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Introduction covrenron (Y

PARTICLE PHYSICS

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty
» communicate results of experiments
Big questions:
» make discoveries, test theories, measure or exclude parameters, etc.
» how do we get the most out of our data
» how do we incorporate uncertainties
» how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 4 hours.
In these talks | will try to:

- explain some fundamental ideas & prove a few things
> enrich what you already know
> eXxpose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is not very
interesting.

- Please feel free to ask questions and interrupt at any time
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Further Reading s

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
~ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.
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My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.
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http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/

Other lectures

Fred James'’s lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT &categ=Academic_Training&id=AT00000799

http://www.desy.de/~acatrain/
Glen Cowan’s lectures

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Louis Lyons
http://indico.cern.ch/conferenceDisplay.py?confld=a063350

Bob Cousins gave a CMS lecture, may give it more publicly

Gary Feldman “Journeys of an Accidental Statistician”
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

The PhyStat conference series at PhyStat.org:

PhYSTaT Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)

About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links

= PHYSTAT @307 (CERN) @05 (Oxford) €303 (SLAC) €»02 (Durham)
= Phystat Workshops: @08 (Caltech) @06 (BIRS/Banff) @00 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...
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http://phystat.org
http://phystat.org
http://www.desy.de/~acatrain/
http://www.desy.de/~acatrain/
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

Comments on these lectures (‘Tf’

| also gave “Statistics for LHC” academic training lectures in 2009

http://indico.cern.ch/conferenceDisplay.py?confld=48425

Now that we have data, | will put emphasis on realistic problems

representative of current analyses 2011
2009 Modeling &
Scientific Narrative
Foundations
of Probability Hypothesis Tests
Hypothesis Tests

Confidence Intervals

Confidence Intervals
Bayesian Methods

Generalization for
complex problems Likelihood Methods
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Probability Density Functions e e ]
When dealing with continuous random variables, need to

introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability

X04

PDFs are always normalized °*
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Probability Density Functions Gommoraer Ao -

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability

—_~

\q_>-</0.4;| T T T

PDFs are always normalized °*:

0.3F
o~ 0.2 [ RheaVan aca -8, 1.1,
f(aj)d,f[f — 1 0.15 i T R B y2e1D; 5
0.1 [ Rootmumwian pafCTlinashape”, ‘Gauss NLAt);:
_CX) = :
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Parametric PDFs ot
Many familiar PDFs are considered parametric

» eg. a Gaussian G(x|u, o) is parametrized by (u, o)

» defines a family of distributions

» allows one to make inference about parameters

| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued function of the nodes below
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Parametric PDFs ot

Many familiar PDFs are considered parametric

» eg. a Gaussian G(z|u, o) is parametrized by (u, o)

» defines a family of distributions

» allows one to make inference about parameters

| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued func__f, n of the nodes below

] 0 e
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Modeling:
The Scientific Narrative
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Building a model of the data e, @8

PARTICLE PHYSICS '

Before one can discuss statistical tests, one must have a “model” for
the data.

» by “model”, | mean the full structure of P(data | parameters)
- holding parameters fixed gives a PDF for data
- ability to evaluate generate pseudo-data (Toy Monte Carlo)
- holding data fixed gives a likelihood function for parameters

« note, likelihood function is not as general as the full model because it
doesn’t allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
» it's the objective part that everyone can agree on

» It's the place where our physics knowledge, understanding, and
Intuiting comes in

» building a better model is the best way to improve your statistical
procedure
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PARTICLE PHYSICS

RooFit: A data modeling toolkit CommoLaa ane (‘T’

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.

RooAddPdf
sum
RooGaussian RooRealVar RooGaussian RooRealVar RooArgusBG
gaussl glfrac gauss2 g2frac argus
RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar RooRealvVar
meanl sigma X mean2 argpar cutoff
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Wouter Verkerke,
Wouter Verkerke, UCSB
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The Scientific Narrative T
The model can be seen as a quantitative summary of the analysis

» If you were asked to justify your modeling, you would tell a
story about why you know what you know

- based on previous results and studies performed along the way

» the quality of the result is largely tied to how convincing this
story is and how tightly it is connected to model

| will describe a few “narrative styles”
» The “Monte Carlo Simulation” narrative
» The “Data Driven” narrative
» The “Effective Modeling” narrative

» The "Parametrized Response” narrative

Real-life analyses often use a mixture of these
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The Monte Carlo Simulation narrative ggzg;;g;e;ggcf‘{

Let’'s start with “the Monte Carlo simulation narrative”, which is
probably the most familiar
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Cross-sections and event rates (‘T’

From the many, many collision events, we impose some criteria to

select n candidate signal events. We hypothesize that it is

composed of some number of signal and background events.
Pois(n|s + b)

The number of events that we expect from a given interaction

process is given as a product of

» L : a time-integrated luminosity (units 1/cm?) that serves as a measure of
the amount of data that we have collected or the number of trials we have

had to produce signal events
» 0 : “cross-section” (units cm?) a quantity that can be calculated from theory

» ¢ : fraction of signal events selected by selection criteria
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The simulation narrative S s |

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — Lo

do — |M|*dQ)

P =
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The simulation narrative S s |

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

P =
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The simulation narrative gzimm?cf%’

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

P =

‘W, wer —Lp, g Lo g
4 4 4GWG

o J

kinetic energies and self—mteractlons of the gauge bosons

_ 1 1 _ 1
LA*(i0, — 597 W, — EQ/YBM)L + Ry"(i0, — §g'YBN)R

Vo
kinetic energies and electroweak interactions of fermions

1 1

1, . ,
5 |(i8), — 597 Wi = 59 YB,)o|" — V()

-~

7

W=*,Z ~,and Higgs masses and couplings

"= a - _
9" (v Tuq) G, + (G1LoR + G:Rp.L+ h.c.)
~ v o . D . .
interactions between quarks and gluons fermion masses and couplings to Higgs
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Cumulative Density Functions ggig«;«;e;mf‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

)

—~

x - = < L
=04 - E T 1r ]
0.35 & E Z i
- ] 0.8~ —
0.3 E i ]
0.25 2 E 0.6 ]
0.2 E - ]
0.15 = 0.4 N
01E E : :
- - 02 7
0.05 = _ ]
O3 3 %3 3
X X
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Cumulative Density Functions ggimem?cf‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

)

