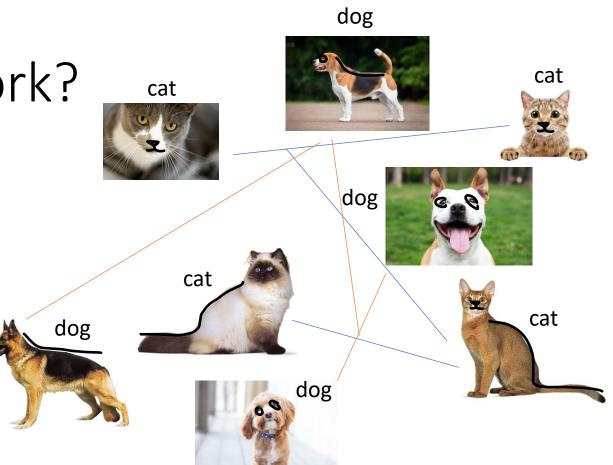
The Physics of Neural Networks Using physics to quantify "goodness" Hannah Day

dog (Spoiler alert: it's just fancy regression!) • Give it some labeled data dog cat

dog

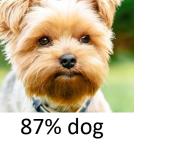
dog

- Give it some labeled data
- Network learns patterns

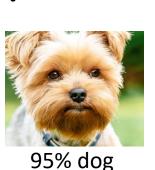


- Give it some labeled data
- Network learns patterns
- Give it some unlabeled data

- Give it some labeled data
- Network learns patterns
- Give it some unlabeled data
- Network assigns labels with some percent confidence 81% cat



- Give it some labeled data
- Network learns patterns
- Give it some unlabeled data
- Network assigns labels with some percent confidence 93% cat
- Adjust initial network parameters to improve accuracy

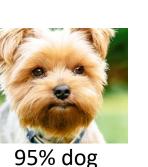


(Spoiler alert: it's just fancy regression!)

- Give it some labeled data
- Network learns patterns
- Give it some unlabeled data
- Network assigns labels with some percent confidence 93% cat

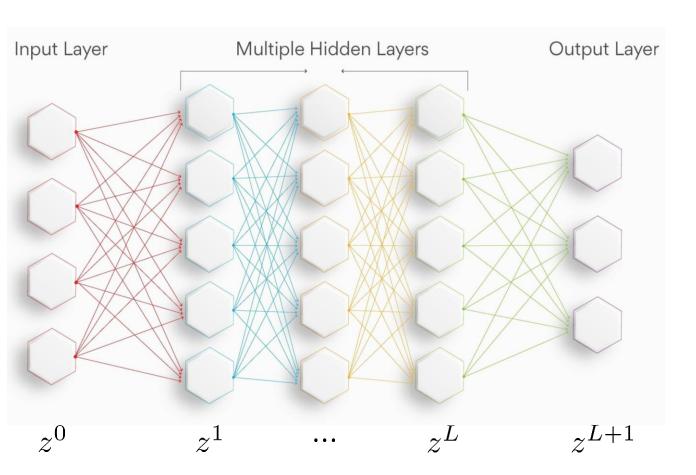
We want to avoid this step

Adjust initial network parameters to improve accuracy

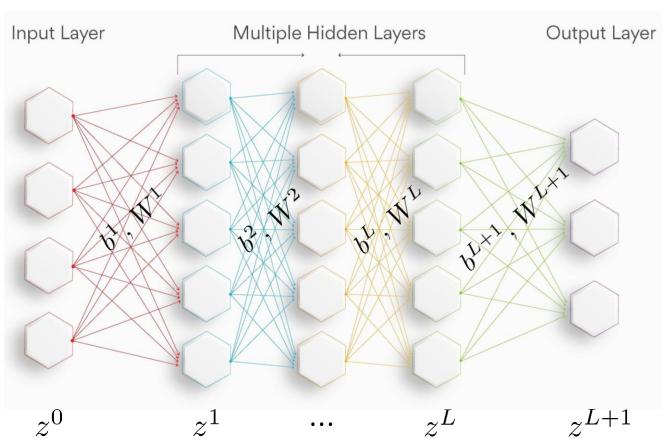


89% dog

98% cat



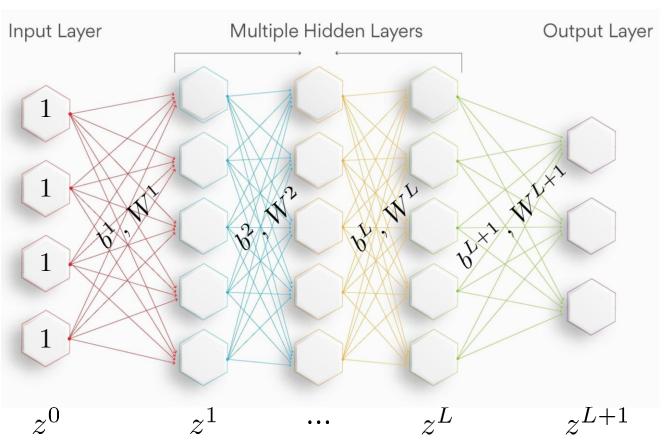
layer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$



ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

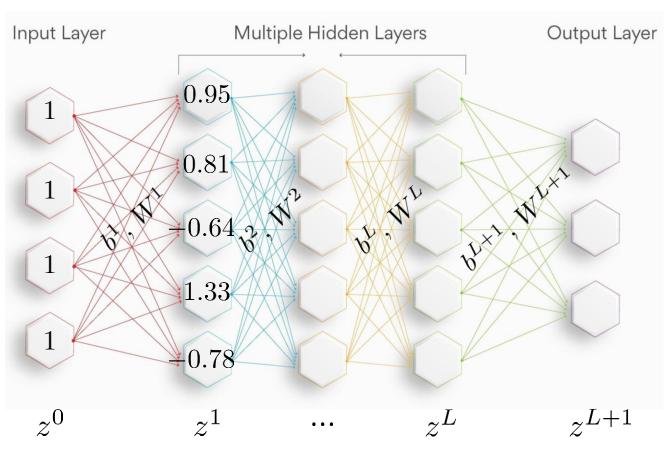
activation function: | literally just some function applied to each element of the vector

• *Initializing the network* means picking <u>starting</u> values for biases and weights



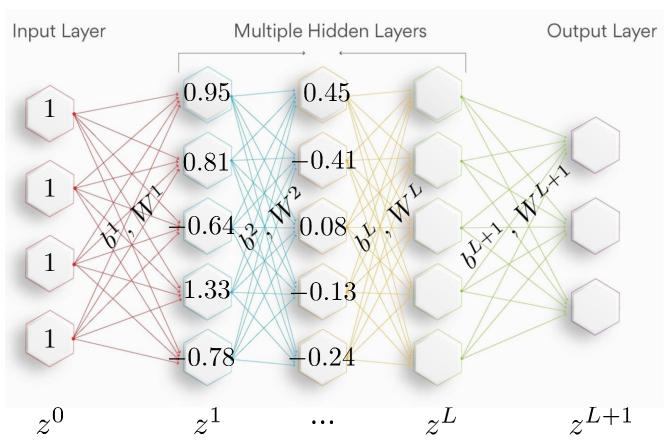
ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- *Initializing the network* means picking <u>starting</u> values for biases and weights
- Data *propagates* through the network



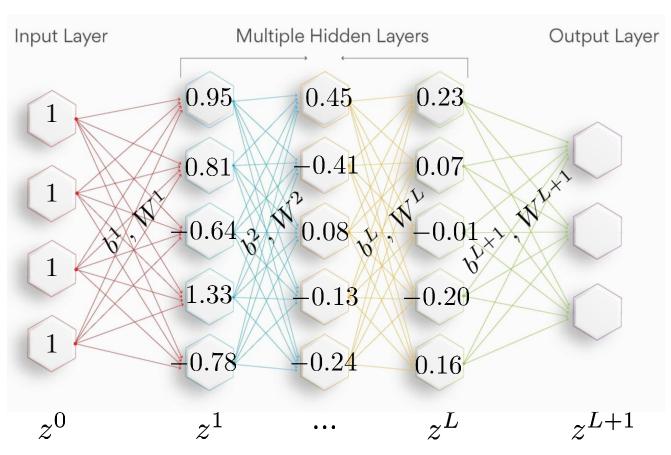
ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- *Initializing the network* means picking <u>starting</u> values for biases and weights
- Data *propagates* through the network



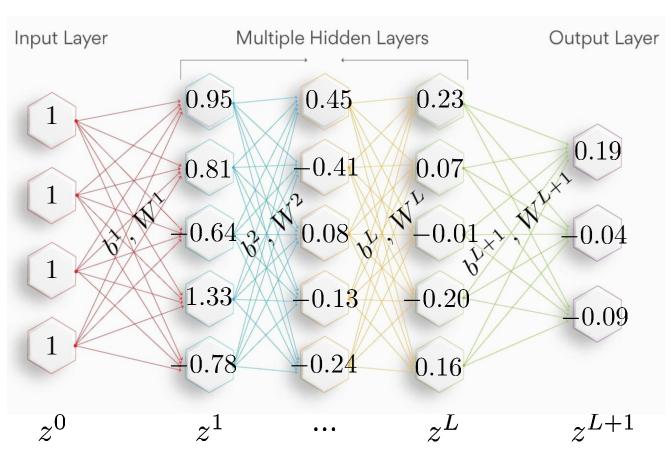
layer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- Initializing the network means picking starting values for biases and weights
- Data *propagates* through the network



