Isosinglet vectorlike leptons at e^+e^- colliders

Prudhvi N. Bhattiprolu prudhvib@umich.edu

M University of Michigan

PIKIMO (Spring 2023) Ohio State University April 29

Based on ongoing work with Stephen P. Martin and Aaron Pierce, arXiv:hep-ph/23xx.xxxxx

- ► Hadron colliders: best discovery reach
- ▶ Lepton colliders: precision studies and indirect searches

This may not be the case for weakly interacting particles

- ► Hadron colliders: best discovery reach
- ▶ Lepton colliders: precision studies and indirect searches

This may not be the case for weakly interacting particles

Consider the example of $SU(2)_L$ -singlet **vectorlike** leptons τ' :

$$\tau_L', \tau_R'^{\dagger} \sim (\mathbf{1}, \mathbf{1}, -1) + (\mathbf{1}, \mathbf{1}, +1)$$

which should be contrasted with the **chiral** τ leptons in the SM:

$$\tau_L, \tau_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

- ► Hadron colliders: best discovery reach
- ▶ Lepton colliders: precision studies and indirect searches

This may not be the case for weakly interacting particles

Consider the example of $SU(2)_L$ -singlet **vectorlike** leptons τ' :

$$\tau_L', \tau_R'^{\dagger} \sim (\mathbf{1}, \mathbf{1}, -1) + (\mathbf{1}, \mathbf{1}, +1)$$

which should be contrasted with the **chiral** τ leptons in the SM:

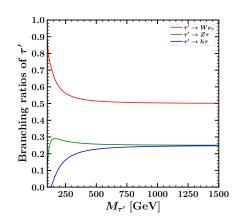
$$\tau_L, \tau_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

Motivations:

- Many new physics models require vectorlike leptons
- ▶ New fermions must be necessarily vectorlike
- ▶ Decouple from flavor and EW precision data for higher masses
- Automatically anomaly-free

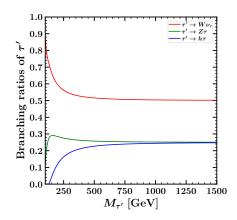
Assume tiny mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0 \\ \epsilon v & M \end{pmatrix}$$



Assume tiny mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0 \\ \epsilon v & M \end{pmatrix}$$

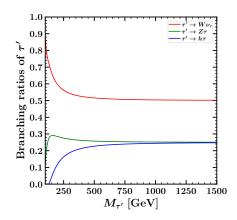


Current 95% CL exclusions:

- $ightharpoonup M_{ au'} < 101.2 \; {
 m GeV} \; [{
 m LEP} \; {
 m 0107015}]$
- ► 125 GeV $< M_{\tau'} <$ 150 GeV [CMS 2202.08676]

Assume tiny mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0 \\ \epsilon v & M \end{pmatrix}$$

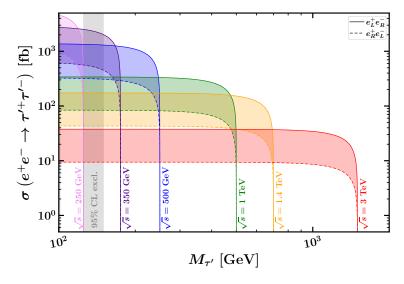


Current 95% CL exclusions:

- $M_{\tau'} < 101.2 \text{ GeV [LEP 0107015]}$
- ▶ 125 GeV $< M_{\tau'} < 150$ GeV [CMS 2202.08676]

Limited discovery/exclusion reach for τ' at the

- LHC [Kumar, Martin 1510.03456]
- Future pp colliders (incl. $\sqrt{s} = 100 \text{ TeV}$) [PNB, Martin 1905.00498]



- ▶ Pair-production mode: $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow \tau'^+\tau'^-$
- ▶ For $M_{ au'}$ much smaller than \sqrt{s} , $\sigma \sim 1/s$ (independent of $M_{ au'}$)
- ▶ Ignoring ISR + beamstrahlung (for now)

$$e^+e^-
ightarrow au'^+ au'^-
ightarrow au ZZ au^+ au^-, \qquad hh au^+ au^-, \qquad Zh au^+ au^- \ ZW^\pm au^\mp + au, \qquad hW^\pm au^\mp + au', \ W^\pm W^\mp + au' \; ext{(largest!)}$$

 $^{^{\}dagger}We$ used $\mathrm{WHIZARD} + \mathrm{CIRCE2}$ in order to account for ISR + beam spectra

[‡]For detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, WWh, WWZ, ZZh, ZZZ, ...

