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ANetwork learns patterns 95% dog ﬁ'

89% dog \-\

98% cat

AGive it some unlabeled data

ANetwork assigns labels with some percent confidenge cat
We want to avoid this step
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Basic neural network terminology
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\ activation function
| literally just some function applied
to each element of the vector
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Alnitial weights and biases are randomly selected frodistribution

0.40 +
0.35 A1

0.30 4

0,254

E 0.20 A
Dﬂ 0.15 A

0.10 A
0.05 A

0.00 1

Input Layer

R Y
‘./ 0 X

LIK & ¢ ¢

Multiple Hidden Layers

1 ZL

For example, sampling from a standard Gaussian distribution means the
initial weight matrices could look like this:

—-0.34 —-0.09 -0.05
0.76 0.98 —0.53

1 _
W= 0.50 —=0.97 0.51
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Multiple Hidden Layers Output Layer
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Alnitial weights and biases are randomly selected frodiséribution
ADeep networks must be tuned titicality
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Multiple Hidden Layers ~ Output Layer
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Alnitial weights and biases are randomly selected frodiseribution
ADeep networks must be tuned titicality
Alnteractions between network nodes can be quantified vatuplings

Sounds suspiciously like stat mech!

Alnfinite-width neural network = free field theory
AFinite width  interactions
ASignals propagation = renormalization group flow

ACritically tuned weights and biases = marginal couplings / critical point
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Alnitial weights and biases are randomly selected frodiseribution
ADeep networks must be tuned titicality
Alnteractions between network nodes can be quantified vatuplings

Sounds suspiciously like stat mech!

Given how we want the network to evolve,
can we determine the necessary Initial conditions?
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Multiple Hidden Layers Output Layer
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AHigh percentage of correct prediction
ASimilar inputs should go to similar outputs
AExpect similar results every time you use the network
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AHigh percentage of correct prediction
Similar inputs should go to similar outputs
Expect similar results every time you use the netwqrk

Especially important for physics applications

E.g A2 top quark jet images should receive similar classification
2" AThat classification should be the same every time
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AHigh percentage of correct prediction

Similar inputs should go to similar outputs
Expect similar results every time you use the netwqrk

Especially important for physics applications

' Perhaps introducing physically motivated
-- AYVOUSNI OQuAzya oAttt AYLINROS ¢
t SNKIF LA ¢S OFy ljdzr yiATFe (K¢
* network based on initial network parameters
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Multiple Hidden Layers Output Layer

The orthogonal distribution SR A

(Physically motivated interactions) ., Tew |

AAN orthogonal matrix rotates points on a sphere
t automatically preserves vector norms
ANaturally limits explosions and decays

layer vector bias vector weight matrix

A TFE e

L / activation function
MU. bias initialization can literally just some function applied
always be set to zero to each element of the vector

An orthogonal weight matrix will not

change the magnitude of a vector
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Multiple Hidden Layers

What to measure?

AStat mech relies on probabilities which require randomness
Alnitialize network 100 times to get 100 sets of parameters
ATake averages over initializations to get expectation values

AMeasure properties of initialization that informetwork performance
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N-point functions
AAverage of products of different e
combinations of neurons in each lay:
ASimilar input® similar outputs
t  want minimal layeidependence
(limit explosions and decays)

layer vector bias vector weight matrix

e

Multiple Hidden Layers Output Layer
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Normalized 4-point correlator

N-point functions

Gaussian weight initialization

20 — linear theory 4
® measured linear
—— RelU theory ™
® measured Rell
15 4 —— tanh theory
® measured tanh
10 -+
5 -
':' -
I I I I I I 1 1 1
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Layer

Normalized 4-point correlator

10

Layers

orthogonal weight initialization

SL

— linear theory
® measured linear
—— RelU theory
® measured Rell
—— tanh theory
® measured tanh

i ®
. $ >
! ! ! ! ! ! ! ! !
2.0 2.5 3.0 35 4.0 4.5 5.0 5.5 6.0
Layer

Orthogonal initialization removes layer dependance!

