]5 → U(1)B ⊗ U(1)e ⊗ U(1)µ ⊗ U(1)τ

or

[U(N)]5 → U(1)B ⊗ U(1)L

is needed.



Addendum n. 1

LYang−Mills = −
1

4
BµνB

µν −
1

4
W a

µνW
µν
a

Bµν = ∂µBν − ∂νBµ

W µν
i = ∂µW ν

i − ∂νW µ
i + gεijkW µ

j W ν
k

The corresponding expressions in terms of W±
µ , Zµ and Aµ can be

easily worked out:

W 1
µ =

1√
2
(W+

µ + W−
µ )

W 2
µ =

i√
2
(W+

µ − W−
µ )

W 3
µ = Aµ sin θW + Zµ cos θW

Bµ = Aµ cos θW − Zµ sin θW



We get

W 1
µν =

1√
2

[

W+
µν + ig sin θW (W+

µ Aν − W+
ν Aµ)

+ ig cos θW (W+
µ Zν − W+

ν Zµ)
]

+ h.c.

W 2
µν =

i√
2

[

W+
µν + ig sin θW (W+

µ Aν − W+
ν Aµ)

+ ig cos θW (W+
µ Zν − W+

ν Zµ)
]

+ h.c.

W 3
µν = Fµν sin θW + Zµν cos θW − ig(W+

µ W−
ν − W−

µ W+
ν )

Bµν = Fµν cos θW − Zµν sin θW

where

Fµν = ∂µAν − ∂νAµ

Zµν = ∂µZν − ∂νZµ

W µν
± = ∂µW ν

± − ∂νW µ
±



It follows that

LYang−Mills = −
1

4
FµνF

µν −
1

4
ZµνZ

µν −
1

2
W+

µνW
µν
−

+ig sin θW (W+
µνW

µ
−Aν − W−

µνW
µ
+Aν + FµνW

µ
+W ν

−)

+ig cos θW (W+
µνW

µ
−Zν − W−

µνW
µ
+Zν + ZµνW

µ
+W ν

−)

+
g2

2
(2gµνgρσ − gµρgνσ − gµσgνρ)

[

1

2
W+

µ W+
ν W−

ρ W−
σ

−W+
µ W−

ν (AρAσ sin2 θW + ZρZσ cos2 θW + 2AρZσ sin θW cos θW )

]



Addendum n. 2

Why did I say that

LSM = LYang−Mills +
N

∑

i=1

5
∑

r=1

ψ̄i
r iD/r ψ

i
r

has a global [U(N)]5 invariance?

For each r = 1, . . . , 5 consider the transformation

ψi
r
′
=

N
∑

j=1

U ij
r ψ

j
r

where U r is a constant unitary N × N matrix. This

transformation leaves LSM unchanged. There are 5 symmetries of

this kind, one for each representation r. The full global symmetry

is therefore [U(N)]5, as announced.



2. Spontaneous breaking of the gauge symmetry

A simple argument shows that the W boson must be massive.

The amplitude for β decay in the Fermi theory is given by

M = −
GF√

2
uγµ(1 − γ5)d eγµ(1 − γ5)νe

In the standard model, the same process is induced by the

exchange of a W boson:

MSM =

(

g√
2
uLγ

µdL

)

1

q2 − m2
W

(

g√
2
eLγµνeL

)



We have

q2 ≤ (mN − mP )2 ∼ (1.3 MeV)2

Hence, the two amplitudes coincide in the limit m2
W * q2 if

GF√
2

=

(

g

2
√

2

)2 1

m2
W

.

A lower bound on the W mass can be set: since

g =
e

sin θW

we obtain

m2
W =

√
2

GF

g2

8
≥

√
2

GF

e2

8
∼ (40 GeV)2

quite a large value, compared to the nucleon mass, and an

enormous number, compared to the present upper bound on the

photon mass

mγ ≤ 2 · 10−16 eV.



Breaking gauge invariance explicitly with a mass term

m2
W W+

µ W−µ +
1

2
m2

ZZµZµ

leads to a non-renormalizable and non-unitary theory.

The gauge symmetry of the standard model must be

spontaneously broken, in order to introduce masses for the W and

Z vector bosons without spoiling unitarity and renormalizability.



