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Introduction covrenron (Y

PARTICLE PHYSICS

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty
» communicate results of experiments
Big questions:
» make discoveries, test theories, measure or exclude parameters, etc.
» how do we get the most out of our data
» how do we incorporate uncertainties
» how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 4 hours.
In these talks | will try to:

- explain some fundamental ideas & prove a few things
> enrich what you already know
> eXxpose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is not very
interesting.

- Please feel free to ask questions and interrupt at any time
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Further Reading s

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
~ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.
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My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.
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Other lectures §:zr,z‘;‘:.:;::;?cf‘Ty

Fred James'’s lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT &categ=Academic_Training&id=AT00000799

http://www.desy.de/~acatrain/
Glen Cowan’s lectures

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Louis Lyons
http://indico.cern.ch/conferenceDisplay.py?confld=a063350

Bob Cousins gave a CMS lecture, may give it more publicly

Gary Feldman “Journeys of an Accidental Statistician”
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

The PhyStat conference series at PhyStat.org:

PhYSTaT Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)

About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links

= PHYSTAT @307 (CERN) @05 (Oxford) €303 (SLAC) €»02 (Durham)
= Phystat Workshops: @08 (Caltech) @06 (BIRS/Banff) @00 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...
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Comments on these lectures
| also gave “Statistics for LHC” academic training lectures in 2009

http://indico.cern.ch/conferenceDisplay.py?confld=48425

Now that we have data, | will put emphasis on realistic problems
representative of current analyses 2011

2009 Modeling &
Scientific Narrative

Foundations
of Probability

Hypothesis Tests

Hypothesis Tests
Confidence Intervals

Confidence Intervals
Bayesian Methods

Generalization for
complex problems Likelihood Methods
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Lecture 1
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Preliminaries
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Probability Density Functions

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability

Zo.4

PDFs are always normalized *”
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Probability Density Functions

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx
Note, f(x)is NOT a probability
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The Likelihood Function

A Poisson distribution describes a discrete event count » for a real-
valued mean u.

Pois(n|u) =
The likelihood of u given n is the same
equation evaluated as a function of u

~

(o)}

» Now it's a continuous function

(0]

» But it is not a pdf!

=2 1In L(ne=3 I )

TN

L(p) = Pois(n|u)

(&

N

Common to plot the -2 In L

—

» helps avoid thinking of it as a PDF
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o

» connection to 2 distribution

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)
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Parametric PDFs
Many familiar PDFs are considered parametric

» eg. a Gaussian G(x|u, o) is parametrized by (u, o)

» defines a family of distributions
» allows one to make inference about parameters

| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued function of the nodes below

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Parametric PDFs
Many familiar PDFs are considered parametric

» eg. a Gaussian G(z|u, o) is parametrized by (u, o)
» defines a family of distributions
» allows one to make inference about parameters
| will represent PDFs graphically as below (directed acyclic graph)
» every node is a real-valued func__f, n of the nodes below
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Modeling:

The Scientific Narrative
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Building a model of the data e, @8

PARTICLE PHYSICS '

Before one can discuss statistical tests, one must have a “model” for
the data.

» by “model”, | mean the full structure of P(data | parameters)
- holding parameters fixed gives a PDF for data
- ability to evaluate generate pseudo-data (Toy Monte Carlo)
- holding data fixed gives a likelihood function for parameters

« note, likelihood function is not as general as the full model because it
doesn’t allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
» it's the objective part that everyone can agree on

» It's the place where our physics knowledge, understanding, and
Intuiting comes in

» building a better model is the best way to improve your statistical
procedure
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RooFit: A data modeling toolkit

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.

RooAddPdf
sum

RooGaussian RooRealVar RooGaussian RooRealVar RooArgusBG
gaussl glfrac gauss2 g2frac argus

RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar
meanl sigma X mean2 argpar cutoff

Histogram of X vs y__X_y TTRT]

— Addition — Composition (‘plug & play’) —

Meany= 1.3
RMS x = 2.384
RMS y = 08657
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Wouter Verkerke,
Wouter Verkerke, UCSB
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The Scientific Narrative

The model can be seen as a quantitative summary of the analysis

» If you were asked to justify your modeling, you would tell a
story about why you know what you know

- based on previous results and studies performed along the way

» the quality of the result is largely tied to how convincing this
story is and how tightly it is connected to model

| will describe a few “narrative styles”
» The “Monte Carlo Simulation” narrative
» The “Data Driven” narrative
» The “Effective Modeling” narrative

» The "Parametrized Response” narrative

Real-life analyses often use a mixture of these

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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The Monte Carlo Simulation narrative ggzg;;g;e;ggcf‘{

Let’'s start with “the Monte Carlo simulation narrative”, which is
probably the most familiar

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Cross-sections and event rates

From the many, many collision events, we impose some criteria to
select n candidate signal events. We hypothesize that it is
composed of some number of signal and background events.
Pois(n|s + b)
The number of events that we expect from a given interaction
process is given as a product of
» L : a time-integrated luminosity (units 1/cm?) that serves as a measure of

the amount of data that we have collected or the number of trials we have
had to produce signal events

» 0 : “cross-section” (units cm?) a quantity that can be calculated from theory

» ¢ : fraction of signal events selected by selection criteria
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The simulation narrative

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — Lo

P =

do — |M|*dQ)
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The simulation narrative

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f18)°

P=

P — LO’
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The simulation narrative gzimm?cf%’

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

P =

‘W, wer —Lp, g Lo g
4 4 4GWG

o J

kinetic energies and self—mteractlons of the gauge bosons

_ 1 1 _ 1
LA*(i0, — 597 W, — EQ/YBM)L + Ry"(i0, — §g'YBN)R

Vo
kinetic energies and electroweak interactions of fermions

1 1

1, . ,
5 |(i8), — 597 Wi = 59 YB,)o|" — V()

-~

7

W=*,Z ~,and Higgs masses and couplings

"= a - _
9" (v Tuq) G, + (G1LoR + G:Rp.L+ h.c.)
~ v o . D . .
interactions between quarks and gluons fermion masses and couplings to Higgs
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Cumulative Density Functions

Often useful to use a cumulative distribution:

» in 1-dimension: / f(z")dz' = F(x)
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Cumulative Density Functions

Often useful to use a cumulative distribution:
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» alternatively, define density
as partial of cumulative:

fla) = 2212
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Cumulative Density Functions

Often useful to use a cumulative distribution:
» in 1-dimension: / F(2)de' = F(x)

—~

=
0.8
0.6
0.4

0.2

0-3

» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:

_ OF(z)

fla) == F(E)

_180
- 0 OF
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Cumulative Density Functions

Often useful to use a cumulative distribution:
» in 1-dimension: / F(2)de' = F(x)

—~

=
0.8
0.6
0.4

0.2

0-3

» alternatively, define density » same relationship as total and
as partial of cumulative: differential cross section:

- 0F(x) 1 d%

f(x) = 5 f(E,n) =

o 0EOn
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Cumulative Density Functions
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Often useful to use a cumulative distribution:

» in 1-dimension: /w

RRRRNRRY

I T Tl A

gRochussiaﬁ pdf( 2 , X, m,width);
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» alternatively, define density
as partial of cumulative:
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The simulation narrative gzzmm.;?cs‘%*

splitting functions, Sudokov form factors, and hadronization models

2 ) a) Perturbation theory used to systematically approximate the theory.
b)
c) all sampled via accept/reject Monte Carlo P(particles | partons)

e hard scattering

e partonic decays, e.g.
t — bW

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



The simulation narrative
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splitting functions, Sudokov form factors, and hadronization models