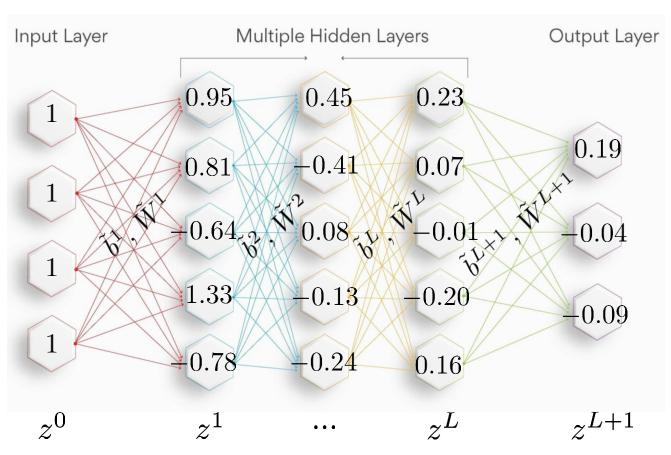
ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- Initializing the network means picking starting values for biases and weights
- Data *propagates* through the network



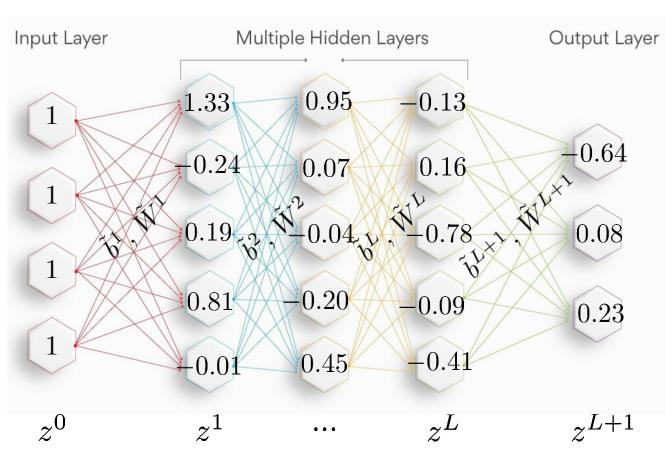
ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- Initializing the network means picking starting values for biases and weights
- Data *propagates* through the network



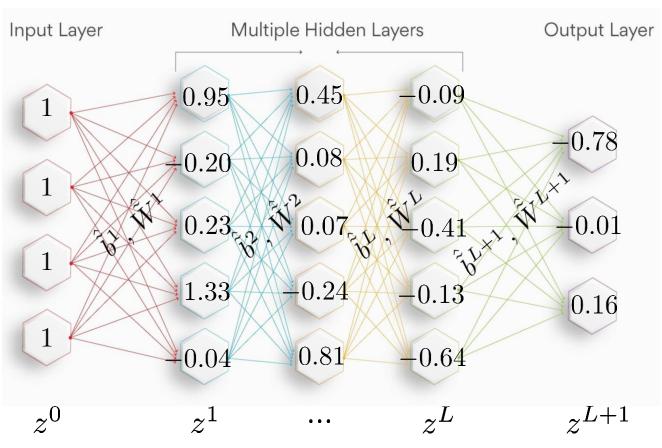
ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- *Initializing the network* means picking <u>starting</u> values for biases and weights
- Data *propagates* through the network
- Biases and weights evolve during training



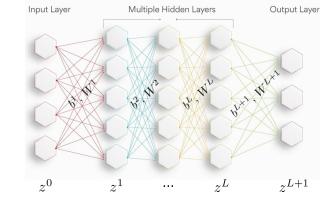
ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- Initializing the network means picking starting values for biases and weights
- Data *propagates* through the network
- Biases and weights *evolve* during training



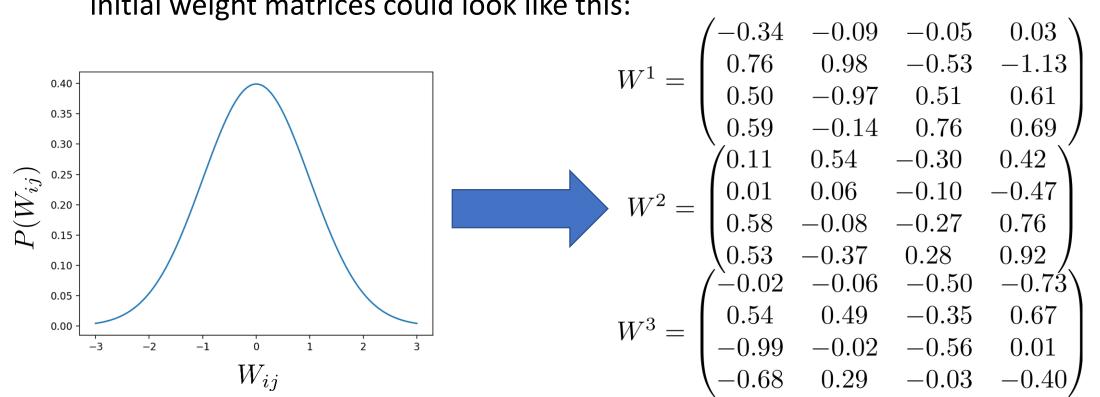
ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