A flavour of the argument: a mass term inserted by hand

(explicit breaking) leads to a massive gauge boson propagator

∆µν(k) =
i

k2 − m2

(

−gµν +
kµkν

m2

)

For large k, the term proportional to kµkν dominates, and

∆(k) ∼ k0 rather than k−2: the behaviour of this propagator at

large k is much worse than that of the scalar propagator. This

suggests a worse UV behaviour of the Feynman integrals, which

leads to a non-renormalizable theory.



A related problem: unitarity of the scattering matrix. The

amplitude for a generic physical process with the emission or the

absorption of a vector boson with four-momentum k and

polarization vector ε(k) has the form

M = Mµεµ(k).

A massive vector (contrary to a massless one) may be polarized

longitudinally. In this case, choosing the z axis along the

direction of the 3-momentum of the vector boson, the

polarization is given by

εL =

(

|+k|
m

, 0, 0,
E

m

)

=
k

m
+ O

(

m2

E2

)

,

(recall that the transversity condition k · ε = 0 and the

normalization ε2 = −1.)

The amplitude M grows indefinitely with the energy E, and

eventually violates the unitarity bound.



Both sources of power-counting violation are rendered harmless if

the vector particles are coupled to conserved currents, so that

kµMµ = 0

Gauge invariance provides such conservation relations.



Spontaneous symmetry breaking is not really a way of breaking a

symmetry: rather, it is a different realization of the symmetry

itself.

More precisely, SSB takes place whenever the ground state is not

invariant under symmetry transformations. As a consequence,

the lagrangian density is symmetric, but the spectrum of physical

states is not.

The prototype: ferromagnetism.



In quantum field theory, SSB takes place when some operator

with non-trivial transformation properties under the gauge group

has non-vanishing vacuum expectation value:

〈0|φj |0〉 = vj .= 0

Easy to prove: after an infinitesimal transformation

φi → φi + iαa taijφj = φi + iαa [Qa, φi]

taij〈0|φj |0〉 = 〈0| [Qa, φi] |0〉 .= 0 ⇔ Qa|0〉 .= 0

which is the condition for spontaneous symmetry breaking, i.e.

non-invariance of the vacuum state.



Observations:

• 〈0|φi|0〉 is a constant if the vacuum is invariant under

translations:

〈0|φi(x)|0〉 = 〈0|eiPxφi(0)e
−iPx|0〉 = 〈0|φi(0)|0〉

• φ must be a scalar, otherwise its vacuum expectation value is

frame-dependent.

• φ is not necessarily an elementary field



The simplest realization: the Higgs mechanism

LSM = LYang−Mills +
N

∑

i=1

5
∑

r=1

ψ̄i
r iD/r ψ

i
r+LHiggs

LHiggs = (Dµφ)
†Dµφ− m2 |φ|2 − λ |φ|4

The simplest among simplest: φ is an SU(2)L doublet:

Dµφ = ∂µφ−
ig

2
W a

µτ
aφ−

ig′

2
YφBµφ

If m2 < 0 the scalar potential has a minimum at

〈0|φ|0〉 =
V√
2
; |V |2 = −

m2

λ
≡ v2.



The value of the hypercharge Yφ is dictated by the requirement

that Uem(1) remains unbroken:

eieQV = V

or

Q V =
1

2

(

τ3 + Y
)

V = 0 ⇔ (Yφ + 1)(Yφ − 1) = 0

where Y = Yφ I2. Two solutions:

Yφ = 1, V =





0

v



 Yφ = −1, V =





v

0





We choose Yφ = 1, so that

φ =





φ+

φ0







The |Dφ|2 term contains a term

LφφV V =
1

4
(g2W µ

a W a
µ + g′

2
BµBµ)φ†φ+

1

2
gg′BµW i

µφ
†τ iφ

=
1

4
g2v2(W µ

1 W 1
µ + W µ

2 W 2
µ) +

1

4
v2(W µ

3 Bµ)





g2 −gg′

−gg′ g′2









W3µ

Bµ





+ . . .

Mass terms for the W and the Z appear:

m2
W =

1

4
g2 v2 m2

Z =
1

4
(g2 + g′

2
) v2 m2

γ = 0



The value of the order parameter v2 is obtained from matching

with the Fermi theory of β decay: from

GF√
2

=
g2

8m2
W

; m2
W =

1

4
g2v2

we get

v = (
√

2GF )−1/2 ∼ (247 GeV)2

where we have used the measured value GF ∼ 1.1 × 10−5 GeV−2.