2 a) Perturbation theory used to systematically approximate the theory.
b)
)

c) all sampled via accept/reject Monte Carlo P(particles | partons)

= 7

e
\J
—
\J
./ 0, \
- "
N —_—

/
\\:t
pd

e hard scattering

partonic decays, e.g.
t — bW

parton shower
evolution

colour singlets
colourless clusters

cluster fission

Kyle Cranmer (NYU)
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The simulation narrative cowenrer Y

PARTICLE PHYSICS

3 Next, the interaction of outgoing particles with the detector is simulated.
Detailed simulations of particle interactions with matter.
Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

| I I

om
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
= = = - Neutral Hadron (e.g. Neutron)

Silicon
Tracker

@l‘ ,' T

Electrromagnetic
: , " Calorimeter
v
Hadron Superconducting

Calorimeter Solenoid

lron return yoke interspersed

Transverse slice with Muon chambers

through CMS
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Theoretical Predictions covenron WY
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In addition to the rate of interactions, our theories predict the distributions of
angles, energies, masses, etc. of particles produced

- we form functions of these called discriminating variables m,
- and use Monte Carlo techniques to estimate f(m)

In addition to the hypothesized signal process, there are known background
processes.

» thus, the distribution of f(m) is a mixture model
» the full model is a marked Poisson process

<

signal process background process
n

P(m|s) = Pois(n|s + b) | |
J
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Here is an example prediction from search for H—-ZZ and H—->WW
» sometimes multivariate techniques are used

g
Q
S

T | T T T T | T T T T | T T T T | T T T T T T T T | T T T T
TLAS Preliminary (simulation) @ Signal
— Ilvv (m =300 GeV,\'s = 7 TeV) — Total BG
—tt
— 2z

Wz

CMS Preliminary

n

—— Signal, m =170 GeV,
[ W+lJets, t .
I di-boson
B

Il Drell-Yan

Events [fo]
2,

events / bin

— WW
—7Z
W

-
o
N
T

I ey |

200 250 300 450 500 107, 0.5 0
TrL, — Transverse Mass [GeV] 771, = Neural Network Output

7 3fs(my) + bfi(my)

P(m|s) = Pois(n|s + b) | |
J
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Parametric vs. Non-Parametric PDFs ggg;f;&gcf‘{

No parametric form, need to construct non-parametric PDFs
From Monte Carlo samples one has empirical PDF

femp__z(sw_xz

c o o o O
N W &~ 0} ®»
00||||||||||||||||||||||||||||||||||||

o
—

o

UL LEREL
-1 0 1
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Parametric vs. Non-Parametric PDFs
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Parametric vs. Non-Parametric PDFs

Classic example of a non-parametric PDF is the histogram
but they depend on bin width and starting position

w.,S ]' w.S
hist(T) = N th |
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Parametric vs. Non-Parametric PDFs
Classic example of a non-parametric PDF is the histogram
“Average Shifted Histogram” minimizes effect of binning

fasu(@ ZKw T — x;)
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Kernel Estimation SN |

Kernel estimation is the generalization of Average Shifted
Histograms

nh}%’) " (Q;L(_xj;Z)

n—1/5

K.Cranmer, Comput.Phys.Commun. 136 (2001).
- [hep-ex/0011057]

Probability Density

[]
iy
| | | | | |

0.95 0.96 0.97
Neural Network Output

“the data is the model”

Adaptive Kernel estimation puts wider kernels in regions of low
probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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Multivariate, non-parametric PDFs ggzme;mf‘{

Kernel Estimation has a nice generalizations to higher
dimensions

» practical limit is about 5-d due to curse of dimensionali

Max Baak haS Coded N - COFFElatIOnS T —

0.014

dim KEYS pdf described o 21 S

In Comput.Phys.Commun. 136 (2001) « 2-(d projection of

in RooFit. pdf from previous ‘ 00043~ | e

slide.

These pdfs have been = RooNDKeys pdf " ay 3300 250 20

used as the basis for a automatically mdh @I
: : models (fine)

”? u '“.Va.r Iate. correlations

discrimination between

technique called “PDE” observables ...
@) = 29 __
fs(Z) + [(Z)

Max Baak

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




CENTER FOR

Incorporating Systematic Effects

Of course, the simulation has many adjustable parameters and
iImperfections that lead to systematic uncertainties.

» one can re-run simulation with different settings and produce
variational histograms about the nominal prediction

T

i

e o oy b by by Ly
170 180 190 200 210 220
m
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Explicit parametrization

Important to distinguish between the source of the systematic
uncertainty (eg. jet energy scale) and its effect.

» The same 5% jet energy scale uncertainty will have different effect
on different signal and background processes

- not necessarily with any obvious functional form
> Usually possible to decompose to independent “uncorrelated” sources

Imagine a table that explicitly quantifies the effect of each source of
systematic.

- Entries are either normalization factors or variational histograms

sSig bkg1 |bkg 2

syst 1

syst 2

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Histogram Interpolation e, @
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Several interpolation algorithms exist: eg. Alex Read'’s “horizontal”
histogram interpolation algorithm (RoolntegralMorph in RooFit)

» take several PDFs, construct interpolated PDF with additional
nuisance parameter a

A.L. Read | Nuclear Instruments and Methods in Physics Research A 425 (1999) 357 360
- (11 . 7

| Simple “vertical
§ L DELPHI - : - : :
g 0% M iInterpolation bin-by-bin.
% 0.05 1 R , l

=004
0.03 |
0.02 F
0.01

0 &
40

Alternative “horizontal”
Interpolation algorithm by
Max Baak called
“RooMomentMorph™ in
RooFit (faster and
numerically more stable)

[ A RooPlot of “x* ]

- e | e B T R T B T
x
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Incorporating systematics g;m?;&gcf‘{

Let’s consider a simplified problem that has been studied quite a bit to
gain some insight into our more realistic and difficult problems

» number counting with background uncertainty

- in our main measurement we observe non with s+b expected
Pois(non|s + b)

» and the background has some uncertainty
- but what is “background uncertainty”? Where did it come from?
- maybe we would say background is known to 10% or that it has some pdf 7T(b)
« then we often do a smearing of the background:

P(n0n]5) = / db Pois(noy|s + b) (b)),

- Where does 7(b) come from?

- did you realize that this is a Bayesian procedure that depends on some prior
assumption about what b is?

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



The Data-driven narrative

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS '

-y
(=]
rS

Regions in the data with negligible signal
expected are used as control samples

=CMS Preliminary

-y
o
w

events/ bin

- simulated events are used to estimate
extrapolation coefficients

-
o
)

- extrapolation coefficients may have
theoretical and experimental uncertainties

—e— Signal, m =160 Ge
[ | W+dets, tW

™ di-boson

[ tt

I Drell-Yan

e*e’ Channel

IIIII| [ IIIIII| [ IIIIII| [ |<IIII| ]
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Top <
W+jets <

LL LL CR.(WW
_0‘ N ( )

C.R.(Top) B Top

—r
Q
o_l

20 40 60 80 100

Top NCR(T p)

T Op - Top

CR(WW)

g N W +jets
C.R.(W +jets) B

. +Hets _
o +jets R. W+ets NC4R.(W+jets)
+J e S +jets W +jets

W+jets

Figure 10: Flow chart describing the four data samples used in the H — WW () — ¢v/v analysis. S.R
and C.R. stand for signal and control regions, respectively.