- *Initializing the network* means picking <u>starting</u> values for biases and weights
- Data *propagates* through the network
- Biases and weights *evolve* during training
- A *trained network* has "learned" the best biases and weights for optimal performance

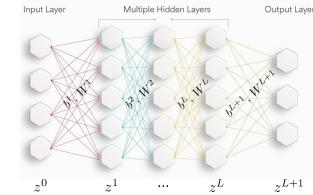


• Initial weights and biases are randomly selected from a distribution

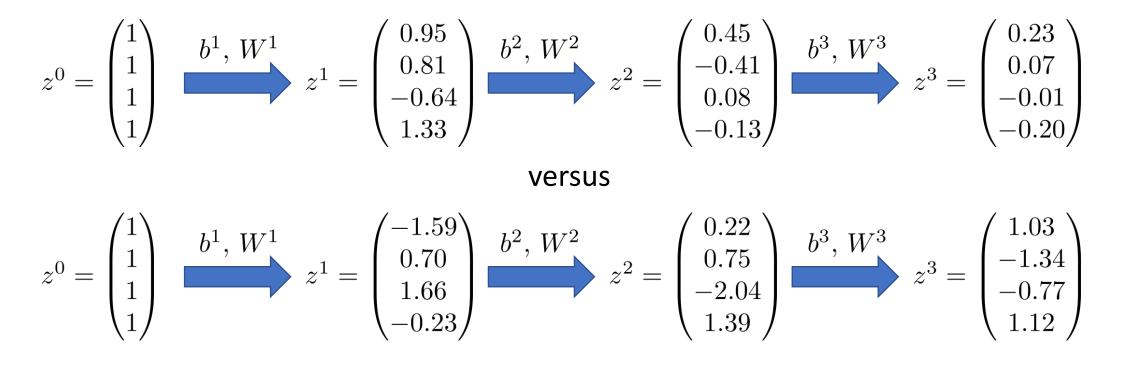
For example, sampling from a standard Gaussian distribution means the initial weight matrices could look like this:

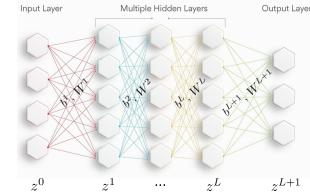


4 of 14

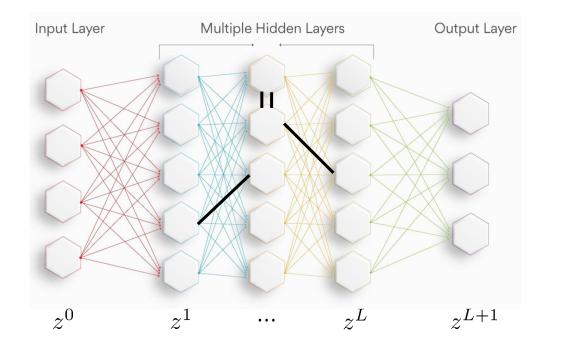


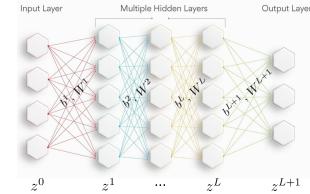
- Initial weights and biases are randomly selected from a distribution
- Deep networks must be tuned to criticality





- Initial weights and biases are randomly selected from a distribution
- Deep networks must be tuned to criticality
- Interactions between network nodes can be quantified with *couplings*

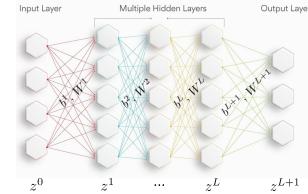




- Initial weights and biases are randomly selected from a distribution
- Deep networks must be tuned to criticality
- Interactions between network nodes can be quantified with *couplings*

Sounds suspiciously like stat mech!

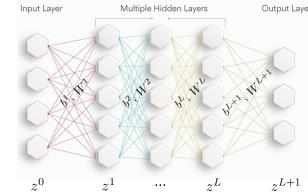
- Infinite-width neural network = free field theory
- Finite width \implies interactions
- Signals propagation = renormalization group flow
- Critically tuned weights and biases = marginal couplings / critical point



- Initial weights and biases are randomly selected from a distribution
- Deep networks must be tuned to *criticality*
- Interactions between network nodes can be quantified with *couplings*

Sounds suspiciously like stat mech!

Given our initial network conditions, can we predict how the network will evolve?