Weak interactions have a characteristic energy scale of the order

of a few hundred GeV.



Three of the four scalar degrees of freedom in φ are unphysical:

they can be eliminated from the spectrum by a gauge choice.

An easy (but slightly deceptive) way to see it: parametrize φ by

φ =
1√
2
e

iτiθi(x)
v





0

v + H(x)



 →
1√
2





0

v + H(x)





after a suitable gauge transformation. The massive gauge boson

propagators take the form

∆µν(k) =
i

k2 − m2

(

−gµν +
kµkν

m2

)

It looks like we are in troubles again with renormalization!



This is not true: we are working with a renormalizable theory, so

renormalizability must arise in calculations, even though it is not

manifest (the propagator does not respect the usual

power-counting rule).

This is called the unitary gauge: unitarity is manifest, in the

sense that unphysical degrees of freedom are removed from the

spectrum, but manifest renormalizability is lost.

Useful in tree-level calculation.



When loop corrections become relevant, it is advisable to adopt a

renormalizable gauge. The starting point is a linear

parametrization of the scalar field:

φ = φ1 + φ2,

φ1 =
1√
2





0

v



 φ2 =
1√
2





G1(x) + iG2(x)

H(x) + iG3(x)





A convenient gauge-fixing term (suggested by ’t Hooft) is

LGF = −
1

2ξ

[

∂µW i
µ − ξf i(φ)

]2 −
1

2ξ
[∂µBµ − ξf(φ)]2

with

f i(φ) =
ig

2
(φ†1τ

iφ2 − φ†2τ
iφ1) f(φ) =

ig′

2
(φ†1φ2 − φ†2φ1)



Two main advantages:

• No mixing between vector fields and derivative of the scalar

field

• Manifest renormalizability:

∆µν
ξ (k) =

i

k2 − m2

[

−gµν +
(1 − ξ)kµkν

k2 − ξm2

]

(the unitary gauge is recovered in the limit ξ → ∞).

Draw-back: the unphysical scalars G1, G2, G3 are in the game.

They cannot appear as asymptotic states (external lines in

Feynman diagrams), and their contributions as internal lines is

cancelled by the unphysical singularity in the vector boson

propagators (not easy to prove).



Physical interpretation: massless vector bosons have two physical

degrees of freedom: the two helicity states (no longitudinal

polarization).

After SSB, vector bosons become massive: the longitudinal

modes are provided by the three would-be Goldstone bosons,

which disappear from the spectrum.

The existence of longitudinally polarized W and Z is the most

striking evidence of spontaneous gauge symmetry breaking.



The scalar potential simplifies considerably in the unitary gauge:

V (φ) = m2 |φ|2 + λ |φ|4

=
m2

2
(v + H)2 +

λ

4
(v + H)4

= H(m2v + λv3) +
1

2
H2(m2 + 3λv2) + λvH3 +

λ

4
H4

Since m2 = −λv2, the linear term vanishes, and the quadratic term

has a coefficient
1

2
2λv2

and can be interpreted as a true mass term for the scalar field H.



What do we know about the Higgs boson mass?

• At tree level, m2
H = 2λv2. We do not know the value of λ, but

v2 is fixed, so if λ is in the perturbative domain, mH must be

something similar to mW , mZ . In any case, it grows with λ.

• An upper bound of about ∼ 1 TeV on mH comes from

unitarity considerations (perturbative unitarity of

WLWL → WLWL, similar to the upper bound on mW in the

Fermi theory).



The quartic running coupling λ(µ) becomes negative for µ large

enough; then, at some large values of µ it has a Landau pole:



One lesson:

The standard model can not be valid up to arbitrarily large

energy scales: it can only work up to some energy scale Λ

and two consequences:

• since m2
H & −2m2 & 2λ(v)v2, the smaller mH , the smaller Λ.

• On the other hand, the larger mH the larger λ(v): if we insist

on λ being in the perturbative domain, an upper bound on

mH is generated.



The lower stability bound increases with mtop.



Global fit to precision

data.

The minimum shifts to

larger values of mH as mtop

becomes larger.