140 160 180 20C
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=CMS Preliminary

-y
(=]
rS
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Figure 10: Flow chart describing the four data samples used in the H — WW () — ¢v/v analysis. S.R
and C.R. stand for signal and control regions, respectively.
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The “on/off” problem s:zr::‘f:;;::;?cf‘%
Now let’s say that the background was estimated from some control
region or sideband measurement.
» We can treat these two measurements simultaneously:
- main measurement: observe non with s+b expected
- sideband measurement: observe nox with 7b expected
P(non, Noft S, bz = ?ois(non\s +b) POiS(nOff‘TbZ

\ . A
VO TV

TV
joint model main measurement sideband

- In this approach “background uncertainty” is a statistical error
- justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?

P(n0n]5) = / db Pois(noy|s + b) 7 (b)),

» while 7(b) is based on data, it still depends on a prior 7(b)
_ P(noalb)n(d)
J dbP(nog|b)n(b)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

I|III|I.II|.III|III|III|III|III|III|III
=CMS Preliminary

<Ll

—e— Signal, m, =160 Ge
[ W+dets, tW
[ di-boson
[ tt
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e*e” Channel

—
o
w

=
Q0
N~
[72]
et
c
Q
>
Q

—r —
o (=}
N Y
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-1
0% 20 40 60 80 100 120 140 160 180 200
m, [GeV/c?]

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



CENTER FOR

' W
Going beyond on/off S e

PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...
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PARTICLE PHYSICS

Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
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Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method

MS Preliminary : CDF Run |l Preliminary
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Often the extrapolation parameter has uncertainty
» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...
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Going beyond on/off

Often the extrapolation parameter has uncertainty

» introduce a new measurement to constrain it as in the ABCD method
» what if..., what if ..., what if..., what if ..., what if..., what if ...

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Classification of Systematic Uncertainties o= @

PARTICLE PHYSICS '

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Classification of Systematic Uncertainties
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COSMOLOGY AND
PARTICLE PHYSICS '

Taken from Pekka Sinervo’s PhyStat 2003
contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity

- eQ: “shape” systematics
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Classification of Systematic Uncertainties

CENTER FOR
COSMOLOGY AND _—
PARTICLE PHYSICS '

Taken from Pekka Sinervo’s PhyStat 2003
contribution
Type | - “The Good”

» can be constrained by other sideband/auxiliary/
ancillary measurements and can be treated as
statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the

measurement or from poorly understood features
In data or analysis technique

- don’t necessarily scale with luminosity
- eQ: “shape” systematics
Type lll - “The Ugly”

» arise from uncertainties in underlying theoretical
paradigm used to make inference using the data

- a somewhat philosophical issue

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




Separating the prior from the objective model

Recommendation: where possible, one should express
uncertainty on a parameter as a statistical (random) process

» explicitly include terms that represent auxiliary measurements
In the likelihood

Recommendation: when using a Bayesian technique, one should
explicitly express and separate the prior from the objective part of

the probability density function

Example:

» By writing P (non, nog|s, b) = Pois(non|s 4 b) Pois(n.g|Tb).
- the objective statistical model is for the background uncertainty is clear

» One can then explicitly express a prior n(b) and obtain:

 Plnaglbn(®
fdbp(noff|b)77( )

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Constraints on Nuisance Parameters e, @
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Many uncertainties have no clear statistical description or it is impractical to provide
Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice
- quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...

For systematics constrained from control samples and dominated by statistical uncertainty,
a Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

» longer tail, good behavior near boundary, natural choice if auxiliary is based on counting
For “factor of 2” notions of uncertainty log-normal is a good choice
» can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available

To consistently switch between frequentist,
Bayesian, and hybrid procedures, need to

be clear about prior vs. likelihood function Truncated Gaussian

Gamma
Log-normal

Projection of gprior

PDF Prior Posterior
Gaussian uniform Gaussian

Poisson uniform Gamma
Log-normal |reference Log-Normal

Kyle Cranmer (NYU) CERN Acader. .. ...,
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Building the model: HistFactory (RooStats) f,‘:irf;‘;";;&';?cs(%

Several analyses have used the tool called hist2workspace to build the model (PDF)

» command line: hist2workspace myAnalysis.xml

- construct likelihood function below via XML + histograms interpolation convention

LU, 04) = H Pois(n,| V) H N(o;) @ = I1 Hasni. nj)
mebins i=€Syst

Ol) = o-?m H I(al z—;m/o- m z]m/o-]m)
ieSyst

Y Lni(@) Ojm(®),| { o

jeBkg Samp l—a(~—1) ifa<0

Channel SYSTEM 'Config.dtd'=

<l -——<Data Name—"data" InputFlle e HlstoPath s HlstoName R
<Sample ="sighal" sigh

<Overal lSys

<NormFactor
</Samp e
<Sample ="backgroundi'

<Overal lSys "systz2" "0.95" "1.85" />
</Samp le-
<Sample =ﬂm11gryxufT

<Overal lSys "9.95" =' 3" />

zl—— HistoSys Name— syst4 HlstoPathngh— H13t0PathLow="histForSystdr";’}——::-

#Smlm
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Constraint terms

For each systematic effect, we associated a nuisance parameter a
- for instance electron efficiency, JES, luminosity, etc.

- the background rates, signal acceptance, etc. are parametrized in
terms of these nuisance parameters

These systematics are usually known (“constrained”) within £ 10.
- but here we must be careful about Bayesian vs. frequentist

- Why is it constrained”? Usually b/c we have an auxiliary
measurement m and a relationship like:

G(m|a, o)
- Saying that a has a Gaussian distribution is Bayesian.
- has form “Probability of parameter”
- The frequentist way is to say that that m fluctuates about «

While m is a measured quantity (or “observable™), there is only one
measurement of m per experiment. Call it a “Global observable”

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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An example ModelConfig from HistFactory ggzg;;;;e;;;»cf‘{

The RooStats tools, use the RooFit PDF interface, but the tools need some additional
meta information. The ModelConfig class encapsulates this meta information

- The PDF itself, the observables, the “global observables”, the parameter of
interest, and the nuisance parameters. Also the prior for Bayesian methods.

root [7] modelConfig->Print()
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_h2e2nu_200)

Parameters of Interest: RooArgSet:: = (SigXsecOverSM)

Nuisance Parameters: RooArgSet:: =
(Lumi,alpha_SysBtagEff,alpha_SysElecScale,alpha_SysElecSmear,alpha_SysJetScale,alpha_SysJetSmear,alpha_SysM
ETHadScale,alpha_SysMETHadSmear,alpha_SysMuonScale,alpha_SysMuonSmear,alpha_dieleceff,alpha_mjet2enorm,a
Ipha_signorm,alpha_topnorm,alpha_wnorm,alpha_wwnorm,alpha_wznorm,alpha_znorm,alpha_zznorm)

Global Observables: = Roo0ArgSet:: =
(nominalLumi,nom_alpha_dieleceff,nom_alpha_signorm,nom_SysMuonScale,nom_SysMETHadSmear,nom_SysElecSme
ar,nom_SysMuonSmear,nom_SysJetSmear,nom_SysBtagEff,nom_SysJetScale,nom_SysMETHadScale,nom_SysElecSc
ale,nom_alpha_topnorm,nom_alpha_wwnorm,nom_alpha_wznorm,nom_alpha_zznorm,nom_alpha_wnorm,nom_alpha_z
norm,nom_alpha_mjet2enorm)

