Vectorlike Fermions as Portals into Higgs Stability

Tom Steudtner Technische Universität Dortmund University of Cincinnati

based on arXiv:2207.07737 Phys.Rev.D 106 (2022) 11, 115004

in collaboration with Gudrun Hiller, Tim Höhne, Daniel Litim

PIKIMO – April 29th 2023

Problem?

» Higgs potential in the SM is metastable [Degrassi, Di Vita, Miro, Espinosa, Giudice, Isidori, Strumia '12] [Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia '13]

Problem?

» Higgs potential in the SM is metastable [Degrassi, Di Vita, Miro, Espinosa, Giudice, Isidori, Strumia '12] [Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia '13] 10^{0} SM 10^{-1} Planck Landau 10^{-2} α_3 α_2 10^{-3} α_t α_1 10^{-4} $|\alpha_{\lambda}|$ 10^{-5} 10^{-6} 10^{20} 10^{28} 10^{10} 10^{12} $10^{\overline{14}}$ 10^{16} 10^{18} 10^{22} 10^{24} 10^{26} $10^{\overline{32}}$ 10^{40} 10^{6} 10^{8} 10^{30} 10^{34} 10^{36} 10^{38} 10^{4} 10^{42} μ/GeV » metastability: $\lambda < 0$ around 10¹⁰ GeV

» Landau pole around 10⁴¹ GeV

Problem?

» Higgs potential in the SM is metastable [Degrassi, Di Vita, Miro, Espinosa, Giudice, Isidori, Strumia '12] [Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia '13] 10^{0} 10^{-1} SM Planck Landau 10^{-2} Ξ α_3 α_2 10^{-3} α_t α_1 10^{-4} $|\alpha_{\lambda}|$ 10^{-5} 10^{-6} 10^{18} 10^{20} 10^{28} 10^{10} $10^{\overline{12}}$ 10^{16} 10^{22} 10^{24} 10^{6} 10^{8} 10^{14} 10^{26} 10^{30} 10^{32} 10^{34} 10^{36} 10^{38} 10^{4} 10^{40} 10^{42} μ/GeV

» metastability: $\lambda < 0$ around 10¹⁰ GeV

» Landau pole around 10⁴¹ GeV What is the easiest way to cure metastability?

» common approach: BSM scalar fields ${\cal S}$

- \rightarrow scalar portal coupling $\propto \delta (H^{\dagger}H)(S^{\dagger}S)$
- \rightarrow uplift of the Higgs coupling $\propto \lambda \, (H^{\dagger}H)^2 \qquad \beta_{\lambda} = \beta_{\lambda}^{\rm SM} + c \, \delta^2$

 \rightarrow BSM scalar sector requires their own stability analysis

» common approach: BSM scalar fields ${\cal S}$

- \rightarrow scalar portal coupling $\propto \delta (H^{\dagger}H)(S^{\dagger}S)$
- \rightarrow uplift of the Higgs coupling $\propto \lambda (H^{\dagger}H)^2 \qquad \beta_{\lambda} = \beta_{\lambda}^{\rm SM} + c \, \delta^2$
- \rightarrow BSM scalar sector requires their own stability analysis
- » often overlooked: only BSM fermions [e.g. Gopalakrishna, Velusamy, '18]
 - \rightarrow gauge portal: charged under SM gauge group
 - \rightarrow Yukawa portal: interactions with H and SM fermions

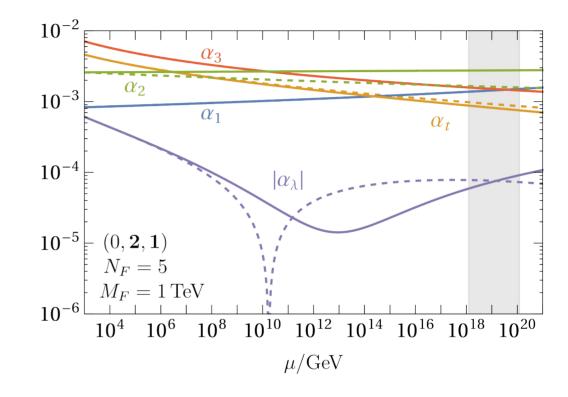
 \ast common approach: BSM scalar fields S