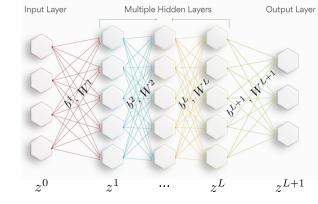


- Initial weights and biases are randomly selected from a distribution
- Deep networks must be tuned to *criticality*
- Interactions between network nodes can be quantified with *couplings*

Sounds suspiciously like stat mech!

Given how we want the network to evolve, can we determine the necessary initial conditions?

- High percentage of correct prediction
- Similar inputs should go to similar outputs
- Expect similar results every time you use the network



Input Layer Multiple Hidden Layers Output Layer u

- High percentage of correct prediction
- Similar inputs should go to similar outputs
- Expect similar results every time you use the network

Especially important for physics applications

 $\gamma L+1$

- High percentage of correct prediction
- Similar inputs should go to similar outputs
- Expect similar results every time you use the network

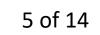
Especially important for physics applications:

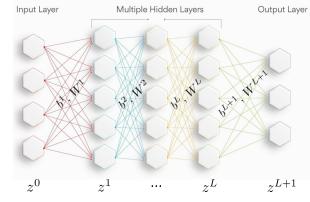
- 2 top quark jet images should receive similar classification
 That classification should be the same every time E.g.

- High percentage of correct prediction
- Similar inputs should go to similar outputs
- Expect similar results every time you use the network

Especially important for physics applications

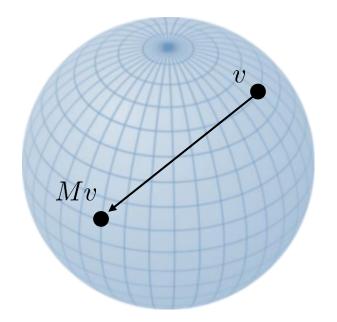
- Perhaps introducing physically motivated interactions will improve "goodness" of network
 - Perhaps we can quantify the "goodness" of a network based on initial network parameters





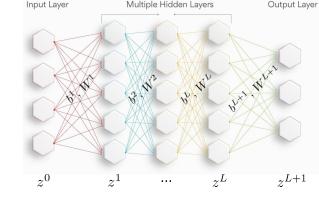
The orthogonal distribution (Physically motivated interactions)

- An orthogonal matrix rotates points on a sphere
 ⇒ automatically preserves vector norms
- Naturally limits explosions and decays

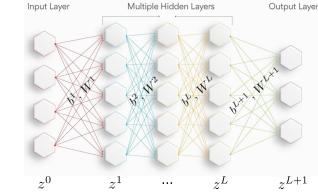


layer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$
bias initialization can
always be set to zero
An orthogonal weight matrix will not

An orthogonal weight matrix will not change the magnitude of a vector

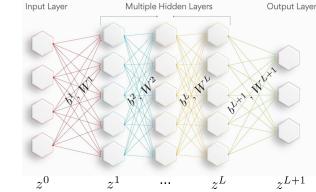


What to measure?

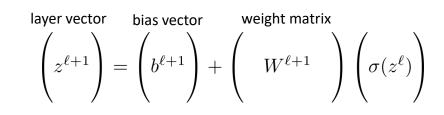


- Stat mech relies on probabilities which require randomness
 - Initialize network 100 times to get 100 sets of parameters
 - Take averages over initializations to get expectation values
- Measure properties of initialization that inform <u>network performance</u>

What to measure?



- Stat mech relies on probabilities which require randomness
 - Initialize network 100 times to get 100 sets of parameters
 - Take averages over initializations to get expectation values
- Measure properties of initialization that inform network performance
 Similar inputs should go to similar outputs ⇒ n-point functions
 - Expect similar results every time you use the network \Rightarrow NTK



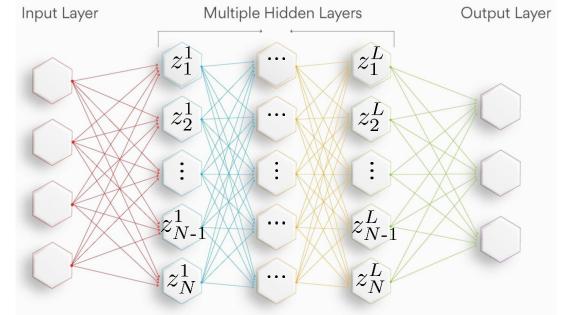
N-point functions

- Average of products of different combinations of neurons in each layer
- Similar inputs → similar outputs
 ⇒ want minimal layer-dependence (limit explosions and decays)