PDF: RooProdPdf::model _h2e2nu_200[ lumiConstraint * alpha_dieleceffConstraint *
alpha_signormConstraint * alpha_SysMuonScaleConstraint * alpha_SysMETHadSmearConstraint *
alpha_SysElecSmearConstraint * alpha_SysMuonSmearConstraint * alpha_SysJetSmearConstraint *
alpha_SysBtagEffConstraint * alpha_SysJetScaleConstraint * alpha_SysMETHadScaleConstraint *
alpha_SysElecScaleConstraint * alpha_topnormConstraint * alpha_wwnormConstraint * alpha_wznormConstraint *
alpha_zznormConstraint * alpha_wnormConstraint * alpha_znormConstraint * alpha_mjet2enormConstraint *
h2e2nu_200 model ] =0

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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CMS Higgs example e, @8

The CMS input:
» cleanly tabulated effect on each background due to each source of systematic
» systematics broken down into uncorrelated subsets
» used lognormal distributions for all systematics, Poissons for observations

Started with a txt input, defined a mathematical representation, and then prepared
the RooStats workspace

3 observables and
37 nuisance parameters

I :@EUSM

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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ATLAS Higgs Example Coe e

The ATLAS input:
» Poisson terms 3 signal regions and 6 control regions

» Initially uncertainties in extrapolation coefficients treated with one Gaussians and
it wasn'’t possible to identify individual systematics effects

- thus, unable to identify any correlated systematic (eg. theory uncertainty)
» Now individual uncertainties are explicitly parameterized

nl(SR)|+ a/évwvaév Wn{}VW(CR) + aiivafinii(TB) + a{)vjetsvaév mn{vjets (LL) + LO'JDY(S R))

J

L Inl(CR) + )y, (CR) + ﬁj;vﬁgn{;(TB) + B jers”gl, . W jrs (LD + L0y (CR))

- /e
— B ;g

(LL))

XP(N7 gl (TB) + Loy, (TB) X PN Iy i,
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Data driven estimates “T”
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics. Using the simulation narrative over
the data-driven is a choice. If you trust that narrative, it's a good choice.

—— CDF data (4.3 fb™
—— Gaussian 2.5%
Bl WW+WZ 4.8%
I W+Jets 78.0%
Top 6.3%

Bl Z+jets 2.8%

QCD 5.1%

—— Electron Data (4.3 fb'1)5

'TII|IIII|IIII|IIII|IIII|IIII|IIII|III

o R

M, o [GeV/cT]

o

100

M, [GeV/c?]
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The Effective Model (%9
It is common to describe a distribution with some parametric function

» “fit background to a polynomial”, exponential, ...
» While this is convenient and the fit may be good, the narrative is weak
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Figure 5. Two plausible shapes for the continuum 7+ mass
spectrum at the LHC.
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The Effective Model narrative coeren @Y

PARTICLE PHYSICS

However, sometimes the effective model comes from a
convincing narrative

- convolution of resolution with known distribution
- for example, the “invariant mass” of some final state particles

ATLAS
VBF H(120)—tt—Ih -
Ns=14TeV, 301fb" ]

2 / ndf 40.11/45
u F T prob 0.679
50F : Endpoint 99.66 + 1.399

C : Norm.  -0.3882: 0.02563
40 C : Smearing 2.273 + 1.339

30F

20F

10F

I|III|III|III|III|
Entries/4 GeV/ 1 fb™

Ofe il

.|.-J- - .
-10

G“\B/O 02020 60 80 100 120 140 160 180 500

M., (GeV) m(ll) [GeV]

Kyle Cranmer (NYU) Cosmostats, July 28,2009
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The parametrized response narrative e, @

PARTICLE PHYSICS

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

=
-
o

CDF Runll Preliminary | |

. ; _ 4
A 1745 2278 12 J-Ld'!—1 fb™ (78 events]

T r'-\\

N . X N .
A 1745 2779 1811 1745 2279 1217 174.5 227

Joint Probability Density

™ ™ ] A

Rt
ALY

) : i : : :
N \ 50 155 160 165 170 175 180 185

. 1. A
T 17A5 2279 1571 1745 2279 1311 7E5  @2r M, [GeV/c
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The parametrized response narrative e, @

PARTICLE PHYSICS

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

P(x|M;) = }\I /d@ (M(p;s M) 1| £ (piy i) fror (1) fror(e)

| |

Transfer

Phase-space
Integral

Functions

Matrix
Element

=
-
o

CDF Runll Preliminary | |

. ; _ 4
A 1745 2278 12 J-Ld'!—1 fb™ (78 events]

T r'-\\

N . X N .
A 1745 2779 1811 1745 2279 1217 174.5 227

Joint Probability Density

™ ™ ] A

Rt
ALY

.___\.‘. ::_.": ', : | H H :
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. 1. A
T 17A5 2279 1571 1745 2279 1311 7E5  @2r M, [GeV/c
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Example likelihoods from CDF 2’ S s |

CDF Run II Preliminary

CDF Run II Preliminary
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Fast simulations based on parametrized detector response are very useful and
can often be tuned to perform quite well in a specific analysis context

-~ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

- Would be much more useful if the parmaetrized detector response could be
used as a transfer function in Matrix-Element approach

Same sign di-lepton + jets + MET search

CMS Preliminary, L =35 pb”",Ns =7 TeV
UL L DL L L

A
L}
[
(72}
£y

|
LO Observed Limit []Ler2 %

e oo [ ees 7
9(800)6ey .DO X o

tanp = 3, A0 =0, sign(u) >0

III|IIII

3(800)Gev

I|I

3 (650)Gev

g(500)Ge

|IIII|IIII|IIII|III

|IIIII<:lI

Paper includes a simple efficiency model
(i.e. for PGS calibrations) and compares
full limit to limit with simple model.

1 | | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1
100 200 300 400 500
m, (GeV)

CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis
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The Monte Carlo Simulation narrative (MC narrative)

- each stage is an accept/reject Monte Carlo based on P(out|in) of some
microscopic process like parton shower, decay, scattering

- PDFs built from non-parametric estimator like histograms or kernel estimation
- need to supplement with interpolation procedures to incorporate systematics
- smearing approach fundamentally Bayesian

- pros: most detailed understanding of micro-physics

- cons: computationally demanding, loose analytic scaling properties, relies on
accuracy of simulation

- new ideas: improved interpolation, Radford Neal’s machine learning, “design of
experiments”

The Data-driven narrative

» independent data sample that either acts as a proxy for some process or can be
transformed to do so

» pros: nature includes “all orders”, uses real detector

» cons: extrapolation from control region to signal region requires assumptions,
introduces systematic effects. Appropriate transformation may depend on many
variables, which becomes impractical

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Narrative styles s:zr,z‘:r.:ﬁz';?cf‘%
Effective modeling narrative

» parametrized functional form: eg. Gaussian, falling exponential para polynomial fit
to distribution, etc.

» pros: fast, has analytic scaling, parametric form may be well justified (eg. phase
space, propagation of errors, convolution)

» cons: approximate, parametric form may be ad hoc (eg. polynomial from)
» new ideas: using non-parametric statistical methods

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element
method, ~fast simulation)

- pros: fast, maintains analytic scaling, response usually based on good
understanding of the detector, possible to incorporate some types of uncertainty in
the response analytically, can evaluate P(out|in) for arbitrary out,in.