A precise determination of

mtop is very important in

this respect. 0

1

2

3

4

5

6

10030 300
mH [GeV]

Δ
χ2

Excluded Preliminary

Δαhad =Δα(5)

0.02758±0.00035
0.02749±0.00012
incl. low Q2 data

Theory uncertainty
July 2010 mLimit = 158 GeV



Indications that the SM Higgs mass is something between 100

and 200 GeV are definitely quite strong.

Very difficult to build extensions of the standard model in which

the effects of a heavier Higgs are compensated by some kind of

new physics.

Warning: the global SM fit is not particularly good [P (χ2) ∼ 25%].

Lepton asymmetries and mW favour values of mH below the

exclusion limit ∼ 114 GeV; hadron (especially b) asymmetries

prefer much higher values of mH .



A0,l
FB

M
H
   
[G

eV
]

Forward-Backward Pole Asymmetry

Mt = 178.0±4.3 GeV
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Δα(5)Δαhad=

Experiment A0,l
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ALEPH 0.0173 ± 0.0016
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MW   [GeV]

M
H
   
[G

eV
]

Mass of the W Boson (preliminary)

Mt = 171.4±2.1 GeV

linearly added to
  0.02758±0.00035
Δα(5)Δαhad=

Experiment MW   [GeV]

ALEPH 80.440 ± 0.051

DELPHI 80.336 ± 0.067

L3 80.270 ± 0.055

OPAL 80.416 ± 0.053

χ2 / dof  =  49 / 41

LEP 80.376 ± 0.033
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The possibility of a strongly interacting Higgs

Since

λ =
1

2

m2
H

v2

a large value of mH corresponds to a large value of λ, eventually

outside the perturbative domain. What should we expect if this

is the case?

A first consequence:

ΓH→V V =
3

32π2

m3
H

v2
∼ mH

for mH ∼ 1.4 TeV. No longer a narrow resonance.

Also, unitarity is violated at tree level in VLVL scattering for mH

above 1 TeV.



A question arises:

Does a large value of λ generate large radiative corrections on

observables?

The answer is no: the typical example is the ratio

ρ =
m2

W

m2
Z cos2 θW

which is 1 at tree level, and receives a one-loop correction

∆ρ = −
11g2

48π3
tan2 θW log

m2
H

m2
W

which grows only logarithmically with m2
H .

This arises from a symmetry property of the scalar potential,

called the custodial symmetry.



A different way to state the problem: after the inclusion of

radiative corrections,

Lmass =
1

2
m2

W (W 1µ
W 1

µ+W 2µ
W 2

µ)+
1

2
(W µ

3 Bµ)





M2 M ′2

M ′2 M ′′2









W3µ

Bµ



 .

with M ′2 = MM ′′, M2 + M ′′2 = m2
Z . Hence

tan θW =

√

m2
Z − M2

M
.

and

ρ =
m2

W

m2
Z cos2 θW

=
m2

W

M2
,

that is, ρ = 1 only if M2 = m2
W .



The reason is that the scalar potential posesses an O(4) invariance,

larger than the gauge symmetry. Indeed, the scalar field

φ̃ =





φ∗0

−φ−



 = εφ∗

can be shown to be an SU(2)L doublet with Yφ̃ = −1. Hence the

matrix

H =
[

φ̃ φ
]

=





φ0∗ φ+

−φ− φ0





transforms as

H(x) → exp

[

ig

2
τaαa(x)

]

H(x)

H(x) → H(x) exp

[

−
ig′

2
β(x)τ3

]

.

under gauge transformations.



The scalar potential can be written

V (φ) =
1

2
m2 Tr

(

H†H
)

+
1

4
λ

[

Tr
(

H†H
)]2

which is invariant under the SU(2)L × SUR(2) transformations

H → UHV †

where V ∈ SU(2).

We also have

(Dµφ)
†Dµφ =

1

2
Tr

[

(DµH)†DµH
]

,

with

DµH = ∂µH−
ig

2
W a

µ τ
aH +

ig′

2
BµHτ3



Clearly

DµH → (UDµU †)(UHV †)

= U(∂µH−
ig

2
W a

µ τ
aH)V † +

ig′

2
BµUHV †τ3

.= U(DµH)V †

because of the last term.

The full lagrangian has a custodial symmetry only for g′ = 0.