—~

X - — X |
=04 F E g 1 B -
0.35 & E Z i
- ] 0.8~ —
03 E - i
0.25 2 E 0.6 -
02 E - ]
0.15 = 0.4 N
01F = N i
0.05 = L _
0 3 03 3
X X

» alternatively, define density
as partial of cumulative:

fla) = 2212

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 16




CENTER FOR “

Cumulative Density Functions comercer e Y
Often useful to use a cumulative distribution:
» in 1-dimension: / F(2)dz' = F(a)
— 00
S04¢ B - |
08|
06
04l
02l
0
» alternatively, define density » same relationship as total an(X:I
as partial of cumulative: differential cross section:
- 0F(x) (E) = 1 Oo
fla) = ox - 0 0F
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Cumulative Density Functions comereey e 3
Often useful to use a cumulative distribution:
» in 1-dimension: B
| r@)ia’ = Fla)
— OO
oapr- 1 ~C 4 ¥k
0.8
0.6
0.4
02
0L
» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:
OF (x) 1 9%
f(z) = f(E,n) =

Ox o OE0n
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Cumulative Density Functions g;imm?cj‘{
Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)

—~

X

Zoaf ERE 2Rl :
0.35 F = 5 i
- . 0.8 — -
03 E - ]
0.25 ;_f'355—7'."{3:1-"7»““".57""k't ................... e g hr —: 06 :_ _:
0.2 %‘ RooRealVvar 'Tl( E : :
015F sl 0.4~ ~
0.1 RooGaussian pdf("lineSnape”,"Gauss * xaend o f B
0.05 - = T ]
03 I T Y I
X X
» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:

OF 1 0%
fla) = 2212 FE) = o

0x
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The simulation narrative gzzmm.;?cs‘%*

splitting functions, Sudokov form factors, and hadronization models

2 ) a) Perturbation theory used to systematically approximate the theory.
b)
c) all sampled via accept/reject Monte Carlo P(particles | partons)

g_) e hard scattering

s

e partonic decays, e.g.
t — bW

-

B
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The simulation narrative S s |

2 a) Perturbation theory used to systematically approximate the theory.
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

e hard scattering

/ —~
é g
pas
. - e parton shower
X . - evolution
\ = ; serturb
\ / e colour singlets

e colourless clusters

e partonic decays, e.g.
t — bW

™. e cluster fission
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The simulation narrative cowenrer Y

PARTICLE PHYSICS

3 Next, the interaction of outgoing particles with the detector is simulated.

Detailed simulations of particle interactions with matter.

Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

| I I I | 1 I 1

om iIm m im am sm 6m /im
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
= = = - Neutral Hadron (e.g. Neutron)
''''' Photon

47

@l‘ ,' L

Silicon
Tracker

Electrromagnetic
: , " Calorimeter
v

Hadron Superconducting
Calorimeter Solenoid

lron return yoke interspersed

Transverse slice with Muon chambers

through CMS
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Theoretical Predictions covenron WY

PARTICLE PHYSICS '

In addition to the rate of interactions, our theories predict the distributions of
angles, energies, masses, etc. of particles produced

- we form functions of these called discriminating variables m,
- and use Monte Carlo techniques to estimate f(m)

In addition to the hypothesized signal process, there are known background
processes.

» thus, the distribution of f(m) is a mixture model
» the full model is a marked Poisson process

- g

<

signal process background process

P(m|s) = Pois(n|s + b) H st(mji j: Zfb(mj)

J
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Example model comenren @Y

PARTICLE PHYSICS '

Here is an example prediction from search for H—-ZZ and H—->WW
» sometimes multivariate techniques are used

1_'_' : T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T : : 104 E T T T T | T T T T | T T T T
o) - imi i ' : 4 & FCMS Preliminar ]
=, 7E ATLAS Preliminary (simulation) Emsga - 2 y —— Signal, m =170 GeV
2 - H—llvv (mH=300 GeV,\s =7 TeV) — Total BG 1 o ] W+lets, t .
o 6 —tt —] S0 [ di-boson —
> - — 1 97 - -
T - zz 1 > tt
= WZ . o I Drell-Yan
5 =
- — WW ]
- —Z - 107
4 W —
3 =Y
2F -
n . 1
1= —
P = ] — 7=:|—|_.—| 1 P ]
50 200 250 300 350 400 450 500 1074 05 0 0.5
TrL, — Transverse Mass [GeV] 771, = Neural Network Output

P(m|s) = Pois(n|s + b) H st(mji j: Zfb(mj)

J
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Parametric vs. Non-Parametric PDFs ggg;f;&gcf‘{

No parametric form, need to construct non-parametric PDFs
From Monte Carlo samples one has empirical PDF

femp__z(sw_xz

% 0.7

©c o 9O
~ o o

o
(&)

wllIII|IIII|IIII|IIII|IIII|IIII|IIII|

o
N

o
—

AU

-2 -1 0 1 2

o

1
lelIII|IIII|IIII|IIII|IIII|IIII|IIII|
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Parametric vs. Non-Parametric PDFs ‘(T‘

w,Ss _ w,S
hzst(x) — Nzhz
;

RO7TE T T =
0.62— _
0.52— _ _i
0.3 F B | =
02F / E

: A L \ _
A (N ITINNE
R (RN B RN
-3 -2 1 0 1 2 3
X
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Parametric vs. Non-Parametric PDFs “T’

Classic example of a non-parametric PDF is the histogram
but they depend on bin width and starting position

w.,S ]' w.S
hist(T) = N th |

RI]!
/ | \
' (T 70

-2 -1

% 0.7

o
»

o
o

o
~

A

o
w

o
N

o
—

, ©

T
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Parametric vs. Non-Parametric PDFs (‘T”

Classic example of a non-parametric PDF is the histogram
“Average Shifted Histogram” minimizes effect of binning

fasu(@ ZKw T — x;)

% 0.7

o
»

o
o

o
~

!

o
w

I f
BN

o
N

o
—

, ©

xwulu.l|||H|||||||||||m|||m|”.||‘
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Kernel Estimation ‘.32?&”&‘;?5&115(‘{

Kernel estimation is the generalization of Average Shifted
Histograms

=3 e (e

AN\ 1/ 7 s 3|
h(x”:(§> o)

“the data is the model”

K.Cranmer, Comput.Phys.Commun. 136 (2001).
- [hep-ex/0011057]