- cons: approximate, best parametrized detector response is often not available in
convenient form

- new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geantb)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Combinations, Rich Modeling, and Publishing
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Example of Digital Publishing o, @
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o . [cTE——— =10 x|
g2 ROOT Object Browser g
Fim Edit View Opsons lnspect Clasees Help

File View Options |_A RooPlot of "x"_|
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Visualization of the ATLAS+CMS Workspace S5 %

The full model has tob level model
12 observables and P ATLAS part
~50 parameters

parameter of interest
cBR

osmBRs
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Combinations & Rich Modeling corer, @Y

PARTICLE PHYSICS '

As we saw, constraint terms for nuisance parameters can often be
related to auxiliary measurements

» we only considered very simple auxiliary measurements, like
number of events in a sideband, but even in that case there
are likely to be common systematics

» iIdea can be generalized to more sophisticated measurements

- for example, y-jet or Z-jet balance measurements to constrain the Jet
Energy Scale uncertainty

The point is that combining these models leads to a qualitiative
change in how we represent what we know: rich modeling

Now the distinction has been blurred between a Higgs
combination and a sophisticated modeling of systematics

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Examples of Published Likelihoods 2z, @

At previous PhyStats, we agreed to publish likelihood functions

You can find examples of published
likelihoods in 1D

mLimit" =144 GeV

(5) |
Aahad = .: /
— 0.02758£0.00035 f :

- 0.0274950.00012 [ ; - In 2-D you just get the Contgurs

+++ incl. low Q° data : ' !
' { —LEP1 and SLD
LEP2 and Tevatron (prel.)

68% CL

| Excluded .:;‘=;,. _‘.;:'-':' Preliminary
1 1 1 1 1 1 I 1
30 100 300

m,, [GeV]

Surely we can do better! e

m, [GeV]
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The situation 10 years ago... ((T"

Origins I: The First “Statistics in HEP” conference

WORKSHOP ON CONFIDENCE LIMITS

CERN, Geneva, Switzerland
17-18 January 2000 CERN 2000-005

Massimo Corradi
Does everybody agree on this statement, to publish likelihoods?
Louis Lyons

Any disagreement ? Carried unanimously. That’s actually quite an achievement for this Workshop.
...[Fred James wants to be able to calculate coverage, Don Groom wants to able to calculate goodness of fit]...

Cousins

I thought the point of unanimity was that publishing the likelihood function was a necessary con-
dition, not a sufficient condition.

But a practical problem remained: How to communicate multi-D likelihood?

http://indico.cern.ch/conferenceDisplay.py?confld=100458
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Current scenario covrenron (Y

PARTICLE PHYSICS

Taken from the GFitter paper

23This procedure only uses the My value under consideration, where
Higgs-mass hypothesis and measurement are compared. It thus ne-
glects that in the SM a given signal hypothesis entails background hy-
potheses for all My values other than the one considered. An analysis
accounting for this should provide a statistical comparison of a given
hypothesis with all available measurements. 'This however would re-
| quire to know the correlations among all the measurement points (or
| better: the full experimental likelihood as a function of the Higgs-mass

pothesis), which are not provided by the experiments to date.|The
difference to the hypothesis-only test employed here is expected to
be small at present, but may become important once an experimental

Higgs signal appears, which however has insufficient significance yet

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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A combination example

e Combining ‘ATLAS’ and ‘CMS’ result from persisted
workspaces

Combined

Profile likelihood

Read ATLAS {TFﬂe* f = new TFile("atlas.root") ;
workspace RooWorkspace *atlas = f->Get("atlas") ;

Read CMS TFile* f = new TFile("cms.root") ;
workspace RooWorkspace *cms = f->Get("cms") ;

Construct RooAddition n11Combi("n11Combi","n11 CMS&ATLAS",
combined LH RooArgSet(*cms->function(“n11”),*atlas->function(“n11”))) ;

|II.L-I|IIII|II\I

Construct
profile LH { RooProfileLL p11Combi("p11Combi™,"p11",n11Combi,*atlas->var("mHiggs™)) ;
in mHiggs

IIII|IIII|IIII'|"|-.IJJ1{?. II‘IIIIlIIII

RooPlot* mframe = atlas->var("mHiggs")->frame(-3.5,-2.5) ; 534 33 -3.2 3.1 -3 29 -28 -2.7 -2.6 -2.5
atlas->function(“n11”)->plotOn(mframe)) ; mHiggs

cms->function(“n11”)->plotOn(mframe),LineStyle(kDashed)) ;
p11Combi.plotOn(mframe,LineColor(kRed)) ;
mframe->Draw() ; // result on next slide

Plot
Atlas,CMS,
combined
profile LH

Wouter Verkerke, NIKHEF

By using the workspace, it is easy to share results, ideal for combinations.

Example above shows opening an ‘atlas’ and ‘cms’ workspace, and
performing a combined fit to a common parameter with profile likelihood.

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models
» Fitting Model Parameters
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A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization

» Fitting Model Parameters — Interpretation
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Introduction SN |

Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization

» Fitting Model Parameters — Interpretation

: Potential new tasks
o Input for the Strategy Group

® |PCC and experiments required to produce combined assessment of the
2010-11(-12) findings in Higgs and BSM searches :

® TH community, and other expl communities (e.g. LinCol, SuperB, ...), will
use this to assess the implications of LHC data for BSM and future exptl

projects
= We need to prepare the framework/tools to enable:
® combination of limits/evidence from ATLAS/CMS(/LHCDb)
® use of the results by the rest of the community (e.g. SUSY-models’ fitters)
® This will require coordination with
® ATLAS-CMS statistics forum
® Fitters’ groups

® a|l LHC “search “ efforts (Higgs, B decays, exotica of all sorts ....)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Introduction e P |
Michelangelo’s Likelihood Mandate (MLM):

A general assessment of the status and needs of the tools for setting limits on (or fitting)
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
» Characterization & Simplified Models — parametrization
» Fitting Model Parameters — Interpretation

Potential new tasks Goals for this meeting

: @ Input for the Strategy Group Review the progress made by the experiments

e |PCCand experir.nent‘s reguired to produce combined assessment of the Status report on the SLAC WG
2010-11(-12) findings in Higgs and BSM searches : :
Collect further input from all fields (TH + exps)
TH community, and other expl communities (e.g. LinCol, SuperB, ...), will  : :
use this to assess the implications of LHC data for BSM and future exptl In the context of simplified models, start outlining the roadmap and the
: : workflow to go from analysis, to publication, to combination of the results of

: : : different experiments, to conclude with the exploitation of the published
: = We need to prepare the framework/tools to enable: : results by a random theorist.