Due to spontaneous breaking of SU(2)L, the vacuum expectation

value

〈0|H|0〉 =
v√
2





1 0

0 1





is not O(4) invariant. However, there is a residual O(3) ∼ SU(2)

symmetry

H → UHU †

that leave the vacuum expectation value unchanged. The only

mass term for the W i
µ fields allowed by this residual symmetry is

proportional to W i
µW µ

i , which in turn implies M2 = m2
w and ρ = 1.



If the Higgs boson is too heavy to be produced directly, the study

of longitudinal gauge bosons can be useful.

Scattering amplitudes can be computed in the standard way, but

it proves easier and more instructive to use the so called

equivalence theorem:

Scattering amplitudes for longitudinal vector bosons are equal to

the corresponding amplitudes for would-be goldstone bosons, up

to corrections of order mV /E:

M(W+
L , W−

L , ZL, . . .) = M(G+, G−, G3, . . .) + O
(mW

E

)

We can build an effective theory, which describes correctly the

dynamics of longitudinal vector bosons (i.e. Goldstone bosons Gi)

in the range of intermediate energies mW 3 E 3 mH .



[A simple proof of the equivalence theorem is based on the use of

the ’t Hooft gauge-fixing term.]

In this regime, the dynamics of Goldstone bosons is governed by

the scalar potential. By analogy with chiral effective theories in

the strong interactions, we may find a nonlinear realization of the

custodial symmetry, such that the Goldstone fields are removed

from the scalar potential, and take up only derivative couplings

among themselves.



This can be done as follows. Since

H†H =





φ†φ 0

0 φ†φ





we may parametrize H as |φ| times a unitary matrix Σ:

H =
v + H(x)√

2
Σ(x); Σ = exp

[

iGa(x)τa
v

]

so that

V (φ) =
1

2
m2 Tr

(

H†H
)

+
1

4
λ

[

Tr
(

H†H
)]2

does not contain the fields Ga(x) any more.



The effective lagrangian for Goldstone bosons is therefore

L =
v2

4
Tr

[

(DµΣ)†DµΣ
]

up to terms involving the Higgs field H(x), which we neglect by

the assumption that mH is so large that it does not enter the

low-energy dynamics of Goldstone bosons.

Goldstone bosons couplings are now purely derivative:

amplitudes are computed as expansions in powers of momenta.



3. Breaking of accidental symmetries

Consider nq = n# = 1 for simplicity. Then

LSM = LYang−Mills +
5

∑

r=1

ψ̄r iD/r ψr+LHiggs

has a [U(1)]5 global invariance:

ψr → eiαr ψr

The corresponding conserved currents are

Jµ
1 = ūLγµuL + d̄LγµdL

Jµ
2 = ūRγµuR

Jµ
3 = d̄RγµdR

Jµ
4 = ν̄LγµνL + ēLγµeL

Jµ
5 = ēRγµeR

→

Jµ
Y =

∑5
r=1

Yr

2 Jµ
r

Jµ
# = Jµ

4 + Jµ
5 ≡ ν̄γµν + ēγµe

Jµ
#5 = Jµ

5 − Jµ
4 ≡ ν̄γµγ5ν + ēγµγ5e

Jµ
b = 1

3 (Jµ
1 + Jµ

2 + Jµ
3 ) ≡ 1

3 (ūγµu + d̄γµd)

Jµ
b5 = Jµ

2 + Jµ
3 − Jµ

1 ≡ ūγµγ5u + d̄γµγ5d.



Conserved charges:

Y local symmetry

NL − NL̄ OK

NB − NB̄ OK

NL + NL̄ not observed

NB + NB̄ not observed

With N families, the symmetry is much larger: generation

mixings also allowed,

ψi
r → U ij

r ψ
j
r ; U †

r Ur = I

A global [U(N)]5 symmetry which is not present in observed

phenomena. This is called an accidental symmetry.



Accidental symmetries are an accidental consequence of gauge

invariance and renormalizability. For example, fermion mass

terms would break accidental symmetries explicitly:

−mψ̄ψ = −m(ψ̄RψL + ψ̄LψR)

but they are forbidden by gauge invariance.