- \rightarrow scalar portal coupling $\propto \delta (H^{\dagger}H)(S^{\dagger}S)$
- \rightarrow uplift of the Higgs coupling $\propto \lambda (H^{\dagger}H)^2 \qquad \beta_{\lambda} = \beta_{\lambda}^{\rm SM} + c \, \delta^2$

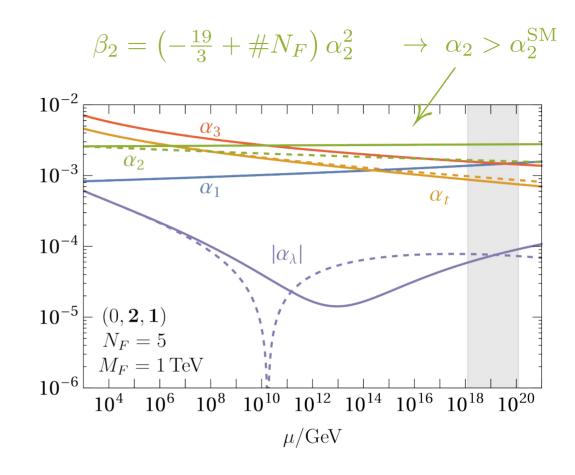
 \rightarrow BSM scalar sector requires their own stability analysis

» often overlooked: only BSM fermions [e.g. Gopalakrishna, Velusamy, '18]

- \rightarrow gauge portal: charged under SM gauge group
- \rightarrow Yukawa portal: interactions with H and SM fermions

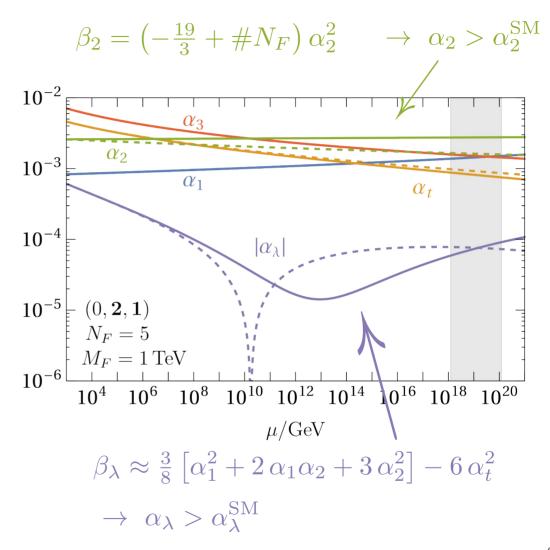

» Our Models:

- $\rightarrow N_F$ vector-like fermions
- \rightarrow mass M_F can be TeV-ish or higher
- \rightarrow representations (Y_F, d_2, d_3) under $U(1)_Y \times SU(2)_L \times SU(3)_c$