® combination of limits/evidence from ATLAS/CMS(/LHCb)
: : | analysis

e use of the results by the rest of the community (e.g. SUSY-models’ fitters) : { p f th }
: : ormat of the

projects

® This will require coordination with published result

® ATLAS-CMS statistics forum combination among
Lo experiments

® Fitters’ groups

® all LHC “search “ efforts (Higgs, B decays, exotica of all sorts ....) use of the results by a theorist, in
: : the context of a new model

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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SUSY Fitting tools e, (ﬁ'ﬁ

Usually simplify input from experiments to be a single Gaussian

Ohservable Experimental Uncertainty Exp. Relerence
Value stat syst
B(B — s7)/B(B — s7)su 1.117 0.076 0.006 [27]
B(B. — pp) < 4.7x1078 [47]
B(By — ££) < 2.3x107% [47]
B(B — 7v)/B(B — 7v)su 1.15 0.40 [48]
B(B. — X 00)/B( B, — X.8l) sy 0.99 0.32 [47]

Amp, [Am! 1.11 0.01 [49] m

Ampg [ AmEM

ErET R02 e R SUSY| 1D 68 % contour

Aege [A 0.92 0.14 [49]

B(K — ) [B(K — pw)su 1.008 0.014 [30] 700
B(K — mov)/B(K — 7re)su < 4.5 [51]

&P — agt 30.2x1071° 8.8x1071° 2.0x107 ' [52,53]

sin® e 0.2324 0.0012 40 —

Iz 2.4952 GeV 0.0023 GeV 0.001 GeV 46 - 600
R 20.767 0.025 46 Q

Ry 0.21629 0.00066 46

R. 0.1721 0.003 [46] g 500
Am(b) 0.0992 0.0016 46 o
Am(e) 0.0707 0.0035 46 -

As 0.923 0.020 46 = 400
A, 0.670 0.027 46
Ay 0.1513 0.0021 [46]

A, 0.1465 0.0032 [46]

Am(D) 0.01714 0.00095 [46] 300
Fhad 41.540 nb 0.037 nb [48]

g, > 114.4 GeV 3.0 GeV [34.55,56]
Pennh? 0.1009 0.0062 0.012 57] 200
g . 127.925 0.016 38

| I |
Gr 1.16637%107"GeV =2 | 0.00001 %107 *GeV 2 58 200 400 600

iy 0.1176 0.0020 a8

My 91.1875 GeV 0.0021 GeV [-lef.i] . MO (GEV)
oy 80.399 GeV 0.025 GeV 0.010 GeV [58] Opt|mum

My 4,20 GeV 017 GeV a8
My 172.4 GeV 1.2 GeV 539
[ 1.77684 GeV 0.00017 GeV a8
. 1.27 GeV .11 GeV [-Ll.'i]

2D 95% CL All measurements

1D 68% CL All measurements

~ 2D 95 % contour

o
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Repeated same analysis as Bridges, KC, Trotta et al (1011.4306) with
ROOStatS IlkellhOOd R 2/ ndf 40.11/45

C : Prob 0.679
50 : Endpoint 99.66 + 1.399

C : Norm. -0.3882 = 0.02563
40 - Smearing 2.273 = 1.339

» see consistent results!

30F

20

Entries/4 GeV/ 1 fb™

BBdgeskAyd 32010
300—— ——

68%, 95% contours

Black: SuperBayeS pdf -

Blue: Neural Network thr. = 0.5 ] L S T PO P P .
Red: Neural Network thr. = 0.3-. 60 180 200

10F

Oi il

P P P ! ! ! ! ! ! !
0 20 40 60 80 100 120 140
m(ll) [GeV]

Bridges et al (2010)

800

[ 68%, 95% contours

[ Green: CMSSM prior ATLAS SU3 point

= Red: ATLAS likelihood

3 ‘ true value

SU3 mmeas
[GeV]
88 +60F2
. 189 +£60F2
mg 614+91+11
5 my 122+61F2
h 3 Observable SU3 Am
CMSSM, u>0 | ] (GeV]
1 L 3 3 3 0 100.6+1.9F0.0

300 320 | e | s
m., (GeV)
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Benchmark based on counting comenren WY

PARTICLE PHYSICS '

Max Baak’s demonstrated interpolation of signal yield and uncertainties
in a 3-d MSUGRA scan with a simple number counting analysis

Signficance

Ba20
G
=300
£280
260
240
220
200
180
160
140 -
120 .

||||||||||||
1007300 200 300 400 500 600 700 800 900 1000

m, [GeV]
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Publish likelihoods along with papers
» first goal, the LEP Higgs

e O N I - D CCOOEE | T () N T [ G D
» . Wekcome 1o INSPIRE § e upgrade of SPRES
: Pleose send festbeck 0n NSPIRE © Itackioesinbain ool — — =

Mer = Mer .. SPIRES M === TS Her & Hor 5. SPIRES HerNames :: lust &0 Cowr & B 0 Joas
Home > Search for neutrad MSSM Moo tosons ot LEP
Home > Search for the standard model Hggs boson at LEP

— ] [t [ || Retermnces (196) | | Crasons (348) |
(35)| [Catsons (1097)|
Search for the standard model Higgs boson at LEP. Search for neutral MSSM Higgs bosons at LEP.

) ALEPH and DELPHI and L3 and OPAL and LEP Working Growp for Higgs Boson Searches
LEP Working Group for Higgs boson searches and ALEPH and DELPHI and L3 and OPAL Collaborations (5. Schael (Asches, Tech. Hochach ) of al) Show of 1212 suthers.
Collaborations (R. Barate of &) Show of 1314 authors. CERN-PH-EP-2006-001.
11

Mar2003 @nm”.
3 pp.

Eur.Phys.J. CAT (2006) 547-587
gy et — -y e.Prot hep-ex/0602042

Abstract: The four LEP colaborations, ALEPH, DELPHL, L3 and OPAL. have
collected & W of 2651 pb-1 of evo- COlson data ot Conte-of mans ererges
between 450 and 200 GeV. The deta are used 10 search for he Sundand Model
mmmmuduuw-omn

HQos boson mass. A lower bound of 114.4 GeVie2 is establshed, ot e 35%
confidence level, on e mass of e Standard Model Higgs boson. The LEP deta
e 280 used 10 sel Lpper Dounds on the HZZ couping L varous sssurptions
concerming the decary of e Hggs boson.

Keyword(s): INGPIRE: tevew. sepermental tesuts | slectron postron: colideg

tau- | 189-200 GeY-cms
Record croated 2000-05-21, last modifed 20110117

Abstract: The four LEP collaborations, ALEPM, DELP, L) and OPAL. have

for the neutral Higgs which ace predicied by the Minmad

Standard Model (MSSM). The data of e four collaborations are

watascaly e for Pk Coraisiency wih e Sackground
hyscthess and with a possiie Hgps boson signal. The combined LEP data show
no sgniicant eacess of events which woulkd Indicate the production of Mggs
bosons. The search results ane used 1 st Wpper Sounds On e Coss-secions of

varous Migga-ike evert opoioges. The res.ts are merpreted within the NSSM n
@ number of benchmark models, ncluding CP conserving and CPviolatng
scerarios. Thess mterpretations lead n ol Cases 1 large exchusons in he MSSM
parameter space. Abachte Imits ave st On e parameter Snd and, N some
SCAnarios. on e masses of neutral Miggs bosons.

gecay. modes | 1oes pecicie: mass | owec imi | chennel cross secien: weoer
it | ALPEH | DELPHI | OPAL | L3 | sxserimentsl rentts | CERN LEP Sier |
bidogreony | §1:209 GeY-cme

Record created 2006.02-23, last modifed 201102408

Kyle Cranmer (NYU)
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CERN Colloquium and
[.ibrarv Science Talk

SPEAKER: [ awrence Lessig (Edmond J. Safra Center for
Ethics and Harvard Law School, Cambridge,
MA, US)

"The architecture of access to scientific
knowledge: just how badly we have messed
this up"”