Accidental symmetries can be broken (while preserving gauge

invariance) by fermion couplings to φ:

LSM = LYang−Mills +
N

∑

i=1

5
∑

r=1

ψ̄i
r iD/r ψ

i
r+LHiggs+LYukawa

ψi
1 ≡ Qi

L =





ui
L

di
L



 ; ψi
2 ≡ ui

R; ψi
3 ≡ di

R; ψi
4 ≡ Li

L =





νi
L

$iL



 ; ψi
5 ≡ $iR

LYukawa = −Q̄i
L hij

u uj
R φ̃− Q̄i

L hij
d dj

R φ− L̄i
L hij

# $
j
R φ+ h.c.

φ =





φ+

φ0



 →
1√
2





0

v + H(x)



 φ̃ =





φ∗0

−φ−



 →
1√
2





v + H(x)

0







• LYukawa is allowed by Lorentz invariance, gauge symmetry and

renormalizability.

• Each term in LYukawa breaks part of the accidental symmetry

explicitly; for example, the first term is not invariant under

independent U(N) rotation of right-handed up quarks and

left-handed quark doublets

QL → U QL; uR → V uR

(although still invariant under the subgroup U = V ).

• Important remark: For the same reason, removing one or

more term from LYukawa increases the symmetry of the theory.

Yukawa couplings are protected from receiving large radiative

corrections.



In matrix notation

LYukawa = −Q̄L hu uR φ̃− Q̄L hd dR φ− L̄L h# $R φ+ h.c.

hu, hd, h# are generic complex N × N matrices.

A theorem in linear algebra: Any generic complex squared

matrix h can be diagonalized by a bi-unitary transformation

ĥ = U † h V

where U, V are unitary matrices, and ĥ is diagonal with real

positive entries.

Thus, for example, we may redefine the lepton fields by

LL → U LL; $R → V $R

with U, V such that

ĥ# = U † h# V

is diagonal with real and positive entries.



The theory is otherwise unaffected, because this operation leaves

the rest of LSM unchanged. Hence, in the leptonic sector,

Llept
Yukawa = −L̄L ĥ# $R φ+ h.c. → −

1√
2
$̄L ĥ# $R (v + H) + h.c.

= −meēe − mµµ̄µ − mτ τ̄ τ −
H√
2
(ĥeēe + ĥµµ̄µ + ĥτ τ̄ τ)

• Lepton masses mi
# = ĥi

# v√
2

are generated

• The original global symmetry is broken, but a residual [U(1)]3

invariance

$i → eiαi $i

is still present. This symmetry corresponds to the

conservation of individual (e, µ, τ) leptonic numbers.



The same argument does not apply to the hadron sector:

Lhadr
Yukawa = −Q̄L hu uR φ̃− Q̄L hd dR φ+ h.c.

We may transform the quark fields

uL → UL uL; dL → VL dL; uR → UR uR; uR → VR uR

with UL,R, VL,R chosen so that

ĥu = U †
L hu UR; ĥd = V †

L hd VR

are diagonal, but this is not a symmetry for the rest of the

Lagrangian.



Only one term is affected by such a rotation: the charged-current

interaction term in the hadron sector

Lcc =
g√
2

[

ūL γ
µ dL W+

µ + d̄L γ
µ uL W−

µ

]

→
g√
2

[

ūL γ
µ (U †

LVL)dL W+
µ + d̄L γ

µ (V †
LUL)uL W−

µ

]

The matrix

V = U †
LVL

is a unitary N × N matrix, usually called the

Cabibbo-Kobayashi-Maskawa matrix.



With the Yukawa couplings in diagonal form we have

Lhadr
Yukawa = −Q̄L ĥu uR φ̃− Q̄L ĥd dR φ+ h.c.

→ −
1√
2
(v + H)

[

ūL ĥu uR + d̄L ĥd dR

]

+ h.c.

• Quark mass terms appear:

mi
u =

ĥi
uv√
2

mi
d =

ĥi
dv√
2

• The original global symmetry is lost; the residual symmetry is

now a U(1) symmetry

ui
L → eiα ui

L; di
L → eiα di

L; ui
R → eiα ui

R; di
R → eiα di

R

with a common phase α for all flavours, because of the CKM

mixing matrix. Baryon number conservation.



The entries of the CKM matrix are fundamental parameters of

the theory: they must be extracted from experiments.