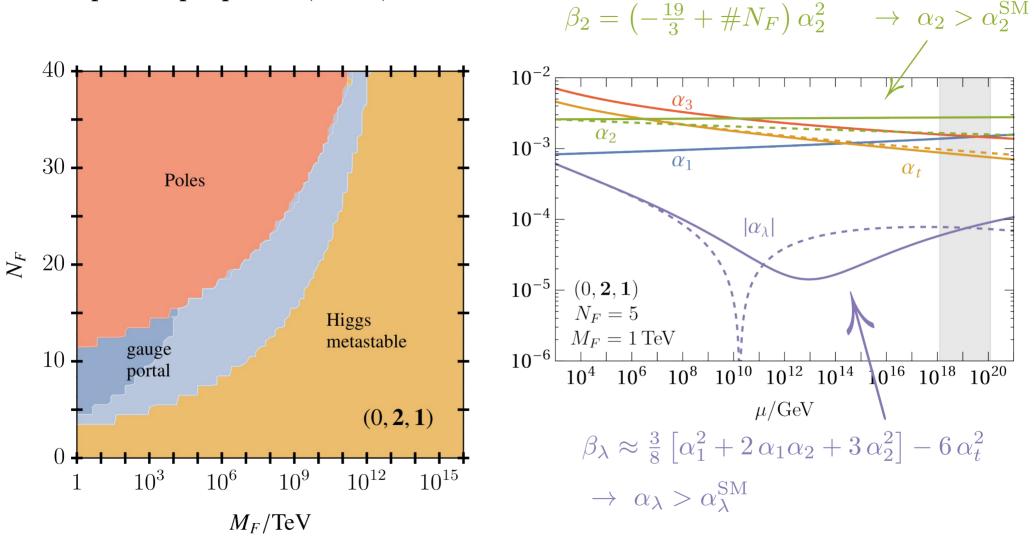

» common approach: BSM scalar fields S

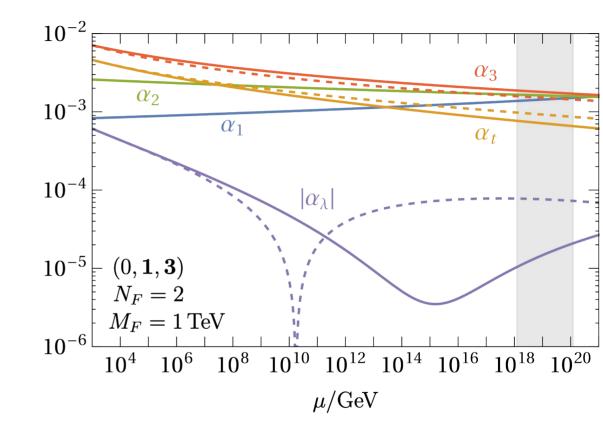
- \rightarrow scalar portal coupling $\propto \delta (H^{\dagger}H)(S^{\dagger}S)$
- \rightarrow uplift of the Higgs coupling $\propto \lambda (H^{\dagger}H)^2 \qquad \beta_{\lambda} = \beta_{\lambda}^{\rm SM} + c \,\delta^2$
- \rightarrow BSM scalar sector requires their own stability analysis
- » often overlooked: only BSM fermions [e.g. Gopalakrishna, Velusamy, '18]
 - \rightarrow gauge portal: charged under SM gauge group
 - \rightarrow Yukawa portal: interactions with H and SM fermions
- » Our Models: Theories are stable, valid until Planck scale, no EFT cutoff
 - $\rightarrow N_F$ vector-like fermions
 - \rightarrow mass M_F can be TeV-ish or higher
 - \rightarrow representations (Y_F, d_2, d_3) under $U(1)_Y \times SU(2)_L \times SU(3)_c$

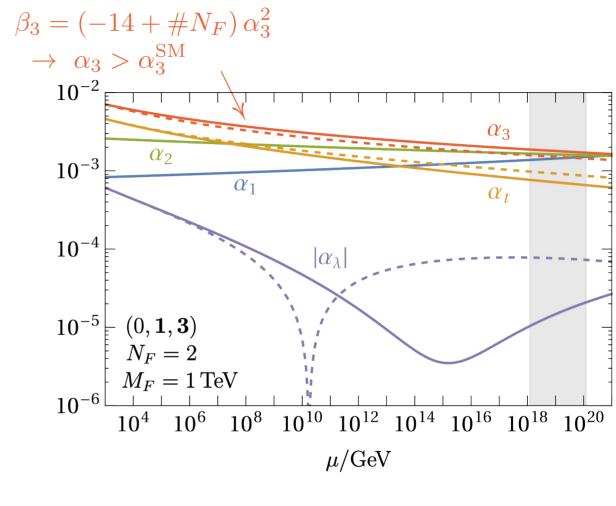
Example: Isospin portal (0, 2, 1)