DATE: Mon 18/04/2011 16:30

PLACE: Council Chamber

ABSTRACT

In this talk, Professor Lessig will review the evolution of access to
scientific scholarship, and evaluate the success of this system of

access against a background norm of universal access. While copyright
battles involving artists has gotten most of the public's attention, the real
battle should be over access to knowledge, not culture. That battle we are
losing.
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Lecture 2
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Modeling:

The Scientific Narrative
(continued)
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Re View COSMOLOGY AND @

PARTICLE PHYSICS

In Monte Carlo Simulation approach, use simulated events to build
histograms and construct the “Marked Poisson”™ model below

T T T | T T T T | T T T T | T T T T | T T T T T T T T | T T T T
ATLAS Preliminary (simulation) @ Signal
H— livv (m =300 GeV,\'s =7 TeV) — Total BG
— it
— 7z
wz

= T T T T | T T |
‘CMS Preliminary ]
- —— Signal, m =170 GeV,
[ W+lJets, t .
@ di-boson —=
B ]
I Drell-Yan

Events [fo]
events / bin

— WW
—7Z
W

450 500 1074 0.5 0 0.5
TrL, — Transverse Mass [GeV] 771, = Neural Network Output

7 3fs(my) + bfi(my)

P(m|s) = Pois(n|s + b) | |
J
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011

S_




CENTER FOR

Re View COSMOLOGY AND @

PARTICLE PHYSICS '

Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter «;

T | T T T T | T T T T | T T T T | T T T T T T T T | T T T T
TLAS Preliminary (simulation) @ Signal

— Ilvv (m =300 GeV,\'s = 7 TeV) — Total BG

I

— it
— 77
Wz

Events [fo]

WW
—Z
w

L 1

P50~ 200 250 300 450 500
71l = Transverse Mass [GeV]

s(a) fs(myla) + b(a) fp(m]a)
s(a) + b(av)

P(m|a) = Pois(n|s(a) + b(a)) H
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Re View COSMOLOGY AND @

PARTICLE PHYSICS '

Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter «;

T T T | T T T T | T T T T | T T T T | T T T T T T T T | T T T T
ATLAS Preliminary (simulation) @ Signal
H— livv (m =300 GeV,\'s =7 TeV) — Total BG

—tt
—7Z
Wz
— WW
—7Z
W

Events [fo]

.

| N T - I Ll 1l I
170 180 190

I ey |

200 250 300 450 500
71l = Transverse Mass [GeV]

s(@)fs(mjla) + b(a) fo(m;| )
s(a) +b(a)

P(m|a) = Pois(n|s(a) + b(a)) H
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Re View COSMOLOGY AND @

PARTICLE PHYSICS '

Tabulate effect of individual variations of sources of systematic uncertainty

» use some form of interpolation to parametrize i variation in terms of
nuisance parameter a;

T T T | T T T T | T T T T | T T T T | T T T T T T T T | T T T T
ATLAS Preliminary (simulation) @ Signal
H— livv (m =300 GeV,\'s =7 TeV) — Total BG
—tt
— 7z
wz
— Ww
—Z
W

Events [fo]

450
71l = Transverse Mass [GeV]

s(@)fs(mjla) + b(a) fo(m;| )
s(a) +b(a)

P(m|a) = Pois(n|s(a) + b(a)) H

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



CENTER FOR

Review '.i:ir,z‘;f;;::;?cf‘{

Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

—_
S
(W}

135

m,, (GeV)

P(m|a) = Pois(n|s(a) + b(«

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



CENTER FOR

Re View COSMOLOGY AND @

PARTICLE PHYSICS

Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

iéIMllslblrEIIi'hlihélrlyllI|III|III|III|III|III

-
o
=y
<Ll

—e— Signal, m =160 Ge
[ W+dets, tW
[ di-boson

[ | t

Il Drell-Yan
e*e" Channel

events / bin
3,

-
o
N

-1
107 20 40 60 80 100 120 140 160 180 200
m, [GeV/c?]

s(a) fs(myla) + b(a) fp(m]a)
s(a) + b(av)

P(m|a) = Pois(n|s(a) + b(a)) H
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Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

EICIMI|SIIplrlellil[;]lill1lalrlylII|III|III|III|III|III

-
o
=y
<Ll

—e— Signal, m =160 Ge

[ W+dets, tW

[ di-boson

[ | t

Il Drell-Yan
_e*e” Channel

events / bin
3,

-
o
N

m, [GeV/c?]

s(a) fs(myla) + b(a) fp(m]a)
s(a) + b(av)

P(m|a) = Pois(n|s(a) + b(a)) H
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Something must ‘constrain’ the o

» the data itself: sidebands; some control region
» constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

o
-

o
o
®

Projection of gprior

0.06/—

P(m|a) = Pois(n|s(a) + b(a
xG(ala, o)
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The Data-Driven narrative gzim;mf‘{’

In the data-driven approach, backgrounds are estimated by assuming (and
testing) some relationship between a control region and signal region

» flavor subtraction, same-sign samples, fake matrix, tag-probe, ....

Pros: Initial sample has “all orders” theory :-) and all the details of the detector

Cons: assumptions made in the transformation to the signal region can be
questioned

. x2 / ndf 40.11/45
Prob 0.679
Endpoint 99.66 + 1.399
Norm. -0.3882 + 0.02563
Smearing 2.273+ 1.339

— SU3 OSSF
—— BKG OSSF
SU3 OSDF
BKG OSDF

Entries/ 4 GeV / 1 fb
Entries/4 GeV/ 1 fb™

[L—&—

IiTlJ 0 Il_ 11 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIr
0 180 200 60 80 100 120 140 160 180 200
m(ll) [GeV] m(ll) [GeV]

Om
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Other Examples of data-driven narrative e, @
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All-hadronic searches with MHT

Search for high pT jets, high HT and high MHT (= vector sum of jets)
3 jets, E+>50 |n|<2.5

HT > 350 and MHT > 150

Event cleaning cuts.

Predict each bkgd separately
QCD: rebalance & smear

W & ttbar from u control
Z—vv from y+jets and Z-uu

i " n

,
g Z Eﬂ w

Z—- |l + jets W - lv + jets y +jets
Strength: very clean Strength: larger statistics Strength: large statistics

Weakness: low statistics Weakness: background and clean at high Er
from SM and SUSY Weakness: background at
low Er, theoretical errors

CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




Data driven estimates “T”
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics. Using the simulation narrative over
the data-driven is a choice. If you trust that narrative, it's a good choice.

—— CDF data (4.3 fb™
—— Gaussian 2.5%
Bl WW+WZ 4.8%
I W+Jets 78.0%
Top 6.3%

Bl Z+jets 2.8%

QCD 5.1%

—— Electron Data (4.3 fb'1)5

'TII|IIII|IIII|IIII|IIII|IIII|IIII|III

o R

M, o [GeV/cT]

o

100

M, [GeV/c?]
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




The Effective Model Narrative ((Tﬁ
It is common to describe a distribution with some parametric function
» “fit background to a polynomial”, exponential, ...