 $\mathbb{E}[z_{i_1}^{\ell} z_{i_2}^{\ell}]$

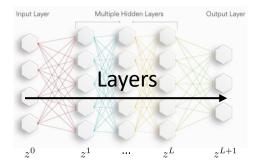
•

 $\mathbb{E}[z_{i_1}^\ell z_{i_2}^\ell z_{i_3}^\ell z_{i_4}^\ell]$

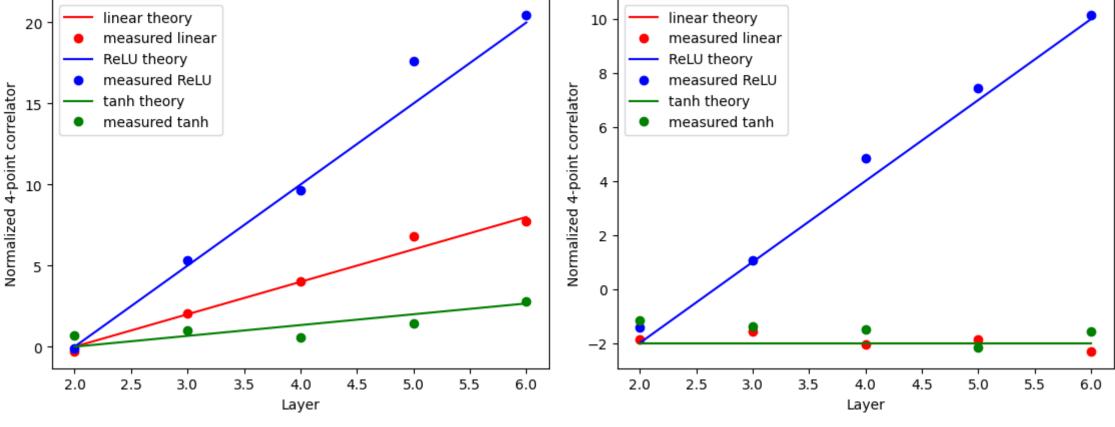


 $\mathbb{E}[z_{i_1}^{\ell} z_{i_2}^{\ell} z_{i_3}^{\ell} z_{i_4}^{\ell}]|_{\text{conn.}} = \mathbb{E}[z_{i_1}^{\ell} z_{i_2}^{\ell} z_{i_3}^{\ell} z_{i_4}^{\ell}] - \mathbb{E}[z_{i_1}^{\ell} z_{i_2}^{\ell}] \mathbb{E}[z_{i_3}^{\ell} z_{i_4}^{\ell}] - \mathbb{E}[z_{i_1}^{\ell} z_{i_3}^{\ell}] \mathbb{E}[z_{i_2}^{\ell} z_{i_3}^{\ell}] \mathbb{E}[z_{i_1}^{\ell} z_{i_$

N-point functions



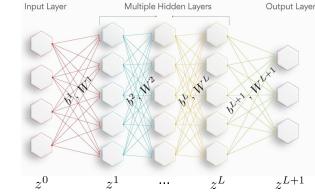
Gaussian weight initialization



Orthogonal initialization removes layer dependance!

HD, Y. Kahn, D. Roberts [arXiv:23XX.XXXX]

What to measure?



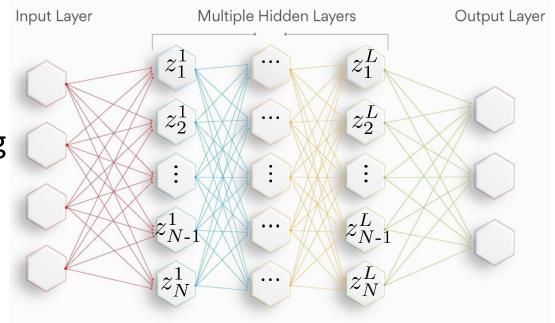
- Stat mech relies on probabilities which require randomness
 - Initialize network 100 times to get 100 sets of parameters
 - Take averages over initializations to get expectation values
- Measure properties of initialization that inform network performance
 Similar inputs should go to similar outputs ⇒ n-point functions
 - Expect similar results every time you use the network \Rightarrow NTK