Probability Density

[]
iy
| | | | | |

0.94 0.95 0.96 0.97 0.98 0.99 1
Neural Network Output

Adaptive Kernel estimation puts wider kernels in regions of low
probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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Multivariate, non-parametric PDFs “T’

PARTICLE PHYSICS

Kernel Estimation has a nice generalizations to higher
dimensions

» practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N- Correlations 00165 tibar sample. 3??iii'jjj'jj_ijj;"j....________

T e

dim KEYS pdf described Pyt -

in RooFit. pdf from previous S ol ’
slide. —
These pdfs have been = RooNDKeys pdf P 330 230 20 °
used as the basis for a automatically mlh @V
: : models (fine)
”? u '“.Va.r Iate. correlations
discrimination between
technique called “PDE” observables ...
Fo (T
— S
D(F) = — (%) _
fs(Z) + fo(Z)
Max Baak
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Incorporating Systematic Effects ST e |

Of course, the simulation has many adjustable parameters and
iImperfections that lead to systematic uncertainties.

» one can re-run simulation with different settings and produce
variational histograms about the nominal prediction

0.25

0.15

. 0.1

- -

|||||||||||||||||||||||||||||||||||||||
0====70 "180 190 200 210 220 230

m

0.05

t

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011

27




Explicit parametrization P vees |
Important to distinguish between the source of the systematic
uncertainty (eg. jet energy scale) and its effect.

» The same 5% jet energy scale uncertainty will have different effect
on different signal and background processes

- not necessarily with any obvious functional form
> Usually possible to decompose to independent “uncorrelated” sources

Imagine a table that explicitly quantifies the effect of each source of
systematic.

- Entries are either normalization factors or variational histograms

sSig bkg1 |bkg 2

syst 1

syst 2
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Histogram Interpolation e, @

PARTICLE PHYSICS '

Several interpolation algorithms exist: eg. Alex Read'’s “horizontal”
histogram interpolation algorithm (RoolntegralMorph in RooFit)

» take several PDFs, construct interpolated PDF with additional
nuisance parameter a

A.L. Read | Nuclear Instruments and Methods in Physics Research A 425 (1999) 357 360

I Simple “vertical”
§ 0 #, . DELPHI. interpolation bin-by-bin.
§ 0.05 " S ) l
= 004 | q
0.03 A
) A O i o == | Alternative “horizontal”
[ARooPlolol"x“ ] - Mistogram of hh_x_;};;‘,l < :'v-“- .::; InterpOIatlon algorlthm by
st = Max Baak called
v s T “RooMomentMorph” in
sost 3 RooFit (faster and
" £, numerically more stable)
o‘oz;~ -'-"3“."-:
RN

- e | e B T R T B T
x
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Incorporating systematics ::z:;;gG;H:-;fcs(‘T’
Let’s consider a simplified problem that has been studied quite a bit to
gain some insight into our more realistic and difficult problems

» number counting with background uncertainty

- in our main measurement we observe non with s+b expected
Pois(non|s + b)

» and the background has some uncertainty
- but what is “background uncertainty”? Where did it come from?
- maybe we would say background is known to 10% or that it has some pdf 7T(b)
« then we often do a smearing of the background:

P(n0n]5) = / db Pois(noy|s + b) (b)),

- Where does 7(b) come from?

- did you realize that this is a Bayesian procedure that depends on some prior
assumption about what b is?
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The Data-driven narrative

PARTICLE PHYSICS '

Regions in the data with negligible signal 5 10' CMS Preliminary .
~ C —e— Signal, m =160 Ge
expected are used as control samples 2 = Weets, W
. . @ 103 = d_i-boson
- simulated events are used to estimate 5 —1 .

extrapolation coefficients e*e” Channel

-
o
)

- extrapolation coefficients may have
theoretical and experimental uncertainties 1o

IIIII| [ IIIIII| [ IIIIII| [ |<IIII| ]

15
CR(WW - | |
SR. S o i 113
ke WW 107 |
0W4$W 0O 20 40 60 80 100 120 140 160 180 20C
To 2
H—>WW P < m, [GeV/c?]
W+jets <
L[I ‘/[/ R CR.(WW)
Ny CR.(Top) B —dw
(x'l"op - NgR Top NCR(T p)
- Top
Top |<
N
. o . _=ﬁ C.R.(W+jets) B T TR
+ W+jets NC.E:ets W +jets N ‘+iels J
Wajets | " . v

Figure 10: Flow chart describing the four data samples used in the H — WW () — ¢v/v analysis. S.R
and C.R. stand for signal and control regions, respectively.
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The Data-driven narrative

PARTICLE PHYSICS '

Regions in the data with negligible signal 5 10' CMS Preliminary . -
~ C —e— Signal, m =160 GeV,

expected are used as control samples 2 = waets, W
. . o 103 _ d_i-boson .

- simulated events are used to estimate ° —1 . :
extrapolation coefficients il _e'e Channel ]|

- extrapolation coefficients may have : .

theoretical and experimental uncertainties 10

1
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Figure 10: Flow chart describing the four data samples used in the H — WW () — ¢v/v analysis. S.R
and C.R. stand for signal and control regions, respectively.
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The “on/off” problem s:zr::‘f:;;::;?cf‘%
Now let’s say that the background was estimated from some control
region or sideband measurement.
» We can treat these two measurements simultaneously:
- main measurement: observe non with s+b expected
- sideband measurement: observe nox with 7b expected
P(non, Noft S, bz = ?ois(non\s +b) POiS(nOff‘TbZ

\ . A
VO TV

TV
joint model main measurement sideband

- In this approach “background uncertainty” is a statistical error
- justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?
P(n0n]5) = / db Pois(noy|s + b) 7 (b)),
» while 7(b) is based on data, it still depends on a prior 7(b)

 Plnaglbn(®
fdbp(nofﬂb)n(b).

w(b) = P(b|nos)
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Going beyond on/off conren @Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

: T | T 17T | T .I T |. T 17T | T 17T T
5 10° ECMS Preliminary E
~ —e— Signal, m, =160 GeV
}é’ ] W+lJets, tW

[ di-boson
@ 1n3
q>) 10 I

I Drell-Yan

e*e’ Channel

—r —
o (=}
N Y
T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T IIIIH

10

-1
0% 20 40 60 80 100 120 140 160 180 200
m, [GeV/c?]
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PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...
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PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
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Going beyond on/off conren @Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
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Going beyond on/off conren @Y