 $^{^\}dagger We \text{ used } W_{HIZARD} + CIRCE2 \text{ in order to account for ISR} + \text{beam spectra}$

[‡]For detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Backgrounds: $t\bar{t}$, $t\bar{t}Z$, $t\bar{t}h$, WWh, WWZ, ZZh, ZZZ, ...

Signal and background events generated at leading order by: $FEYNRULES \rightarrow MADGRAPH5^{\dagger} \rightarrow PYTHIA8 \rightarrow DELPHES^{\ddagger}$

 $^{^{\}dagger}We$ used $W{\ensuremath{\mathrm{HIZARD}}}$ + CIRCE2 in order to account for ISR + beam spectra

[‡]For detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Backgrounds: $t\bar{t}$, $t\bar{t}Z$, $t\bar{t}h$, WWh, WWZ, ZZh, ZZZ, ...

Signal and background events generated at leading order by: $FEYNRULES \rightarrow MADGRAPH5^{\dagger} \rightarrow PYTHIA8 \rightarrow DELPHES^{\ddagger}$

Goal: Reconstructing the mass peaks of τ' for various $M_{\tau'}$ in various signal regions

 $^{{}^{\}dagger}\text{We}$ used $\mathrm{WHIZARD} + \mathrm{CIRCE2}$ in order to account for ISR + beam spectra

[‡]For detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, WWh, WWZ, ZZh, ZZZ, ...

Signal and background events generated at leading order by: $FEYNRULES \rightarrow MADGRAPH5^{\dagger} \rightarrow PYTHIA8 \rightarrow DELPHES^{\ddagger}$

Goal: Reconstructing the mass peaks of au' for various $M_{ au'}$ in various signal regions

Consider 1 TeV ILC with unpolarized beams for demonstration (**Preliminary**)

 $^{\dagger}\text{We}$ used $\mathrm{WHIZARD} + \mathrm{CIRCE2}$ in order to account for ISR + beam spectra

‡For detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Signal regions with exactly 2τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-/jj$ and h from bb

- 4 $e/\mu + 2 \tau$
- ▶ $4j + 2\tau$
- \triangleright 2 $e/\mu + 2 i + 2 \tau$
- \triangleright 2 e/ μ + 2 b + 2 τ
- \triangleright 2 j + 2 b + 2 τ
- ▶ $4 b + 2 \tau$

Signal regions with exactly 2τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-/jj$ and h from bb

$$\begin{array}{l} \blacktriangleright \ 4 \ e/\mu + 2 \ \tau \\ \blacktriangleright \ 4 \ j + 2 \ \tau \\ \blacktriangleright \ 2 \ e/\mu + 2 \ j + 2 \ \tau \\ \blacktriangleright \ 2 \ e/\mu + 2 \ b + 2 \ \tau \\ \blacktriangleright \ 2 \ j + 2 \ b + 2 \ \tau \\ \blacktriangleright \ 4 \ b + 2 \ \tau \end{array} \right\} Z h \tau \tau$$

[†]There could be more than 2 candidate Z/h in events with $4e/4\mu/4j/4b$.

Signal regions with exactly 2τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-/jj$ and h from bb

Strategy:

- Require both taus τ_1, τ_2 have opposite-signs
- ▶ Reconstruct all candidate Z/h bosons, B_1 , B_2 , ...[†]
- \blacktriangleright Find various pairings that reconstruct τ' pair:

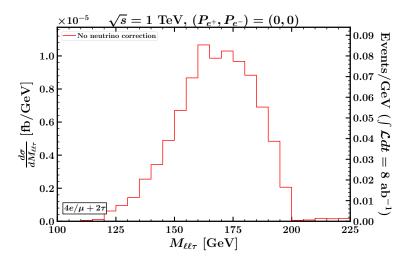
$$au_1' = (au_1, B_k)$$
 and $au_2' = (au_2, B_\ell)$

such that the candidate bosons B_k , B_ℓ are unique

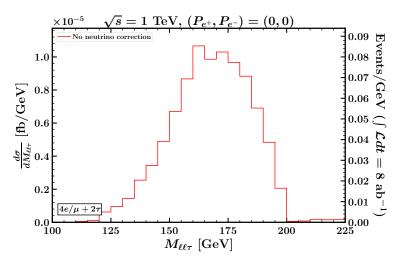
[†]There could be more than 2 candidate Z/h in events with $4e/4\mu/4j/4b$.