HD, Y. Kahn, D. Roberts [arX3XXXXXX]

A 4

SL+1
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layer vector bias vector weight matrix

The neural tangent kernel (NT‘<)>()( ) )

AChange in layer outputs as biases and "™ il e
weights are updated during training 7! 2f
AGoverndeature learningi.e. whether ‘ Vo b
something useful happens during train N %" -
AConsistent results LK
t want minimal layerdependance 2N LR QR
ABut beware of tradeoff with learning, ‘ 23 N R

which requires layedependence

HO o 22d=2 g e {p W)
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do not affgct NTK eyolution independent
(only induce noise) — 7 A D —
—049 Orthogonal A
Orthogonal D
06 1 = (Gaussian D
2 IIiII 2 I5 3.ICI 3.I5 4.ICI 4.I5 Slﬂ SIS E-II'J
Layer
124 — Gaussian B
DnhugnnalB
update NTK during training B 5101 Gigonal § §
(allow feature learning) F 5 08 ] adz2ReE O
T = 06 «—— maintain depth
. 20 dependence
NTK fluctuations g
interactions between ™!
NTK and layer output 20 25 30 35 40 45 50 55 60
Layer

HD, Y. Kahn, D. Roberts [arX3XXXXXX] 11 of 14



Are thepredictorsright? NerE e ¢

Pal

65284 NBRAZOAY3 66l Ré RSLINK RSLISY

(a) L=50, N=400, Train (b) L=50, N=400, Test (c) L=200, N=400, Train (d) L=200, N=400, Test
1.0 1.0
0.8 0.8
> 0.4 0.4
® 06 0.6
3 0.3 03
O
< 04 0.4
0.2 0.2
0.2 —— Orthogonal initilization 0.2
—— G@Gaussian initilization
0.1 0.1
1.0x10% 3.0x10% 5.0x104 1.0x10% 3.0x10% 5.0x10% 1.0x10% 3.0x10% 5.0x10% 1.0x10% 3.0x10* 5.0x10%
training steps training steps training steps

/ training steps

Gaussian test accuracy plateaus
Gaussian takes longer to train when depth increases sooner and lower than orthogonal
Orthogonal trains at approximately the same rate as training steps increase

W. Huang, W. Du, R. Xu [arXiv:2004.05867] 12 of 14



Are the predictors right?

652Sa&8 NBRdJzOAY3 G0l Ré RSLIIK RSLISY
Future work:

ADoes variance in accuracy also decrease with orthogonal initialization?
AWhat happens with other types of networks (e.g. convolutional)?

ACan we generically determine the best initialization distribution?

AHow does the type of data affect results?

AHow far does the analogy go? (Feynman diagrams?)
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Conclusion O T o P B

OF ? JUST MOPEL
ITAS A - AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT FOR

ANeural networks can be described using \
EASY, RIGHT?

statistical mechanics )

50, WHY DOES NEED
ANetwork outputs can be both stochastic AVHOLE TURNAL, ARNTWAY?
(governed by statistics) and deterministic
(predictable)c just like in stat mech!

ATechniques from statistical mechanics can by
used for network optimization

AMeasurements at initialization can predict

tralnlng SUccess LIBERAL-ARTS MATORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTAHINVG MORE OBRNOXIOUS THAN
A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.
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Explosions and disappearances

(What does criticality mean?)
ALarge weight initialization large network output

Wi =0(100) mmy |27 — oo
ASmall weight initialization small network output
Wi =00.01) mmp |25 — 0

ANetwork cannot learn in either case
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ASmall weight initialization small network output

Wi =00.01) mmp |25 — 0

ANetwork cannot learn in either case
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Explosions and disappearances

(What does criticality mean?)
ALarge weight initialization large network output

Wi =0(100) mmy |27 — oo

ASmall weight initialization small network output

Wi =00.01) mmp |25 — 0

ANetwork cannot learn in either case

ATuning to criticalitymeans preventing exploding and decaying signals

*This maximizes the number of marginal couplings (couplings that do nc

grow or shrink), but does not guarantee tledkcouplings are marginal
6/?



Gaussian vs orthogonal weights

AGaussian distribution is the limiting distributigrall distributions
become Gaussian at infinite width

AOrthogonal distribution corresponds to points on a sphere

Gaussian: Orthogonal:
each matrix element is matrix elements are
selected independently interdependent



