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What is a neural network?

• Give it some labeled data

• Network learns patterns

• Give it some unlabeled data

• Network assigns labels with some percent confidence

• Adjust initial network parameters to improve accuracy

98% cat

95% dog

89% dog

93% cat

(Spoiler alert: it’s just fancy regression!)

We want to avoid this step

2 of 14



Basic neural network terminology
bias vector weight matrix

activation function:
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layer vector
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• Initializing the network means picking 
starting values for biases and weights

• Data propagates through the network

• Biases and weights evolve during training

• A trained network has “learned” the best 
biases and weights for optimal performance

Basic neural network terminology
bias vector weight matrix

activation function:
literally just some function applied 

to each element of the vector

layer vector
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Where’s the physics?

• Initial weights and biases are randomly selected from a distribution

For example, sampling from a standard Gaussian distribution means the 
initial weight matrices could look like this:
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Where’s the physics?

• Initial weights and biases are randomly selected from a distribution

• Deep networks must be tuned to criticality

• Interactions between network nodes can be quantified with couplings

Sounds suspiciously like stat mech!

• Infinite-width neural network = free field theory

• Finite width ⟹ interactions

• Signals propagation = renormalization group flow

• Critically tuned weights and biases = marginal couplings / critical point
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Where’s the physics?

• Initial weights and biases are randomly selected from a distribution

• Deep networks must be tuned to criticality

• Interactions between network nodes can be quantified with couplings

Sounds suspiciously like stat mech!

Given how we want the network to evolve, 

can we determine the necessary initial conditions?

4 of 14



What makes a network “good”?

• High percentage of correct prediction

• Similar inputs should go to similar outputs

• Expect similar results every time you use the network
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What makes a network “good”?

• High percentage of correct prediction

• Similar inputs should go to similar outputs

• Expect similar results every time you use the network

Especially important for physics applications:

• 2 top quark jet images should receive similar classification
• That classification should be the same every time

E.g.
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What makes a network “good”?

• High percentage of correct prediction

• Similar inputs should go to similar outputs

• Expect similar results every time you use the network

Perhaps we can quantify the “goodness” of a 
network based on initial network parameters

Especially important for physics applications

Perhaps introducing physically motivated 
interactions will improve “goodness” of network
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The orthogonal distribution

• An orthogonal matrix rotates points on a sphere

⇒ automatically preserves vector norms

• Naturally limits explosions and decays

bias vector weight matrix

activation function:
literally just some function applied 

to each element of the vector

layer vector

An orthogonal weight matrix will not 
change the magnitude of a vector

bias initialization can 
always be set to zero

6 of 14

(Physically motivated interactions)



What to measure?

• Stat mech relies on probabilities which require randomness

• Initialize network 100 times to get 100 sets of parameters

• Take averages over initializations to get expectation values

• Measure properties of initialization that inform network performance
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N-point functions

• Average of products of different 
combinations of neurons in each layer

• Similar inputs → similar outputs         
⇒ want minimal layer-dependence

(limit explosions and decays)

bias vector weight matrixlayer vector
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N-point functions

Orthogonal initialization removes layer dependance!

Gaussian weight initialization orthogonal weight initialization

HD, Y. Kahn, D. Roberts [arXiv:23XX.XXXX]

Layers
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The neural tangent kernel (NTK)

• Change in layer outputs as biases and 
weights are updated during training

• Governs feature learning, i.e. whether
something useful happens during training

• Consistent results

⇒ want minimal layer-dependance

• But beware of tradeoff with learning, 
which requires layer-dependence

bias vector weight matrixlayer vector
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NTK: Gaussian vs. orthogonal

A D

B F

NTK fluctuations
interactions between 
NTK and layer output

do not affect NTK evolution
(only induce noise)

update NTK during training 
(allow feature learning)

“bad” correlators 
become depth-
independent

“good” correlators 
maintain depth-
dependence

HD, Y. Kahn, D. Roberts [arXiv:23XX.XXXX]

Layers
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Are the predictors right?
(Does reducing “bad” depth dependance improve network learning?)

Gaussian takes longer to train when depth increases
Orthogonal trains at approximately the same rate

training steps

W. Huang, W. Du, R. Xu [arXiv:2004.05867]

Gaussian test accuracy plateaus 
sooner and lower than orthogonal 

as training steps increase

training steps training steps training steps

LN
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Are the predictors right?
(Does reducing “bad” depth dependance improve network learning?)

Future work:

• Does variance in accuracy also decrease with orthogonal initialization?

• What happens with other types of networks (e.g. convolutional)?

• Can we generically determine the best initialization distribution? 

• How does the type of data affect results?

• How far does the analogy go? (Feynman diagrams?)
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Conclusion

• Neural networks can be described using 
statistical mechanics 

• Network outputs can be both stochastic 
(governed by statistics) and deterministic 
(predictable) – just like in stat mech!

• Techniques from statistical mechanics can be 
used for network optimization

• Measurements at initialization can predict 
training success

14 of 14



Explosions and disappearances

• Large weight initialization ⇒ large network output

• Small weight initialization ⇒ small network output

• Network cannot learn in either case

6/?

(What does criticality mean?)
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Explosions and disappearances

• Large weight initialization ⇒ large network output

• Small weight initialization ⇒ small network output

• Network cannot learn in either case

• Tuning to criticality means preventing exploding and decaying signals

*This maximizes the number of marginal couplings (couplings that do not     
. grow or shrink), but does not guarantee that all couplings are marginal

6/?

(What does criticality mean?)



Gaussian vs orthogonal weights

• Gaussian distribution is the limiting distribution – all distributions 
become Gaussian at infinite width

• Orthogonal distribution corresponds to points on a sphere
Gaussian:
each matrix element is 
selected independently

Orthogonal:
matrix elements are 
interdependent



Comparing weight initialization distributions

• Initial weights and biases are randomly selected from a distribution

• Infinite-width neural network = free (Gaussian) field theory

• Finite width ⟹ interactions

7/?

bias vector weight matrixlayer vector



Comparing weight initialization distributions

• Initial weights and biases are randomly selected from a distribution

• Infinite-width neural network = free (Gaussian) field theory

All distributions become Gaussian at infinite width

• Finite width ⟹ interactions

Non-Gaussian initializations are perturbations away from
(infinite-width) Gaussian limit

7/?

bias vector weight matrixlayer vector



Comparing weight initialization distributions

• Initial weights and biases are randomly selected from a distribution

• Infinite-width neural network = free (Gaussian) field theory

All distributions become Gaussian at infinite width

• Finite width ⟹ interactions

Non-Gaussian initializations are perturbations away from
(infinite-width) Gaussian limit

*even Gaussian initializations become non-Gaussian at finite-width!

Perhaps introducing physically-motivated interactions to our network 
will improve learning

7/?
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