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...
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Going beyond on/off

Often the extrapolation parameter has uncertainty

» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...
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Classification of Systematic Uncertainties o= @

PARTICLE PHYSICS '

Taken from Pekka Sinervo’s PhyStat 2003
contribution
Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
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Classification of Systematic Uncertainties ::zr,z:f.:ﬁz':?cf‘{

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity
- eQ: “shape” systematics
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Classification of Systematic Uncertainties ::zr,z:f.:ﬁz':?cf‘{

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity
- eQ: “shape” systematics
Type lll - “The Ugly”

» arise from uncertainties in underlying theoretical
paradigm used to make inference using the data

- a somewhat philosophical issue
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Separating the prior from the objective model i3
Recommendation: where possible, one should express
uncertainty on a parameter as a statistical (random) process

» explicitly include terms that represent auxiliary measurements
In the likelihood

Recommendation: when using a Bayesian technique, one should
explicitly express and separate the prior from the objective part of

the probability density function

Example:
» By writing P (non, nog|s, b) = Pois(non|s 4 b) Pois(n.g|Tb).
- the objective statistical model is for the background uncertainty is clear

» One can then explicitly express a prior n(b) and obtain:

 Plnaglbn(®
fdbp(nofﬂb)n(b).

w(b) = P(b|nos)
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Constraints on Nuisance Parameters §g§rg;°;;“§~s?cs(‘Tg

Many uncertainties have no clear statistical description or it is impractical to provide
Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice
- quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...

For systematics constrained from control samples and dominated by statistical uncertainty,
a Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

» longer tail, good behavior near boundary, natural choice if auxiliary is based on counting
For “factor of 2” notions of uncertainty log-normal is a good choice
» can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available

5 REBRAREERP R AR RN R AR RRARE RS

. . . S 0.1 -

To consistently switch between frequentist, 5 .
Bayesian, and hybrid procedures, need to _§0_08—_ _ 7
be clear about prior vs. likelihood function 8 = Truncated Gaussian .
£ 006 Gamma E

: : - Log-normal .

PDF Prior Posterior . ]
Gaussian  |uniform Gaussian R B
Poisson uniform Gamma 02— —
Log-normal |reference Log-Normal i
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Building the model: HistFactory (RooStats) ggzr;;;f;;;gfcf‘%
Several analyses have used the tool called hist2workspace to build the model (PDF)

» command line: hist2workspace myAnalysis.xml

- construct likelihood function below via XML + histograms interpolation convention

LU, 04) = H Pois(n,| V) H N(o;) @ = I1 Hasni. nj)
mebins i=€Syst

O-jm(a) = o-?m H I(al l—;m/o- ms zjm/o-]m)
ieSyst

V= UL (o) o1m(0) + Y. Lni(0) Oim(a),| s {1+“<'*-1> o0
jeBkg Samp l—a(~—1) ifa<0

§< Channel SYSTEM 'Config.dtd's
LChannel ="channel1" =" ./data/example.root’ ="" >
<l -——<Data Name—"data" InputFile="" HistoPath="" HistoName=""/>—-=
<Sample ="signal =1 ="signhal">
<Overal lSys =' = ="0.95" />
<NormFactor = = U =" 5" = = />
</ Samp le-
<Sample ="backgroundl' = ="True" ="backgroundl">
<Overal lSys ="syst2" ="@0.95" ="1.65"/>
</ Samp le=
<Saaple ="back ="" ="True' ="backgroundz" >
<Overal lSys ="syst3" ="0.95" 3"
zl—— HistoSys Name_ syst4 HlstoPathngh_ H13t0PathLow="histForSystdr";’}——::-
dS(mlw
</Channe |-

..................................................................................................................................................
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Constraint terms e S |
For each systematic effect, we associated a nuisance parameter a
- for instance electron efficiency, JES, luminosity, etc.

- the background rates, signal acceptance, etc. are parametrized in
terms of these nuisance parameters

These systematics are usually known (“constrained”) within £ 10.
- but here we must be careful about Bayesian vs. frequentist

- Why is it constrained”? Usually b/c we have an auxiliary
measurement m and a relationship like:

G(m|a, o)
- Saying that a has a Gaussian distribution is Bayesian.
- has form “Probability of parameter”
- The frequentist way is to say that that m fluctuates about «

While m is a measured quantity (or “observable™), there is only one
measurement of m per experiment. Call it a “Global observable”
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An example ModelConfig from HistFactory ggzg;;;;e;;;»cf‘{

The RooStats tools, use the RooFit PDF interface, but the tools need some additional
meta information. The ModelConfig class encapsulates this meta information

- The PDF itself, the observables, the “global observables”, the parameter of
interest, and the nuisance parameters. Also the prior for Bayesian methods.

root [7] modelConfig->Print()
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_h2e2nu_200)

Parameters of Interest: RooArgSet:: = (SigXsecOverSM)

Nuisance Parameters: RooArgSet:: =
(Lumi,alpha_SysBtagEff,alpha_SysElecScale,alpha_SysElecSmear,alpha_SysJetScale,alpha_SysJetSmear,alpha_SysM
ETHadScale,alpha_SysMETHadSmear,alpha_SysMuonScale,alpha_SysMuonSmear,alpha_dieleceff,alpha_mjet2enorm,a
Ipha_signorm,alpha_topnorm,alpha_wnorm,alpha_wwnorm,alpha_wznorm,alpha_znorm,alpha_zznorm)

Global Observables: = Roo0ArgSet:: =
(nominalLumi,nom_alpha_dieleceff,nom_alpha_signorm,nom_SysMuonScale,nom_SysMETHadSmear,nom_SysElecSme
ar,nom_SysMuonSmear,nom_SysJetSmear,nom_SysBtagEff,nom_SysJetScale,nom_SysMETHadScale,nom_SysElecSc
ale,nom_alpha_topnorm,nom_alpha_wwnorm,nom_alpha_wznorm,nom_alpha_zznorm,nom_alpha_wnorm,nom_alpha_z
norm,nom_alpha_mjet2enorm)