Naive attempt: Pick a pairing that minimizes $|M_{\tau_1'} - M_{\tau_2'}|$ and plot $(M_{\tau_1'} + M_{\tau_2'})/2$ (choosing $M_{\tau'} = 200$ GeV)

Naive attempt: Pick a pairing that minimizes $|M_{\tau_1'}-M_{\tau_2'}|$ and plot $(M_{\tau_1'}+M_{\tau_2'})/2$ (choosing $M_{\tau'}=200$ GeV)



Naive attempt: Pick a pairing that minimizes $|M_{\tau_1'} - M_{\tau_2'}|$ and plot $(M_{\tau_1'} + M_{\tau_2'})/2$ (choosing $M_{\tau'} = 200$ GeV)



Can do better: account for the missing four-momentum of each τ_i carried by neutrinos ν_i

Better attempt:†

▶ Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |\vec{p}_{
u_1}|, \quad \vec{p}_{
u_1} = (r-1)\vec{p}_{
u_1}$$

Here, τ_1 is taken to be the τ with highest energy[‡]

[†]Additionally, for candidate Z/h bosons reconstructed from (b) jets, rescale the 4-momenta of each (b) jet by a common factor such that their invariant mass is exactly $M_{Z/h}$

[‡]Except in the events with exactly one Z that decays leptonically, in which case τ_1 in each pairing is relabeled to be the τ that is being paired with the leptonically decaying Z.

Better attempt:†

▶ Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |ec{p}_{
u_1}|, \quad ec{p}_{
u_1} = (r-1)ec{p}_{ au_1}$$

Here, τ_1 is taken to be the τ with highest energy[‡]

• Use total missing \mathcal{F} (inferred from \sqrt{s}) to obtain

$$E_{
u_2} = \mathcal{E} - E_{
u_1}, \quad \vec{p}_{
u_2} = \frac{E_{
u_2}}{|\vec{p}_{
u_2}|} \; \vec{p}_{
u_2}$$

 $^{^\}dagger$ Additionally, for candidate Z/h bosons reconstructed from (b) jets, rescale the 4-momenta of each (b) jet by a common factor such that their invariant mass is exactly $M_{Z/h}$

[‡]Except in the events with exactly one Z that decays leptonically, in which case τ_1 in each pairing is relabeled to be the τ that is being paired with the leptonically decaying Z.

Better attempt:†

▶ Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |ec{p}_{
u_1}|, \quad ec{p}_{
u_1} = (r-1)ec{p}_{ au_1}$$

Here, τ_1 is taken to be the τ with highest energy[‡]

• Use total missing \mathcal{F} (inferred from \sqrt{s}) to obtain

$$E_{\nu_2} = \cancel{E} - E_{\nu_1}, \quad \vec{p}_{\nu_2} = \frac{E_{\nu_2}}{|\vec{p}_{\tau_2}|} \ \vec{p}_{\tau_2}$$

▶ For each pairing, (τ_1, B_k) and (τ_2, B_ℓ) , solve for r by imposing:

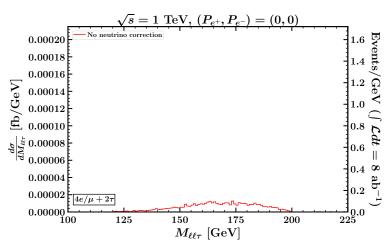
$$\left(p_{B_k}^\mu + p_{ au_1}^\mu + p_{
u_1}^\mu
ight)^2 = \left(p_{B_\ell}^\mu + p_{ au_2}^\mu + p^\mu - p_{
u_1}^\mu
ight)^2$$

and compute
$$ec{p}_{\mathsf{total}} = ec{p}_{\mathsf{visible}} + ec{p}_{
u_1} + ec{p}_{
u_2}$$

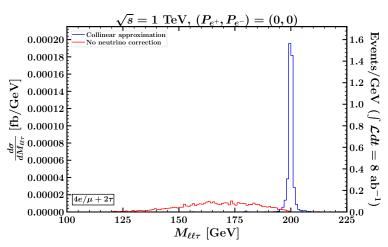
 † Additionally, for candidate Z/h bosons reconstructed from (b) jets, rescale the 4-momenta of each (b) jet by a common factor such that their invariant mass is exactly $M_{Z/h}$

‡Except in the events with exactly one Z that decays leptonically, in which case τ_1 in each pairing is relabeled to be the τ that is being paired with the leptonically decaying Z.