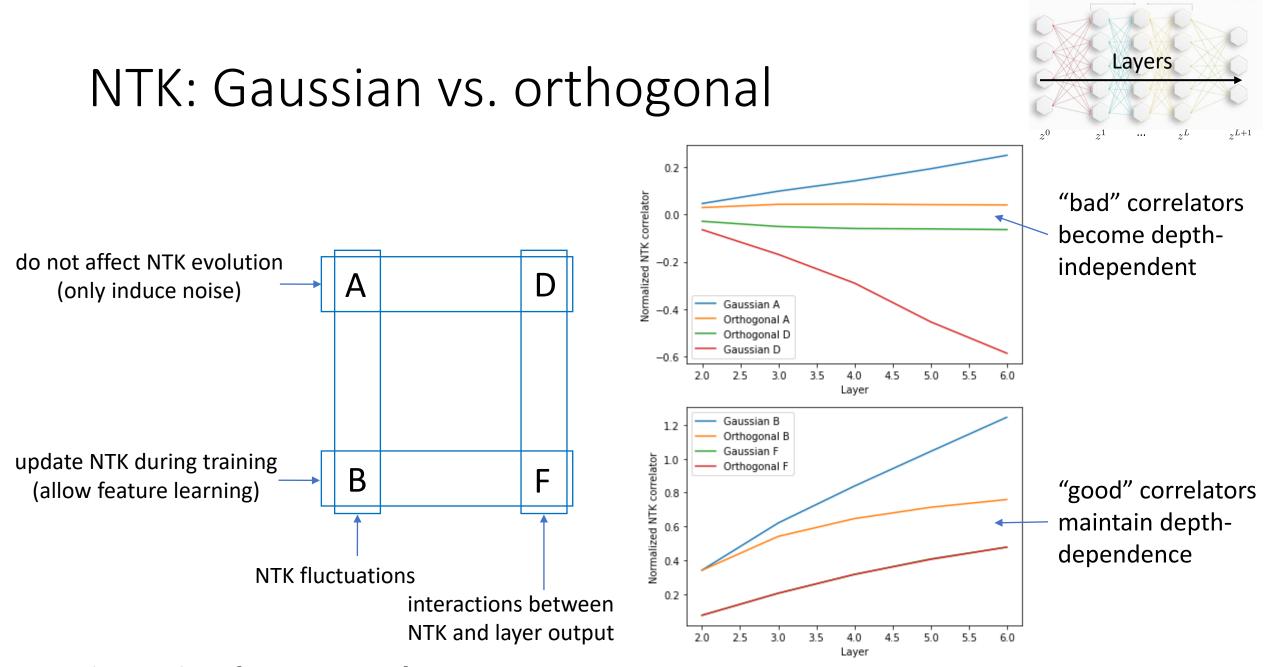
layer vector bias vector weight matrix $\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$

The neural tangent kernel (NTK)

- Change in layer outputs as biases and weights are updated during training
- Governs *feature learning*, i.e. whether something useful happens during training
- Consistent results
- \Rightarrow want minimal layer-dependance
- But beware of tradeoff with learning, which requires layer-dependence

$$\hat{H}^{(\ell)} \propto \frac{dz^{(\ell)}}{d\theta} \frac{dz^{(\ell)}}{d\theta} , \ \theta \in \{b, W\}$$





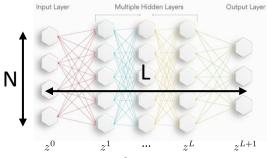
HD, Y. Kahn, D. Roberts [arXiv:23XX.XXXX]

Input Layer

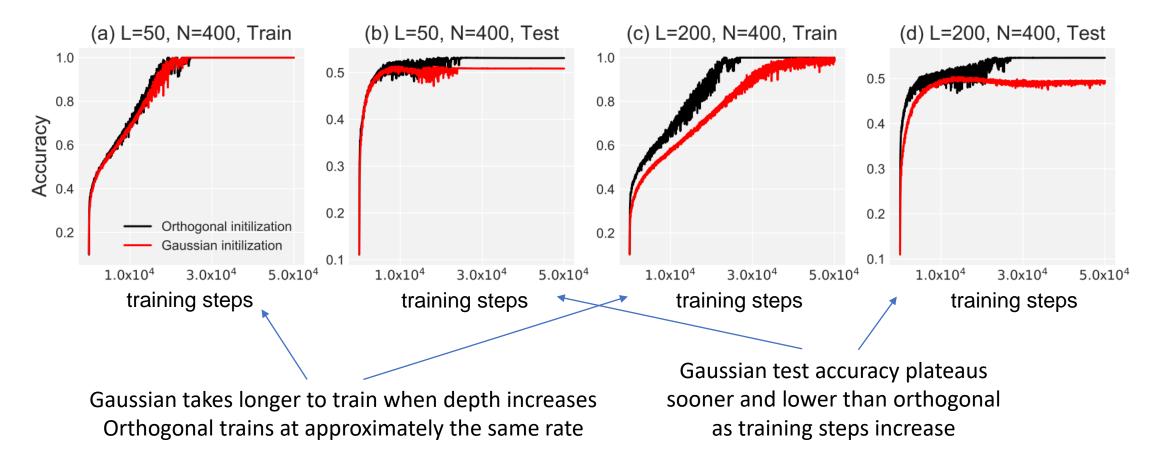
Multiple Hidden Layers

Output Layer

Are the predictors right?



(Does reducing "bad" depth dependance improve network learning?)



Are the predictors right?

(Does reducing "bad" depth dependance improve network learning?)

Future work:

- Does variance in accuracy also decrease with orthogonal initialization?
- What happens with other types of networks (e.g. convolutional)?
- Can we generically determine the best initialization distribution?
- How does the type of data affect results?
- How far does the analogy go? (Feynman diagrams?)