PDF: RooProdPdf::model _h2e2nu_200[ lumiConstraint * alpha_dieleceffConstraint *
alpha_signormConstraint * alpha_SysMuonScaleConstraint * alpha_SysMETHadSmearConstraint *
alpha_SysElecSmearConstraint * alpha_SysMuonSmearConstraint * alpha_SysJetSmearConstraint *
alpha_SysBtagEffConstraint * alpha_SysJetScaleConstraint * alpha_SysMETHadScaleConstraint *
alpha_SysElecScaleConstraint * alpha_topnormConstraint * alpha_wwnormConstraint * alpha_wznormConstraint *
alpha_zznormConstraint * alpha_wnormConstraint * alpha_znormConstraint * alpha_mjet2enormConstraint *
h2e2nu_200 model ] =0

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 39




CENTER FOR

CMS Higgs example '.i:ir,z‘;‘r;;::;?cf‘{
The CMS input:
» cleanly tabulated effect on each background due to each source of systematic
» systematics broken down into uncorrelated subsets
» used lognormal distributions for all systematics, Poissons for observations

Started with a txt input, defined a mathematical representation, and then prepared
the RooStats workspace

111111111111111111111

5555555555555

2EEE

3 observables and
37 nuisance parameters

I :@EUSM

VM\

lll i il

\\

” «
|m M “

I m‘l

,l,u

i l‘l
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ATLAS Higgs Example Coe e

The ATLAS input:
» Poisson terms 3 signal regions and 6 control regions

» Initially uncertainties in extrapolation coefficients treated with one Gaussians and
it wasn'’t possible to identify individual systematics effects

- thus, unable to identify any correlated systematic (eg. theory uncertainty)
» Now individual uncertainties are explicitly parameterized

nl(SR)|+ a/évwvaév Wn{}VW(CR) + aiivafinii(TB) + a{)vjetsvaév mn{vjets (LL) + LO'JDY(S R))

jé

(CR) + 1y, (CR) + ﬁifvﬁfinf;(TB) + By jers V!, B My iors(LL) + Lo}, (CR))

J
CRlns

(k2

d  XP(NJ i (TB) + Lo}, (TB))x P(N!

- ’

T 1,
W jets Loy jers(LL))
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Data driven estimates “T”
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics. Using the simulation narrative over
the data-driven is a choice. If you trust that narrative, it's a good choice.

(\T\ T T T T T T T [ T T T ] 7)) FT T T T T T T T T T T T T T T T T T T T TTT
(&) - — 2 B 4[]
S 700 = —— CDF dgta (4.3 b = s 016 —— Electron Data (4.3 fb ):
[0) C — Gaussian 2.5% | ] w B
O - B WWAWZ 4.8% | 0.1a
@ 600¢ I W+Jets 78.0% |- B ]
2 - Top 6.3% . 0.12F -
S 500¢ Bl Z+jets 2.8% - - ]
z : T QCD 5.1% ] 0.10;- .

400+ —_ N ]
C (c) 1 0.08— ]
300 3 : (b) -
x 0.061 -

200 = 0.041- N
100 = 0.02 -

o

100 200
M, [GeV/c?]
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The Effective Model (%9
It is common to describe a distribution with some parametric function

» “fit background to a polynomial”, exponential, ...
» While this is convenient and the fit may be good, the narrative is weak

> n
rfl)
O -
e n
~20000 [
n | 0.06 — .
- | s r T
g - % — Box
5 B = - ""‘-__1__ Born
17500 s 7 o
- 0.04 - .
: 0.03 } e
15000 | T
L . ..
B 0.02 '--,.____ﬁ_- ‘\-‘_"'--.__
— : —--"“m-.‘___ \,,\-
i i - —
L 0.01 \\-—-._;::‘w
12500 |— )
: : "l Jl»d — 160 1
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10000 _ L - Figure 5. Two plausible shapes for the continuum ~v mass
105 120 135 spectrum at the LHC.
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The Effective Model narrative

CENTER FOR
COSMOLOGY AND =
PARTICLE PHYSICS

However, sometimes the effective model comes from a

convincing narrative

- convolution of resolution with known distribution
- for example, the “invariant mass” of some final state particles

— L L L | L | L L

ATLAS

VBF H(120)—tt—Ih -
Ns=14TeV, 301fb" ]

| bha= ::;::.:::I::‘-l"::l---I-"I-::Thfl:::l ...... I: ..-.1':' :'I.' '-I:"""- :.I-|- -:. J 1]
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0
~ - _q~ ~0 T X
g q/ X2 \_ _____

- I _| */ndf 40.11/45
‘o ' ' ' ' ‘ " Prob 0.679
— 50 : Endpoint  99.66 + 1.399
— - : Norm.  -0.3882: 0.02563
% 40F : Smearing 2.273 = 1.339
Q) C ]
X 30F

(9] L
2 -
-
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w C

10
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O il
-1 0 __I 1 I I I I 1| I 1| I 11 1 I 11 1 I 11 r
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The parametrized response narrative ggir;;";;;;:cs(?

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

\

L(x|Hy) =
/“\ N AN ~
__I.-"r '\ 'a,. [T T T T T T T .||||||\||!|||||||||‘
w " CDF Runll Preliminary | |
P 3 5 E \ _[Ld::ﬂh"'m ts
18T 1745 2278 18TT 1745 22r9 1871 rE5 2218 o (78 events)
Fal T ™ 1 r ~ — :
iy Y N = o1 : —
: [1+] :
\ \_\‘ 0
" \, E
N . , N o §
1217 1745 2279 1811 1745 2279 1271 745 2278 -— : :
C 005 -
. 1T © '
.-'f\'-. -'J’H\‘-. .-"A‘\ = :
\'\_ _. D i iIIII‘IIIIiIIIIiI\III I
/ 1 N |/ N\ 145150 155 160 165 170 175 180 185
1877 1745 22r9 1BTT 1745 22r9 17T 745 2278 M, [GeV/c
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The parametrized response narrative ggzg;;«;e;ggcf‘{

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

P(x|M;) = }\I /d@ (M(p;s M) 1| £ (piy i) fror (1) fror(e)

| |

Phase-space Transfer
Integral - Functions
Matrix
Element
, ./P\ NN ™
\ 'a,. L L R R .||||||\||!|||||||||‘
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¢ | .. 5  Jeaern
18T T745  2Ere 13T 1745 2219 1ATT 1745 2278 a L dt=11b" (78 events]
~ N ~ = :
A FA a T O —
\ o
\ \. o :
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E o -
~ ~ 1~ S
\.‘- : D i iIIII‘IIIIiIIIIiI\III I
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18T 1745 2279 1T 1745 22r9 1877 1745 2279 M, [GeV/c
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Example likelihoods from CDF 2’
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Fast Simulation (ﬁTﬁ