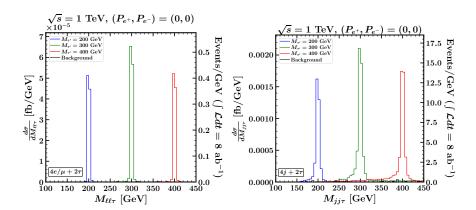
Better attempt: Pick a pairing that minimizes $|\vec{p}_{\text{total}}|$ and plot invariant mass of (τ_1, B_k) and the reconstructed ν_1



Better attempt: Pick a pairing that minimizes $|\vec{p}_{\text{total}}|$ and plot invariant mass of (τ_1, B_k) and the reconstructed ν_1



- lacktriangle Might lose some events where u not actually collinear with au
- \triangleright Collinear approximation holds better for larger $M_{\tau'}$ (examples below)



- ▶ Backgrounds seem very small (at least with processes included so far)
- Similar peak reconstructions also possible in all the other signal regions with 2τ (not shown here)

Signal regions with exactly 1τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-$, h from bb, and W from jj

- \triangleright 2 e/mu + 2 j + 1 τ
- \triangleright 2 j + 2 b + 1 τ

Signal regions with exactly 1τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-$, h from bb, and W from jj

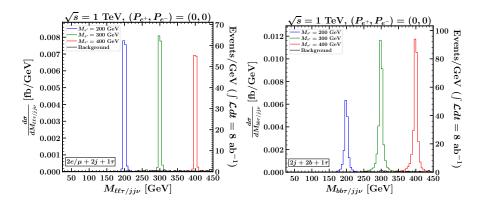
- ▶ 2 $e/mu + 2 j + 1 \tau$ } $ZW\tau\nu_{\tau}$
- \triangleright 2 j + 2 b + 1 τ } $hW\tau\nu_{\tau}$

Signal regions with exactly 1τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-$, h from bb, and W from jj

- ightharpoonup 2 e/mu + 2 j + 1 τ } ZW $\tau \nu_{\tau}$
- \triangleright 2 j + 2 b + 1 τ } $hW\tau\nu_{\tau}$

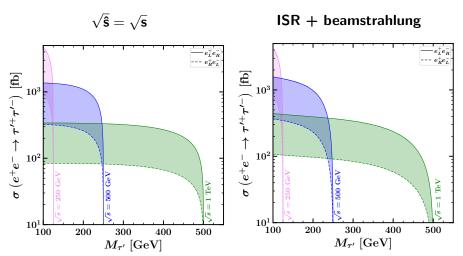
Strategy:

- ▶ Similar to the signal regions with 2τ , except there is only one tau
- No ambiguity in finding the correct pairing: τ (and its associated neutrino ν) is always paired with Z/h



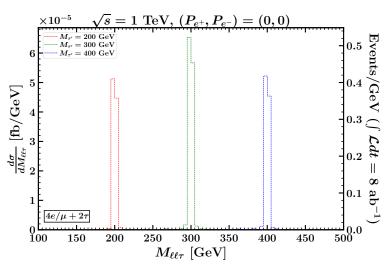
- ightharpoonup Backgrounds slightly larger than SRs with 2τ but still very sub-dominant
- ▶ Since BR($au' o W
 u_{ au}$) is the largest, we have far better statistics in these SRs

For more realistic peak reconstructions, one should also account for ISR and beamstrahlung

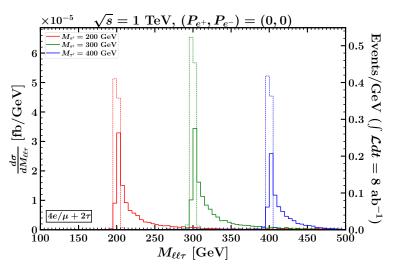


▶ Right: Since $\hat{\sigma} \sim 1/\hat{s}$ for $s \gg M_{\tau'}^2$, slightly enhanced cross sections for small $M_{\tau'}$

Peak reconstruction with ISR and beamstrahlung: Consider, e.g., $4e/\mu + 2\tau$ signal region



Peak reconstruction with ISR and beamstrahlung: Consider, e.g., $4e/\mu + 2\tau$ signal region



lacktriangle Distributions more spread out but still peak $\sim M_{ au'}$

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed
- ► Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed
- Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

 e^+e^- collider may act as a discovery machine for particles with only electroweak interactions that have limited reach at a hadron collider!