How many independent numbers does V contain? A generic

N × N unitary matrix depends on N2 independent real

parameters. Some (NA) of them can be thought of as rotation

angles in the N-dimensional space of generations, and they are as

many as the coordinate planes in N dimensions:

NA =





N

2



 =
1

2
N (N − 1).



The remaining

N̂P = N2 − NA =
1

2
N (N + 1)

parameters are complex phases. Some can be removed by a

redefinition of left-handed quarks:

uf
L → eiαf uf

L; dg
L → eiβg dg

L

which leaves all terms inLSM unchanged except Lhadr
c , and

therefore amount to a redefinition of the CKM matrix:

Vfg → ei(βg−αf ) Vfg

The 2N constants αf , βg can be chosen so that 2N − 1 phases are

eliminated from the matrix V , since there are 2n − 1 independent

differences βg − αf . The number of really independent complex

phases in V is therefore

NP = N̂P − (2N − 1) =
1

2
(N − 1)(N − 2)



To summarize, the total number of independent parameters in

the CKM matrix is

NA + NP = (N − 1)2; NP =
1

2
(N − 1)(N − 2)

Comments:

• with N = 1 or N = 2 the CKM matrix can be made real. In

particular, for N = 2 it is fixed by one rotation angle, the

Cabibbo angle.

• The first case with non-trivial phases is N = 3, which

corresponds to NP = 1.

• The presence of complex coupling constants implies violation

of the CP symmetry.



Much effort devoted to investigations in the flavour sector. A

subject of special interest: CP violation in B systems and the

unitarity relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0
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Very nice:

• Fermion masses generated

• All global symmetries broken except global baryon number

and individual lepton numbers (no right-handed neutrinos)

• FCNC effects suppressed (flavour mixing confined in the

charged-current sector)

• CP violated for N ≥ 3

Not easy to achieve the same result in different contexts.



(Slightly) beyond the Standard Model: neutrino masses

In the standard model, neutrinos are massless. With good

reasons: the experimental upper bounds on neutrino masses are

mνe
≤ 3 eV; mνµ

≤ 0.19 MeV; mντ
≤ 18.2 MeV,

so mν 3 mf , and mν = 0 is an excellent approximation.

However: non-zero neutrino masses are now a solid experimental

evidence, thus we must ask how to modify the standard model in

order to keep this evidence into account.



Standard neutrinos are massless because right-handed neutrinos

do not exist (more precisely, they transform trivially under the

gauge group, and therefore undergo no interaction: they are

sterile objects).

Let us now assume right-handed neutrinos do exist (only one

generation, for simplicity) with a covariant derivative term

ν̄R iD/ νR ≡ ν̄R i∂/ νR.

A Dirac mass term can be generated as in the case of up-type

quarks:

LYukawa → LYukawa − hν
[

$̄L φ̃ νR + ν̄R φ̃
† $L

]

contains a term

−m (ν̄L νR + ν̄R νL) ; m =
hνv√

2



The see-saw mechanism

Why are neutrino masses so much smaller than other fermions’

masses? Indeed, the experimental bound implies

hν
he

=
m

me

<∼ 10−6

difficult to understand.

However, right-handed neutrinos also admit a Majorana mass

term:

−
1

2
M (ν̄c

R νR + ν̄R ν
c
R)

where νc
R = γ0γ2ν̄T

R is the charge-conjugated spinor (not true for

other fermions, e.g. νL, because of gauge invariance).



Majorana mass terms induce violation of lepton number

conservation, typically suppressed by inverse powers of M . It is

natural to assume that M is of the order of the energy scale

characteristic of the unknown phenomena (e.g. the effects of

grand unification) experienced by right-handed neutrinos.



The most general neutrino mass term:

Lν mass = −
1

2
(ν̄c

L ν̄R)





0 m

m M









νL

νc
R



 + h.c.

diagonalized by a linear transformation




0 m

m M



 = UT





m1 0

0 m2



 U

with U unitary, and m1, m2 real and positive:

U =





i cos θ −i sin θ

sin θ cos θ



 ; tan 2θ =
2m

M

and

m1 =
1

2

(

√

M2 + 4m2 + M
)

; m2 =
1

2

(

√

M2 + 4m2 − M
)

.



For m 3 M , θ & m/M , and

m1 & M ; m2 &
m2

M

One eigenstate not observed at low energy; the other is lighter

than ordinary fermions by a factor m/M .

This is the see-saw mechanism.