PARTICLE PHYSICS

Fast simulations based on parametrized detector response are very useful and
can often be tuned to perform quite well in a specific analysis context

-~ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

- Would be much more useful if the parmaetrized detector response could be
used as a transfer function in Matrix-Element approach

Same sign di-lepton + jets + MET search

CMS Preliminary, L =35 pb”",Ns =7 TeV
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Narrative styles s:zr,z‘:r.:ﬁz';?cf‘%
The Monte Carlo Simulation narrative (MC narrative)

- each stage is an accept/reject Monte Carlo based on P(out|in) of some
microscopic process like parton shower, decay, scattering

- PDFs built from non-parametric estimator like histograms or kernel estimation
- need to supplement with interpolation procedures to incorporate systematics
- smearing approach fundamentally Bayesian

- pros: most detailed understanding of micro-physics

- cons: computationally demanding, loose analytic scaling properties, relies on
accuracy of simulation

- new ideas: improved interpolation, Radford Neal’s machine learning, “design of
experiments”

The Data-driven narrative

» independent data sample that either acts as a proxy for some process or can be
transformed to do so

» pros: nature includes “all orders”, uses real detector

» cons: extrapolation from control region to signal region requires assumptions,
introduces systematic effects. Appropriate transformation may depend on many
variables, which becomes impractical
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Narrative styles s:zr::‘;?;ﬁz';?cf‘f
Effective modeling narrative

» parametrized functional form: eg. Gaussian, falling exponential para polynomial fit
to distribution, etc.

» pros: fast, has analytic scaling, parametric form may be well justified (eg. phase
space, propagation of errors, convolution)

» cons: approximate, parametric form may be ad hoc (eg. polynomial from)
» new ideas: using non-parametric statistical methods

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element
method, ~fast simulation)

- pros: fast, maintains analytic scaling, response usually based on good
understanding of the detector, possible to incorporate some types of uncertainty in
the response analytically, can evaluate P(out|in) for arbitrary out,in.

- cons: approximate, best parametrized detector response is often not available in
convenient form

- new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geantb)
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Combinations, Rich Modeling, and Publishing
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Example of Digital Publishing o, @

PARTICLE PHYSICS '

File View Options |_A RooPlot of "x" |
£y wspace.root LI | [2—9_ “b'_.-lgggglgégl <:|| |t/ | _gl gwo_—
All Folders Contents of Y"ROOT Files/wspace.root" g ao:—
(oot &
(_]PROOF Sessions j eol-
D /usarive ke ke/oofit/wo kdir : E
D ROOT Fiks MyWorkSpace ;1 2 o
) zo:—
RooFit's Workspace now provides the :
ability to save in a ROOT file the full X

A RooPlot of "m" i

-
.

likelihood model, any priors you might
want, and the minimal data necessary
to reproduce likelihood function.

Projection of profile likelihcod
w » -~ o

Need this for combinations, as p-value
is not sufficient information for a proper
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Visualization of the ATLAS+CMS Workspace S5 %

The full model has tob level model
12 observables and P ATLAS part
~50 parameters

parameter of interest
cBR

osmBRs

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 52




CENTER FOR

Combinations & Rich Modeling corer, @Y

PARTICLE PHYSICS '

As we saw, constraint terms for nuisance parameters can often be
related to auxiliary measurements

» we only considered very simple auxiliary measurements, like
number of events in a sideband, but even in that case there
are likely to be common systematics

» iIdea can be generalized to more sophisticated measurements

- for example, y-jet or Z-jet balance measurements to constrain the Jet
Energy Scale uncertainty

The point is that combining these models leads to a qualitiative
change in how we represent what we know: rich modeling

Now the distinction has been blurred between a Higgs
combination and a sophisticated modeling of systematics
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Examples of Published Likelihoods 2z, @
At previous PhyStats, we agreed to publish likelihood functions
You can find examples of published

6 My = 144 GeV . . .
{ likelihoods in 1D
g o = : ‘/
i — 0.02758£0.00035 /f : p :
1 ----0.02749+0.00012 / In 2'D yOU JUSt get the COntgurS

+++ incl. low Q° data - ' |

1 1 —LEP1 and SLD
_ 8054 LEP2 and Tevatron (prel.)

68% CL

l >
)
14 - 2 80.4 -
_ ' | =
0 EXC,|Ud?dl / | Preliminary =
30 100 300 _
m,, [GeV] 80.3 -
| - 00
Surely we can do better! . 5 200
m, [GeV]
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The situation 10 years ago... ((T"

Origins I: The First “Statistics in HEP” conference

WORKSHOP ON CONFIDENCE LIMITS

CERN, Geneva, Switzerland
17-18 January 2000 CERN 2000-005

Massimo Corradi
Does everybody agree on this statement, to publish likelihoods?
Louis Lyons

Any disagreement ? Carried unanimously. That’s actually quite an achievement for this Workshop.
...[Fred James wants to be able to calculate coverage, Don Groom wants to able to calculate goodness of fit]...

Cousins

I thought the point of unanimity was that publishing the likelihood function was a necessary con-
dition, not a sufficient condition.

But a practical problem remained: How to communicate multi-D likelihood?

http://indico.cern.ch/conferenceDisplay.py?confld=100458
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Current scenario ((Tﬁ

Taken from the GFitter paper

23This procedure only uses the My value under consideration, where
Higgs-mass hypothesis and measurement are compared. It thus ne-
glects that in the SM a given signal hypothesis entails background hy-
potheses for all My values other than the one considered. An analysis
accounting for this should provide a statistical comparison of a given
hypothesis with all available measurements. 'This however would re-
| quire to know the correlations among all the measurement points (or
| better: the full experimental likelihood as a function of the Higgs-mass
hypothesis), which are not provided by the experiments to date.|The
difference to the hypothesis-only test employed here is expected to
be small at present, but may become important once an experimental

Higgs signal appears, which however has insufficient significance yet
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Combining Results: An Example g;zme;&gcf‘{