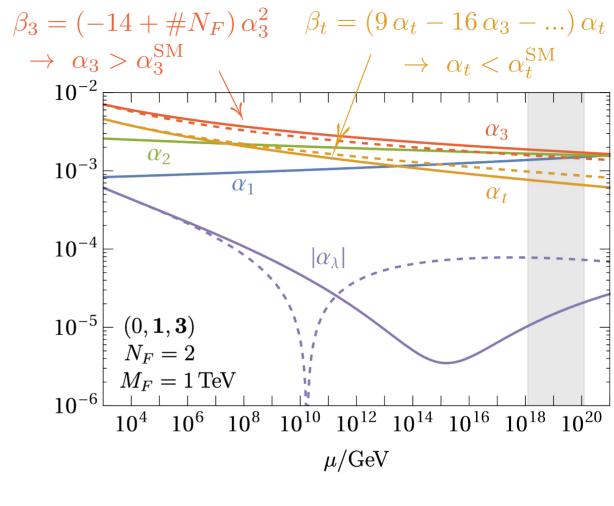


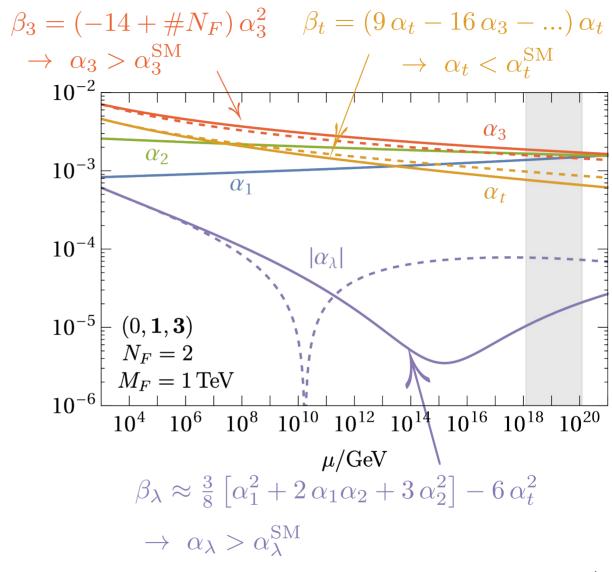
Example: Isospin portal (0, 2, 1)

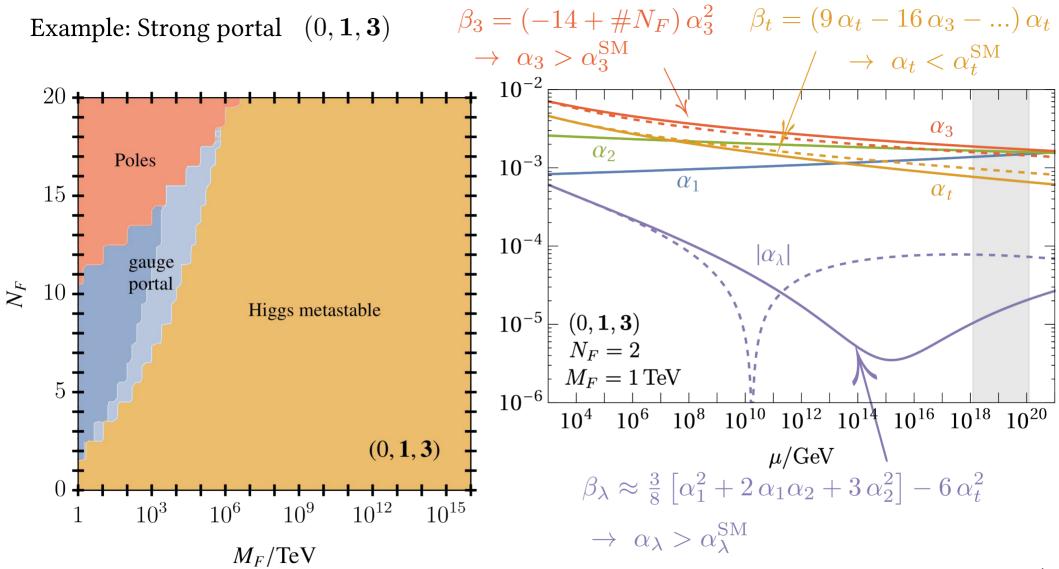



3


Example: Isospin portal (0, 2, 1)




Example: Isospin portal (0, 2, 1)



- » gauge portals *collaborate*
- » stabilize Higgs through 2/3-loop (leading log) effects

- » gauge portals *collaborate*
- » stabilize Higgs through 2/3-loop (leading log) effects
- » no mechanism to move Landau pole \rightarrow large reps. excluded for $N_F = 1$, limit for N_F

- » gauge portals *collaborate*
- » stabilize Higgs through 2/3-loop (leading log) effects
- » no mechanism to move Landau pole \rightarrow large reps. excluded for $N_F=1$, limit for N_F