Conclusion

- Neural networks can be described using statistical mechanics
- Network outputs can be both stochastic (governed by statistics) and deterministic (predictable) – just like in stat mech!
- Techniques from statistical mechanics can be used for network optimization
- Measurements at initialization can predict training success



LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES, BUT THERE'S NOTHING MORE OBNOXIOUS THAN A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.

• Large weight initialization \Rightarrow large network output

$$W^i| = \mathcal{O}(100) \quad \square \quad |z^L| \to \infty$$

Small weight initialization ⇒ small network output

$$|W^i| = \mathcal{O}(0.01) \implies |z^L| \to 0$$

• Network cannot learn in either case

• Large weight initialization \Rightarrow large network output

$$W^i| = \mathcal{O}(100) \quad \blacksquare \quad |z^L| \to \infty$$

Small weight initialization ⇒ small network output

$$|W^i| = \mathcal{O}(0.01) \implies |z^L| \to 0$$

• Network cannot learn in either case

Similar inputs should go to similar outputs Expect similar results every time you use the network

• Large weight initialization \Rightarrow large network output

$$W^i| = \mathcal{O}(100) \quad \square \quad |z^L| \to \infty$$

Small weight initialization ⇒ small network output

$$|W^i| = \mathcal{O}(0.01) \implies |z^L| \to 0$$

- Network cannot learn in either case
- *Tuning to criticality* means preventing exploding and decaying signals

Similar inputs should go to similar outputs

Expect similar results every time you use the network

• Large weight initialization \Rightarrow large network output

$$W^i| = \mathcal{O}(100) \quad \square \quad |z^L| \to \infty$$

Small weight initialization ⇒ small network output

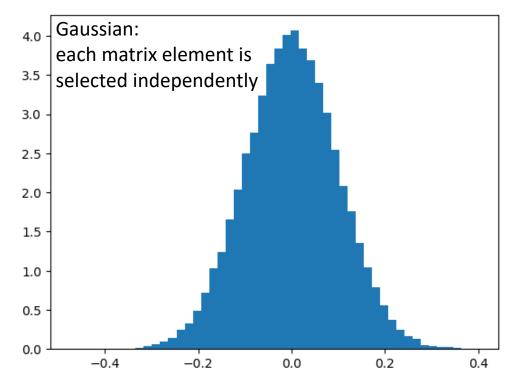
$$|W^i| = \mathcal{O}(0.01) \implies |z^L| \to 0$$

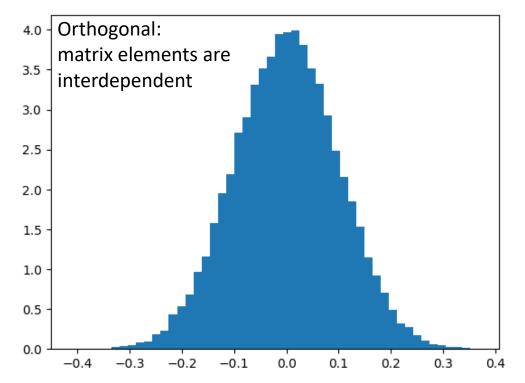
- Network cannot learn in either case
- *Tuning to criticality* means preventing exploding and decaying signals

*This maximizes the number of marginal couplings (couplings that do not grow or shrink), but does not guarantee that *all* couplings are marginal

Gaussian vs orthogonal weights

- Gaussian distribution is the limiting distribution all distributions become Gaussian at infinite width
- Orthogonal distribution corresponds to points on a sphere





Comparing weight initialization distributions

- Initial weights and biases are randomly selected from a distribution
- Infinite-width neural network = free (Gaussian) field theory
- Finite width \Longrightarrow interactions

layer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

Comparing weight initialization distributions

- Initial weights and biases are randomly selected from a distribution
- Infinite-width neural network = free (Gaussian) field theory

All distributions become Gaussian at infinite width

• Finite width \Rightarrow interactions

Non-Gaussian initializations are perturbations away from (infinite-width) Gaussian limit

ayer vector bias vector weight matrix
$$\begin{pmatrix} z^{\ell+1} \end{pmatrix} = \begin{pmatrix} b^{\ell+1} \end{pmatrix} + \begin{pmatrix} W^{\ell+1} \end{pmatrix} \begin{pmatrix} \sigma(z^{\ell}) \end{pmatrix}$$

Comparing weight initialization distributions

- Initial weights and biases are randomly selected from a distribution
- Infinite-width neural network = free (Gaussian) field theory

All distributions become Gaussian at infinite width

- Finite width \Rightarrow interactions
 - Non-Gaussian initializations are perturbations away from (infinite-width) Gaussian limit

*even Gaussian initializations become non-Gaussian at finite-width!

Perhaps introducing physically-motivated interactions to our network will improve learning