A combination example 2 a0l
]
£
e Combining ‘ATLAS’ and ‘CMS’ result from persisted s
workspaces P .25
5 Combined
1
Read ATLAS {TFﬂe* f = new TFile("atlas.root") ; o 20
workspace RooWorkspace *atlas = f->Get("atlas") ; a
Read CMS TFile* f = new TFile("cms.root") ; 15_—
workspace RooWorkspace *cms = f->Get("cms") ; L
10— ‘Atlas’
Construct RooAddition n11Combi("n11Combi","n11 CMS&ATLAS", 'CMS’ &
combined LH RooArgSet(*cms->function(“n11”),*atlas->function(“n11”))) ; K
Construct 5
profile LH { RooProfileLL p11Combi("p11Combi","p11",n11Combi,*atlas->var("mHiggs")) ; i
in mHiggs r .
7IIII|IIII|IIII'|"|-.IJJ1{?. II‘IIIIlIIII
RooPlot* mframe = atlas->var("mHiggs")->frame(-3.5,-2.5) ; 3 534 -3.3 3.2 -3.1 -3 -29 28 -27 -26 -25
Plot Tas->function(“n11”)->ploton(mf ; i
Atlas.CMS atlas->function(“n )->plotOn(mframe)) ; mH|ggs
O cms->function(“n11”)->plotOn(mframe),LineStyle(kDashed)) ;
combined 11Combi . p1 £ . Tor(kRed)) :
rofile LH p11Combi.plotOn(mframe,LineColor(kRed)) ;
P mframe->Draw() ; // result on next slide
Wouter Verkerke, NIKHEF

By using the workspace, it is easy to share results, ideal for combinations.

Example above shows opening an ‘atlas’ and ‘cms’ workspace, and
performing a combined fit to a common parameter with profile likelihood.
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Introduction SN |
Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models
» Fitting Model Parameters
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Introduction SN |
Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization

» Fitting Model Parameters — Interpretation
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Introduction SN |
Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization
» Fitting Model Parameters — Interpretation

: Potential new tasks
® Input for the Strategy Group

® |PCC and experiments required to produce combined assessment of the
2010-11(-12) findings in Higgs and BSM searches :

® TH community, and other expl communities (e.g. LinCol, SuperB, ...), will
use this to assess the implications of LHC data for BSM and future exptl

projects
= We need to prepare the framework/tools to enable:
® combination of limits/evidence from ATLAS/CMS(/LHCDb)
® use of the results by the rest of the community (e.g. SUSY-models’ fitters)
® This will require coordination with
® ATLAS-CMS statistics forum
® Fitters’ groups

® a|l LHC “search “ efforts (Higgs, B decays, exotica of all sorts ....)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 58




CENTER FOR

Introduction ::':zr,z‘;‘:.:;;';?cf({’
Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization
» Fitting Model Parameters — Interpretation

: Potential new tasks Goals for this meeting
: @ Input for the Strategy Group © o Review the progress made by the experiments
® LPCC and experiments required to produce combined assessment of the : e Status report on the SLACWG

2010-11(-12) findings in Higgs and BSM searches

. o Collect further input from all fields (TH + exps)
® TH community, and other expl communities (e.g. LinCol, SuperB, ...), will

use this to assess the implications of LHC data for BSM and future exptl ® In the context of simplified models, start outlining the roadmap and the
projects workflow to go from analysis, to publication, to combination of the results of
: : : different experiments, to conclude with the exploitation of the published
= We need to prepare the framework/tools to enable: results by a random theorist.
® combination of limits/evidence from ATLAS/CMS(/LHCb)
3 : | analysis
e use of the results by the rest of the community (e.g. SUSY-models’ fitters) :
: o format of the
: ® This will require coordination with published result

® ATLAS-CMS statistics forum [combination among}

® Fitters’ groups experiments

® all LHC “search “ efforts (Higgs, B decays, exotica of all sorts ....) use of the results by a theorist, in
: : the context of a new model
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SUSY Fitting tools
Usually simplify input from experiments to be a single Gaussian

Ohservable Experimental Uncertainty Exp. Relerence
Value stat syst

B(B — s7)/B(B — sv)su 1.117 0.076 0.096 [£7]
B(B. — pp) < 4.7x1078 [47]
B(By — ££) < 2.3x107% [47]
B(B — 7v)/B(B — 7v)su 1.15 0.40 [48]
B(B. — X 00)/B( B, — X.8l) sy 0.99 0.32 [47]
Amp, [Am! 1.11 0.01 0.32 [49]
Amg,/AmG 1.08 0.01 0.16 [47,49]
Aeg fAM 0.92 0.14 [49]
B(K — pr)/B(K — pr)su 1.008 0.014 [30]
B(K — mov)/B(K — 7re)su < 4.5 [51]
aS*F — g™ 30.2x1071° B.8x107% 2.0x107 [52,53]
sin? fer 0.2324 0.0012 46
Iz 24952 GeV 0.0023 GeV 0.001 GeV 46
Ry 20.767 0.025 46
R, 0.21629 0.00066 46
R. 0.1721 0.003 [46]
Ap(b) 0.0092 0.0016 46
Amle) 0.0707 0.0035 46
A 0.923 0.020 46
Ae 0.670 0.027 46
A, 0.1513 0.0021 [46]
A, 0.1465 0.0032 [46]
Aml(l) 0.01714 0.00005 [46]
Fhad 41.540 nb 0.037 nb [48]
wy, > 114.4 GeV 3.0 GeV [54,55,56]
oo h? 0.1089 0.0062 0.012 7]
1/@em 127.925 0.01d 38
Gr 1.16637Tx 10" GeV ™2 | 0.00001x107"GeV~? 58
a. 0.1176 0.0020 38
"y 91.1875 GeV 0.0021 GeV [46]
My 80,309 GeV 0.025 GeV 0.010 GeV [38]
My 4,20 GeV 017 GeV a8
My 172.4 GeV 1.2 GeV 539
. 1.77684 GeV 0.00017 GeV 58
. 1.27 GeV .11 GeV [-Ll.'i]

700

< 600

QO

O 500

= 400
300
200
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FITTINO
BUSY | 1D 68 % contour

2D 95% CL All measurements

1D 68% CL All measurements

~ 2D 95 % contour

I |
400 600

M, (GeV)

|
200

Optimum

o
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First interface with SuperBayes g:ir;:‘;f;;;':cs(?