» but: some reps. allow for SM-BSM interaction with Higgs

Γ	Model	Poles	Stability	
	$\left(Y_{F},d_{2},d_{3} ight)$	$N_F^{ m pole}~~lpha^{ m pole}$	$\alpha_{\lambda} _{M_{\mathrm{Pl}}} \ge 0$	$\alpha_{\lambda} \ge 0$
A	(-1, 1, 1)	$7 \alpha_1$	$N_F = 6$	Х
E	B (-1, 3, 1)	$3 \alpha_1$	$1 \le N_F \le 2$	$1 \le N_F \le 2$
C	$C_{-}(-rac{1}{2},{f 2},{f 1})$	$12 \alpha_2$	$3 \le N_F \le 11$	$5 \le N_F \le 11$
Γ	D $(-\frac{3}{2}, 2, 1)$	$2 lpha_1$	$N_F = 1$	Х
E	E (0, 1, 1)	n.a.	Х	Х
F	F (0, 3, 1)	$3 \alpha_2$	$1 \le N_F \le \frac{5}{2}$	$\frac{3}{2} \le N_F \le \frac{5}{2}$
C		11 α_3	$2 \le N_F \le 10$	$2 \le N_F \le 10$
E	H $(+\frac{2}{3}, 1, 3)$	$6 \alpha_1$	$2 \le N_F \le 5$	$2 \le N_F \le 5$
Ι	$(-\frac{1}{3}, 3, 3)$	$1 \alpha_2$	Х	Х
J	$(+\frac{2}{3}, 3, 3)$	$1 \alpha_2$	Х	Х
k	$X (+\frac{1}{6}, 2, 3)$	4 α_2	$1 \le N_F \le 3$	$1 \le N_F \le 3$
I	$(+\frac{7}{6}, 2, 3)$	$1 \alpha_1$	Х	Х
\mathbb{N}	$I (-\frac{5}{6}, 2, 3)$	$2 \alpha_1$	$N_F = 1$	$N_F = 1$

- » gauge portals *collaborate*
- » stabilize Higgs through 2/3-loop (leading log) effects
- » no mechanism to move Landau pole \rightarrow large reps. excluded for $N_F = 1$, limit for N_F

>>>	but: some reps. allow for SM-BSM			
	interaction with			
	Higgs			

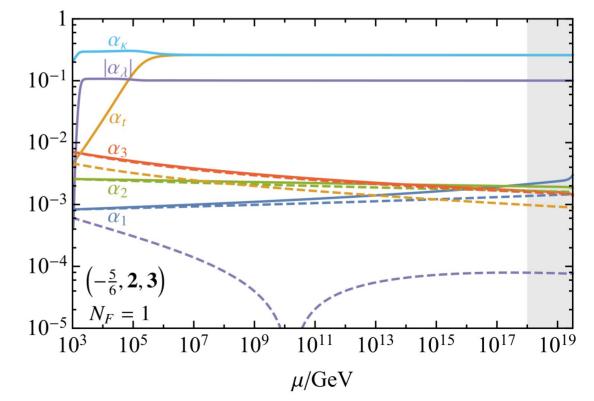
Model	Poles	Poles Stab		-
(Y_F, d_2, d_2)	$N_3) N_F^{\text{pole}} \alpha^{\text{pole}}$	$\alpha_{\lambda} _{M_{\mathrm{Pl}}} \ge 0$	$\alpha_{\lambda} \ge 0$	Yukawa
A $(-1, 1, 1)$.) 7 α_1	$N_F = 6$	Х	$\kappa_{ij} \overline{L}_i H \psi_{Rj}$
B $(-1, 3, 1)$.) 3 α_1	$1 \le N_F \le 2$	$1 \le N_F \le 2$	$\kappa_{ij} \overline{L}_i \psi_{Rj} H$
C $(-\frac{1}{2}, 2, 1)$.) 12 α_2	$3 \le N_F \le 11$	$5 \le N_F \le 11$	$\kappa_{ij} \overline{\psi}_{Li} H E_j$
D $(-\frac{3}{2}, 2, 1)$.) 2 α_1	$N_F = 1$	Х	$\kappa_{ij} \overline{\psi}_{Li}^{-1} H^c E_j$
E (0, $1, 1$) n.a.	Х	Х	$\kappa_{ij} \overline{L}_i H^c \psi_{Rj}$
F (0, $3, 1$) 3 α_2	$1 \le N_F \le \frac{5}{2}$	$\frac{3}{2} \le N_F \le \frac{5}{2}$	$\kappa_{ij}\overline{L}_i\psi_{Rj}H^c$
G $(-\frac{1}{3}, 1, 3)$	b) 11 α_3	$2 \le N_F \le 10$	$2 \le N_F \le 10$	$\kappa_{ij}\overline{Q}_i H\psi_{Rj}$
H $(+\frac{2}{3}, 1, 3)$	$\mathbf{B}) \qquad 6 \alpha_1$	$2 \le N_F \le 5$	$2 \le N_F \le 5$	$\kappa_{ij}\overline{Q}_i H^c \psi_{Rj}$
I $(-\frac{1}{3}, 3, 3)$	$\mathbf{B}) \qquad 1 \alpha_2$	Х	Х	$\kappa_{ij}\overline{Q}_i\psi_{Rj}H$
J $(+\frac{2}{3}, 3, 3)$	$\mathbf{B}) \qquad 1 \alpha_2$	Х	Х	$\kappa_{ij}\overline{Q}_i\psi_{Rj}H^c$
K $(+\frac{1}{6}, 2, 3)$	$\mathbf{B}) 4 \alpha_2$	$1 \le N_F \le 3$	$1 \le N_F \le 3$	$\kappa_{ij}^u \overline{\psi}_{Li} H^c U_j + \kappa_{ij}^d \overline{\psi}_{Li} H D_j$
L $(+\frac{7}{6}, 2, 3)$	$\mathbf{B}) \qquad 1 \alpha_1$	Х	Х	$\kappa_{ij}\overline{\psi}_{Li}HU_j$
M $(-\frac{5}{6}, 2, 3)$	$\mathbf{B}) \qquad 2 \alpha_1$	$N_F = 1$	$N_F = 1$	$\kappa_{ij} \overline{\psi}_{Li} H^c D_j$ 5