The mass term takes the form

Lν mass = −
1

2
m1 (ν̄c

1 ν1 + ν̄1 ν
c
1) −

1

2
m2 (ν̄c

2 ν2 + ν̄2 ν
c
2) ,

where

ν1 = νL sin θ + νc
R cos θ

ν2 = −iνL cos θ + iνc
R sin θ



General case: N species of left-handed neutrinos, (N = 3 as far as

we know), plus K right-handed neutrinos (not necessarily N = K).

m is a K × N matrix, and M a K × K matrix.

Choosing K = N we have

Llept
Y = −

[

$L φhE eR + eR φ
† h†

E $L
]

−
[

$̄L φ̃ hN νR + ν̄R φ̃
† h†

N $L
]

The Majorana mass terms for right-handed neutrinos are

−
1

2

(

ν̄′cR M νR + ν̄R M † ν′cR
)



Lepton flavour eigenstates are linear combinations of mass

eigenstates. Neutrinos produced with a definite flavour (e.g.

nuclear β decays in the Sun produce electron neutrinos)

A neutrino beam of definite flavour, is a linear combination of

mass eigenstates:

|να〉 =
n

∑

i=1

U∗
αi |νi〉

with U a unitary matrix. Time evolution in the rest frame is

given by

|νi(τ)〉 = e−imiτ |νi(0)〉

or, in the laboratory frame,

|νi(t)〉 = e−i(Eit−piL) |νi(0)〉

where L is the distance travelled in the time interval t.



Since neutrinos are almost massless,

L & t; Ei =
√

p2
i + m2

i & pi +
m2

i

2E

where E & pi & pj. Hence,

|να(L)〉 &
n

∑

i=1

U∗
αi exp

(

−i
m2

i

2E
L

)

|νi(0)〉

The probability amplitude of observing the flavour β at distance

L is given by

〈νβ|να(L)〉 =
n

∑

i=1

U∗
αi exp

(

−i
m2

i

2E
L

) n
∑

j=1

Uβj 〈νj |νi〉

=
n

∑

i=1

ξαβi exp (−iεiL) ,

where we have used the unitarity of U , and we have defined

ξαβi = U∗
αi Uβi; εi =

m2
i

2E
.



The corresponding probability is given by

Pαβ(L) = |〈νβ |να(L)〉|2 = δαβ − 4
n

∑

i=1

n
∑

j=i+1

Re
(

ξαβi ξ∗αβj

)

sin2 1

2
(εj − εi)L

−2
n

∑

i=1

n
∑

j=i+1

Im
(

ξαβi ξ∗αβj

)

sin(εj − εi)L.

Not very rigorous: Quantum states with definite momentum have

an infinite uncertainty in position, and therefore it makes no

sense to talk about observation at distance L. We should

introduce wave packets, and check that a sizable overlap among

packets survives at distance L from the source.

If this is the case, the oscillation probability is correctly given by

the above formula.



A simple case: CP invariance + mixing between two flavours. In

this case

ξ121 = ξ211 = − cos θ12 sin θ12

ξ122 = ξ212 = + cos θ12 sin θ12.

and therefore

P12(L) = P21(L) = sin2 2θ12 sin2 L∆m2
12

4E
.

The results of neutrino oscillation experiments are usually

displayed in the form of allowed regions in the (∆m2
12, θ12) plane.

The following units are often adopted:

L∆m2

4E
& 1.27

∆m2(eV2) L(km)

E(GeV)
.



To summarize:

• Massive neutrinos bring us out of the Standard Model

• Heavy sterile neutrinos + see-saw mechanism: a satisfactory

scenario

• New parameters needed, but no radical modification



First experimental confirmations

• 1974 charm quark and weak neutral currents observed

• 1977 bottom quark

• 1983 W and Z bosons observed

• 1994 top quark observed



Precision data in excellent

agreement with SM pre-

dictions. The standard

model tested at the level

of one-loop corrections.

Nν = 2.9841 ± .0083

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02758 ± 0.00035 0.02768
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.479
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.399 ± 0.023 80.379
ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.3 ± 1.1 173.4

July 2010



4. Open questions

1. Why so many (18) free parameters?

• Is there a grand unification?

• What is the origin of flavour mixing?

2. Why is the Higgs boson so light?

• Hierarchy and Naturalness

3. Cosmology-related questions:

• the value of the cosmological constant

• baryogenesis

• dark matter

4. Gravity