Repeated same analysis as Bridges, KC, Trotta et al (1011.4306) with
ROOStatS IlkellhOOd A 2/ ndf 40.11/45

" B Prob 0.679
: 50— Endpoint 99.66 + 1.399
H - C Norm. -0.3882 = 0.02563
» see consistent results! S of
O] C 7
X 30F
3 -
BBdgesEH)ya $20 10 U‘EJ' 20;
300 e of
i 68%, 95% contours %
I Black: SuperBayeS pdf | o g
250 Blue: Neural Network thr. = 0.5 T A T I R N D T
[ Red: Neural Network thr. = 0.3 0 20 40 60 80 100 120 140 16°m(1”?([’Ge2\‘,)]°
Green: Neural Network thr. = 0.1 1 Bridges et al (2010)
] 800 -
~ I A 2 a1 K00 r—r—rrrrrr- —r—rrrrrr-
> 200 ‘ true value - [ 68%, 95% contours CMSSM, u>0
8 Green: CMSSM prior ATLAS SU3 point:
O 700 - Red: ATLAS likelihood -

3 ‘ true value

] S 600}

SU3 mieas 7
[GeV] ]
My 88+ 602
189+ 60F2

. I " mso b
gApriors - 400 y 614£91+11 ]
12246152 ]

CMSSM, u>0 8 [ rOnéservable SU3 Animeas

oLt R . 300¢ = (0062 19700] ]
280 300 320 : ot | essror |
m1/2 (GeV) 200 ......... | I | I

mXo (GeV)
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Benchmark based on counting

Max Baak’s demonstrated interpolation of signal yield and uncertainties
in a 3-d MSUGRA scan with a simple number counting analysis

Signficance

Ba20
G
=300
£280
260
240
220
200
180
160
140 -
120 .

||||||||||||
1007300 200 300 400 500 600 700 800 900 1000

m, [GeV]
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Ultimate Goal s W
Publish likelihoods along with papers

» first goal, the LEP Higgs

sis bearch 53 . rd moce o AF w als eanc] VM O - J
20 L) Do IO S - 1) CESTEED ' 0y L) e - 1 CEETID

INSPIRE wessmemsmenias o M INSPIRE : R e

Her :: Haor SPIRES HeorNames - Iust 0 Cowr . B - Jous
Home > Search for neutrad MSSM Moo tosons ot LEP
1re | | Rate (196) | | Ctamons (348) |
Search for neutral MSSM Higgs bosons at LEP.

Collaborations (5. Schael (Aschen, Tech. Hochach ) of al ) Show of 1212 suthors.
CERN-PH-EP-2006-001.

Her :: Hawr SPIRES HerNames -

Home > Search for the standard model Hggs boson at LEP

Inst :: Cowr . B 2 Jous

ot | | Ren (35)| [Ciavions (1097 |
Search for the standard model Higgs boson at LEP.

LEP Working Group for Higgs boson searches and ALEPH and DELPHI and L3 and OPAL
Collaborations (R. Barate of &) Show of 1314 suthors.
CERN-EP-2003.011.

Jan 2006
e i
s s oy 17 g i T

Abstract: The four LEP collaborations, ALEPM, DELP, L) and OPAL. have
for the neutral Higgs which ace predicied by the Minmad
Standard Model (MSSM). The data of te four collaborations ame
watascaly e for Pk Coraisiency wih e Sackground
hyscthess and with a possiie Hgps boson signal. The combined LEP data show
no sgniicant eacess of events which woulkd Indicate the production of Mggs
bosons, The search resulls ane used 10 set Lpper Sounds on the Cross-sectons of
varous Migga-ike evert opoioges. The res.ts are merpreted within the NSSM n
@ number of benchmark models, ncluding CP conserving and CPviolatng
scerarios. Thess mterpretations lead n ol Cases 1 large exchusons in he MSSM

Abstract: The four LEP colaborations, ALEPH, DELPHL, L3 and OPAL. have
collected & W of 2651 pb-1 of evo- COlson data ot Conte-of mans ererges
between 450 and 200 GeV. The deta are used 10 search for he Sundand Model
mmmmuduuw-omn

HQos boson mass. A lower bound of 114.4 GeVie2 is establshed, ot e 35%
confidence level, on e mass of e Standard Model Higgs boson. The LEP deta

e a0 used 1 set Lpper bounds on the HZZ couping b various sssurptions parameter space. Abachte Imits ane set on he parameter Sand and, In some
concerming he decary of e Hggs boson. SCAnarios. on e masses of neutral Miggs bosons.
Keyword(s): INGPRE: teview. sspermental tesus | slectron postron: solidog Keyword(s): INSPRE: pocion 2osiaon coliding beams | secton postron.
boarrs | steciron soaron: anniviation | Hgos Serticie: search K | Hoos sacicle: soohistion | Hegs peciche: search for | Miogs secicie: nevinal pacicle
ool orsicie | Higos sericie slecrosroduction | 20 associeted producion | meernymemetry | Higos serticle: steciroprducton | 22 ssaoceted production |
couping. {14098 paricie 220) | Hges paricie: secay modes | beckgrownd | Heos Hioos pactiche: par seoduction | nvacence: CP | CP. vicktion | Hioos paricle:
pactche. maas | ower it | sxpecmentsl reautts | CERN LEP Sxr | slecion decay. modes | 1oes pacscie: mass | ower ime | chennel cross secien: weoer
poslron —> Higgs paricle 20 | Higos senicle -> ooty | Hoos paicle -> tae it | ALPEM | DELPHI | OPAL | L3 | sxaerimental remts | CERN LEP Ster |
tau- | 109200 GeY-coms bidogrecty | §1:209 GeV-cms
Recond crested 2000-05-21, last modifed 20110117 Simitar records r Recond croated 2006-02.23, last modited 20110208 Simlar cords .
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y CERN Colloquium and

[.ibrarv Science Talk

N/

SPEAKER: [ awrence Lessig (Edmond J. Safra Center for
Ethics and Harvard Law School, Cambridge,
MA, US)

"The architecture of access to scientific
knowledge: just how badly we have messed
this up"”

TITLE:

DATE: Mon 18/04/2011 16:30

PLACE: Council Chamber

ABSTRACT

In this talk, Professor Lessig will review the evolution of access to

scientific scholarship, and evaluate the success of this system of

access against a background norm of universal access. While copyright

battles involving artists has gotten most of the public's attention, the real

battle should be over access to knowledge, not culture. That battle we are i
losing. ¢
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