» coupling α_{κ} moves gauge Landau poles to higher scales

 $\beta_i = \left[+ \# + \# \alpha_i - \# \alpha_\kappa \right] \alpha_i^2$

» coupling α_{κ} moves gauge Landau poles to higher scales

$$\beta_i = \left[+ \# + \# \alpha_i - \# \alpha_\kappa \right] \alpha_i^2$$

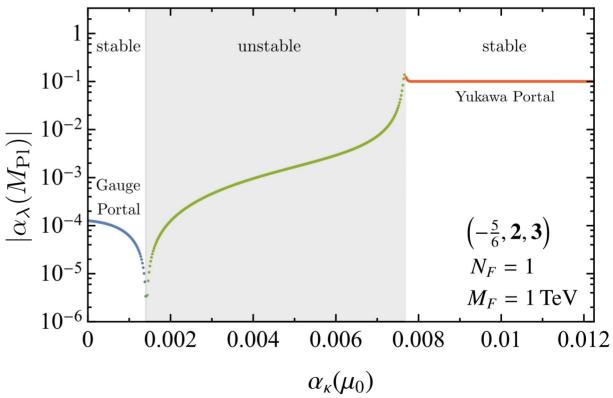

» moderate α_{κ} tend to destabilize the potential

» coupling α_{κ} moves gauge Landau poles to higher scales

$$\beta_i = \left[+ \# + \# \alpha_i - \# \alpha_\kappa \right] \alpha_i^2$$

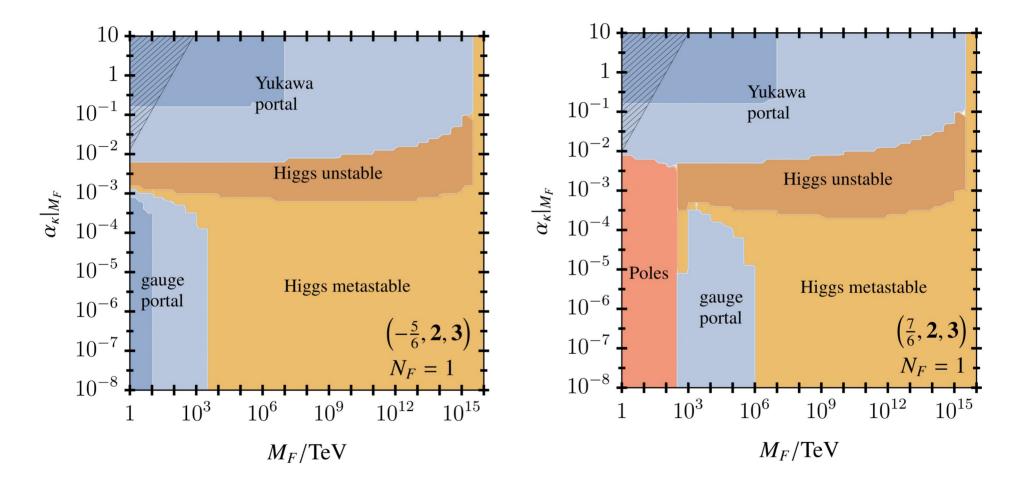
» moderate α_{κ} tend to destabilize the potential

