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Gravitational-Wave Spectrum
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|0 GW observations have recently become
STOCHASTIC NANOGrav , , ,
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Gravitational-Wave Spectrum
—

Lo Today, I'll take about an effort to use an array
STOCHASTIC NANOGrav of radio pulsars for observing
" BALK GRODUND £030
\0” M low-frequency GWs.
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Part |I: Pulsars



i ' e A SN g .~ Pulsars are rqtating’.ne‘utrbn's'tars,,'
B s R - B CC -discovered by J. Bell-Burnell in 1967.

.
. L
. . ® .
v
Pulsars are most commonly seen at radio frequencies. ' :

-

(21 M.Bramer

Analysis technique: pulsar timing.



Pulsar Timing in a Nutshell

typically have statistical uncertainties of
~0.1-1 us.

N

® For each pulsar, we derive a “time of IC —_— I \'\ I aB;j'Seld
arrival” (TOA) of an observed pulse and : ;?;Egt'onib
collect many TOAs over ~years. | |
| P Rt e
l ..//}-" -
® For millisecond pulsars (MSPs), TOAs : /// e
f

® As TOAs are collected, we model TOA

I
variations in terms additive time delays ~. L
associated with various physical R .:/
phenomena. :
radio
eam | ight

® The end-products are a timing model and
TOA "“residuals” (i.e., data - model). i

Credit: H. T. Cromartie
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Pulsar Timing Examples
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Emmanuel Fonseca PIKIMO 2023 29 April 2023




Pulsar Timing as a Tool

® There are many applications of pulsar

timing, for example:
® astrometry
® “timing noise”
® orbital motion

® tests of general relativity and

<N B-field
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EOS physics S
— - ‘L‘ .
® |SM structure !
radio iaht
: : : eam (:‘3;-;'|i."ci%::~'
® interstellar navigation '
® direct detection of GWs A
Credit: H. T. Cromartie
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Part Il: P1As



Pulsars Can Directly Detect GWs

® Each pulsar is unique in its timing
properties, but all are observed

using observatories on Earth. /

® GWs that affect the observer
therefore impact all pulsar data in
the same way.

® |n theory, we can construct a
“pulsar timing array” and search
for correlated timing features the
TOA residuals for all pulsars.

Credit: D. Champion
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A Toy PTA

rs

Credit: H. T. Cromartie
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Source(s) ot GWs tor PTAs

Stellar Core
Merger

» { 4C 3711
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Gravitational radiation provides
efficient inspiral. Circumbinary
disk may track shrinking orbit,

Galaxy Merger Binary Formalion Continuous GWs

Dynamical Dynarnical fmetion Stellar and gas
friction drives less efficient as mnleraclions may
massive ubjects (o SMBHSs [orm a dominate binary inspiral?

central positions omary. A

Orbital
. 10 pc
separat 1on

The Lifecycle
of Binary
Supermassive
Black Holes

GW Stramn

Evoluiion
duraiion

Burke-Spolaor et al. (2019)

Coalescence,
Memory & Recoil

&

Post-coalescence svstem
may experience
gravitational recoil.

The expected source of nHz-freq. GWs for PTAs is a population of merging
supermassive-black-hole binary systems, though PTAs can also place limits on
GWs from, e.g., cosmic strings (e.g. Siemens et al., 2007).
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Effelsberg
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We'll focus on NANOGrav
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Credit: H. T. Cromartie

Emmanuel Fonseca PIKIMO 2023 29 April 2023



Part Ill: NANOGrav



The NANOGrav Collaboration

10023 | 022
IN030 -+ IM51
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® NANOGrav = North American
Nanohertz Observatory for
Gravitational Waves.

B e T B T I R N B llq“"

1 it it et ——————— ) | ?(}') — 3T

® NANOGrav pertorms high-
precision timing analyses of iy iR

- ————————— ——- —— 2
11923 1 2515

70+ MSPs, with the key goal R e o
of detecting nHz-freq. GWs. —————— R

e https://nanograv.org/

Alam et al. (20213a)
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(Most of) The NANOGrav Collaboration
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Telescopes Used by NANOGrav

CHIME
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NANOGrav Data/Noise Analysis

® NANOGrav uses methods discussed
in Part | to obtain timing models

and TOA residuals for all MSPs.

® NANOGrav also employs analysis
methods to model all possible l
sources of stochastic “timing noise”,

e.g., variations in dispersion (right).

® Sece Lam et al. (2017, 2019) for - [ \

discussions on noise sources and

W\

their mitigation.
cif mitigaten Credit: H. T. Cromartie
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Sidenote: Ancillary Science with JO740+6620

JOTE-HOR20 rwviunks Constraints on neutron star equations of state
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The NANOGrav data set for PSR J0740+6620 yields a
significant measurement of the Shapiro time delay, which
itself is related to the mass and geometry of the system —>
highest mass NS known!

See Cromartie et al. (2019) and Fonseca et al. (2021).
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Searching for GWs in the NANOGrav Data Set, |

The residuals induced by a stochastic
GW background is given by

he (f)

Sab(f) — Fab(f) 127T2f3

CORRELATION

where:

® “ab"” denotes a pair of pulsar baselines

® “h _c"isthe GW “strain” amplitude

® | is the degree of correlation between
"ab"” pulsars (Hellings-Downs curve; right) Credit: H. T. Cromartie
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Searching for GWs in the NANOGrav Data Set,
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Correlations of the NANOGrav best-fit TOA residuals were producing improved
upper limits on the GW amplitude (e.g., Arzoumanian et al., 2018; left) until recently,

when the NANOGrav 12.5-yr data set showed significant signs of a common
stochastic process in all TOA data (Arzoumanian et al., 2021c; right).

The signal remains signiticant even when using different Solar-System ephermides
(“"DE", "INPOP") to model planetary impacts on our pulsar-timing data.
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Did NANOGrav Detect GWs??

® NANOGrav sees a common process, but is
this due to a GW background?

® Reconstruction of the correlation curve %i% -T-IE¥ |

cannot differentiate between Hellings- S - = HD
Downs (i.e., GW) and non-GW ~ | NGTI Monopole
correlations, but constraints are improving
between data releases.

o : we cannot say that 3 B ’L} E %% *4_}‘,
we've detected the expected GW s %,T

background (yet). - = HD
- NG1?2 Monopole

® See Allen et al. (2023) for a thorough
"detection checklist” for IPTA groups.

Arzoumanian et al. (2021c¢)
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Ongoing and Future Work for NANOGrav
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® NANOGrav is currently finalizing its
15-yr data set.

® The NANOGrav data set will be

publicly released within the next ~2
months.
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® Major effort ongoing with other IPTA
groups to publish independent+joint
analyses of all PTA data sets on a
similar timescale.

Qcwr(f )hg

[ Stay tuned! Observed GW Frequency, [ [Hz]

Arzoumanian et al., 2018
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