» more sizable α_{κ} leads to walking regime with α_{λ}



» coupling α_{κ} moves gauge Landau poles to higher scales

$$\beta_i = \left[+ \# + \# \alpha_i - \# \alpha_\kappa \right] \alpha_i^2$$


» moderate α_{κ} tend to destabilize the potential

» more sizable α_{κ} leads to walking regime with α_{λ}

Model	$\left(Y_{F},d_{2},d_{3} ight)$	Interactions	Gauge Portal	Yukawa Portal
А	(-1, 1 , 1)	$\kappa\overline{L}_3H\psi_R$	X	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.20 (6 \cdot 10^{-3})$
В	(-1, 3 , 1)	$\kappa\overline{L}_{3}\psi_{R}H$	$\alpha_{\kappa} _{1 \text{ TeV}} \lesssim 2 \cdot 10^{-4} \left(1.6 \cdot 10^{-3}\right)$	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.4 (1.6 \cdot 10^{-2})$
С	$(-rac{1}{2},oldsymbol{2},oldsymbol{1})$	$\kappa \overline{\psi}_L H E_3$	Х	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.20 (6 \cdot 10^{-3})$
D	$(-rac{3}{2},oldsymbol{2},oldsymbol{1})$	$\kappa \overline{\psi}_L H^c E_3$	$(lpha_\kappa _{1~{ m TeV}}\lesssim 3\cdot 10^{-5})$	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.20 (8 \cdot 10^{-3})$
Ε	(0, 1, 1)	$\kappa \overline{L_3} H^c \psi_R$	X	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.20 (5 \cdot 10^{-3})$
F	(0, 3 , 1)	$\kappa \overline{L_3} \psi_R H^c$	$(\alpha_{\kappa} _{1 \text{ TeV}} \lesssim 10^{-3})$	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.4 (1.6 \cdot 10^{-2})$
G	$(-rac{1}{3},oldsymbol{1},oldsymbol{3})$	$\kappa \overline{Q}_3 H \psi_R$	×	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.20 (1 \cdot 10^{-2})$
Н	$(+rac{2}{3},oldsymbol{1},oldsymbol{3})$	$\kappa \overline{Q}_3 H^c \psi_R$	Х	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.20 (6 \cdot 10^{-3})$
Ι	$(-rac{1}{3},old 3,old 3)$	$\kappa\overline{Q}_{3}\psi_{R}H$	×	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.6 (0.3)$
J	$(+rac{2}{3},old 3,old 3)$	$\kappa \overline{Q}_3 \psi_R H^c$	Х	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.6 (0.3)$
Κ	$(+rac{1}{6},old 2,old 3)$	$\kappa_t \overline{\psi}_L H^c U_3 + \kappa_b \overline{\psi}_L H D_3$	$\alpha_{\kappa_t,\kappa_b(\kappa_t)} _{1 \text{ TeV}} \lesssim 10^{-5} (10^{-4})$	$\alpha_{\kappa_t,\kappa_b} _{1 \text{ TeV}} \gtrsim 0.25 (0.13)$
L	$(+rac{7}{6},old 2,old 3)$	$\kappa\overline{\psi}_L H U_3$	Х	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.20 (10^{-2})$
М	$(-rac{5}{6},old 2,old 3)$	$\kappa \overline{\psi}_L H^c D_3$	$\alpha_{\kappa} _{1 \text{ TeV}} \lesssim 8 \cdot 10^{-4} (1.4 \cdot 10^{-3})$	$\alpha_{\kappa} _{1 \text{ TeV}} \gtrsim 0.2 \left(8 \cdot 10^{-3}\right)$

 $N_F = 1, \ M_F = 1 \text{ TeV}$

Conclusion

» *stable great desert*: Theory is well defined, predictive until Planck scale with stabilized Higgs potential

» no BSM scalars required

» opportunities to connect with flavor physics

» gauge portal: weakly coupled mechanism!

 \rightarrow charged/colored long-lived particles, diboson resonances, R-hadrons

» Yukawa portal

- \rightarrow prompt decay to SM particles already for feeble values $\alpha_{\kappa} M_F \gtrsim 10^{-14} \text{ TeV}$
- \rightarrow global SMEFT fits, FCNC bounds