» While this is convenient and the fit may be good, the narrative is weak
PHYSICAL REVIEW D 79, 112002 (2009)

10
= 10°k - —e— CDF Run Il Data (1.13 fb")

102

g*(500) s =7 TeV

a9 rLar=315np"
g (1200)

[pb/(GeV/c?
.2

m..
-
(=]

©

= -4

_g 105
10

10

(a)

0.04
0.02F
0
-0.02F

-0.04
200 300 400 500 600 700

—h
o
w
T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T TTTT

i

oo oo
N B O

1
o

(Data - Fit) / Fit

——

(b)
200 400 600 800 1000 1200 1400 - {000 1500
J m, [GeV/c’] Reconstructed m’ [GeV]

(0

dm; po(1 = x)P1 /a2 tps0®) e = i /s,
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The Effective Model Narrative ((T//

H— 22 — 4 ATLAS

J|_=30f|o'1

I|IIII|IIII|IIII|IIII|_

A

IIII|IIII|IIII|IIII|IIII|_

.
) ]
L]
Y
[
; N
. "
¥ 4 L.
gy~ L]
| ||JJ1]_J_]_LLLL|IIIIJJJJ.LL ]

L | L A‘- . |
10 150 200 250 300 350 400 450 500
m,, [GeV]

p0 pl
f(mZZ) — po—myzy7 mzz—p8 —I_ p2—myy pd—myz
(I+e 7 )(14+e P ) (14+e » )(1+e » )
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Sometimes the effective model comes from a convincing narrative

- convolution of detector resolution with known distribution
- Ex: MissingET resolution propagated through M. in collinear approximation

- Ex: lepton resolution convoluted with triangular M distribution

ATLAS

VBF H(12O)%1:1:%|h B
\s=14TeV, 30fb

2 / ndf 40.11/45
Prob 0.679
Endpoint 99.66 = 1.399
Norm. -0.3882 + 0.02563
Smearing 2.273 + 1.339

Entries/4 GeV/ 1 fb™

- L8~
111 L1l

i
80 1oo 120 140 160 180

) L1 L1 NI B L1 L1 L1 L1 L
80 100 120 140 160 180 200
M., (GeV) m(ll) [GeV]

O

Kyle Cranmer (NYU) Cosmostats, July 28,2009



Tools for building effective models e, @
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e RooFit's convolution PDFs can aid in building more effective
models with a more convincing narrative

// Construct landau (x) gauss (10000 samplings 274 order interpolation)
t.setBins (10000, ”cache”) ;
RooFFTConvPdf 1lxg("lxg","landau (X) gauss",t,landau,gauss,2) ;

[LA RooPlot of "x" l [LA RooPlot of "x" I [LA RooPlot of "x" l

=10 =10 =10

: S8
: n Rl

i Sork
o] 1

E
-
E
[
6=
E
E
E

3
0.5-
;

3
04-
0.3F

.
o
0.2+

-
E
0.1
E
F

Wouter Verkerke, NIKHEF
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The parametrized response narrative e, @
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The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

=
-
o

CDF Runll Preliminary | |

. ; _ 4
A 1745 2278 12 J-Ld'!—1 fb™ (78 events]

T r'-\\

N . X N .
A 1745 2779 1811 1745 2279 1217 174.5 227

Joint Probability Density

™ ™ ] A

Rt
ALY

) : i : : :
N \ 50 155 160 165 170 175 180 185

. 1. A
T 17A5 2279 1571 1745 2279 1311 7E5  @2r M, [GeV/c
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The parametrized response narrative e, @

PARTICLE PHYSICS

The Matrix-Element technique is conceptually similar to the simulation narrative,
but the detector response is parametrized.

» Doesn’t require building parametrized PDF by interpolating between non-
parametric templates.

P(x|M;) = }\I /d@ (M(p;s M) 1| £ (piy i) fror (1) fror(e)

| |
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Functions
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Example: CDF Z' — uu S |

CDF Run II Preliminary

“a matrix element based likelihood
providing an approximately 20% relative
Increase 1n Cross section sensitivity at large

Z’' mass”

N
9
N N

7’ signal fraction

800 1000
7’ Mass [GeV/c']

. Cosmics

ol v ol vl vl vl sl |

signal fraction

Z

:’ - . i
| :» $ s 1
? 0
- still stronger than « °: 00
200 400 600 800 1000 1200 025

TABLE I: Mass limits on specific spin-1 Z’ models [12] in data o
with 4.6 fb~! of integrated luminosity at 95% confidence level. : 700
7 7 Zsn . 800

Model Z] Zeeoe Zn Zy, .

Mass Limit (GeV/c?) 817 858 900 917 930 938 1071 & 0200 a0 600 80 1000
7’ Mass [GeV/cz]
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Examples of parametrized response :g:,:;;f;;;';;f‘f
While we often see the parametrized response as overly simplistic, the
parametrizations are often based on some deeper understanding

» and parameters can often be measured in data with in situ calibration
strategies. No reason we can’t propagate uncertainty to next stage.

Muon Energy Loss (Landau) Jet Resolution

—_
o
|

T .I_(\D_I‘ T T T T LI R
o L4 0.00<n<0.50 : a=0.69 b=0.03 ¢=6.30

A
+ “1
—'— _

= 0.4<M|<0.5
e 1.2<In|<1.3
s+ 2.0<n|<2.1

.-
i

o 1.50<n<2.00 : a=1.19 b=0.01 ¢=10.00

-

MaPe 7

9
8
7
6
5
4
3
2
1
0

3

10
ETI’Uth [Gev]

Ege (Pu) =ay" +a)™ Inpy+a,” py -

E VE (GeV)
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FaSt Sim UIa tion g:ir&iZG;Hﬁ(Z?cs(T”

Fast simulations based on parametrized detector response are very useful and
can often be tuned to perform quite well in a specific analysis context

- For example: tools like PGS, Delphis, ATLFAST, ...

Same sign di-lepton + jets + MET search

CMS Preliminary, L =35 pb”,\'s =7 TeV
A L L L L

T T |
- NLO Observed Limit [JLer2 %
-+ NLO i efficiency modet)] [ ]Lep2 7
9(800) ey .DO X Ko

tanp = 3, A0 =0, sign(u) >0

3(800)Gev

5(650)GeV

3 (650)GeV

Z(500)Ge

|IIII|<:II

| | ]
Paper includes a simple efficiency model
(i.e. for PGS calibrations) and compares
full limit to limit with simple model.

1 1 I 1 1 1 1 I 1 1 1 | I 1 1 1 | | | 1 |
100 200 300 400

3
o
)
D
<
VO
S

CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis
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Fast Simulation et

Fast simulations based on parametrized detector response are very useful and
can often be tuned to perform quite well in a specific analysis context

-~ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

- Would be much more useful if the parmaetrized detector response could be
used as a transfer function in Matrix-Element approach

I 1
Oom im im im am 5m
Key:
Muon
Electron
Charged Hadron (e.q.Pion) -
- = = - Neutral Hadron (e.g.Neutron) -
Photon C

-~
\ Electromagnetic S
\
] ‘ " Calorimeter
o

Iron return yoke interspersed
fansvere se with Muon chambers
through CMS
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Narrative styles coeren @Y

PARTICLE PHYSICS

The Monte Carlo Simulation narrative (MC narrative)

- each stage is an accept/reject Monte Carlo based on P(out|in) of some
microscopic process like parton shower, decay, scattering

- PDFs built from non-parametric estimator like histograms or kernel estimation
- need to supplement with interpolation procedures to incorporate systematics
- smearing approach fundamentally Bayesian

- pros: most detailed understanding of micro-physics

- cons: computationally demanding, loose analytic scaling properties, relies on
accuracy of simulation

- new ideas: improved interpolation, Radford Neal’s machine learning, “design of
experiments”

The Data-driven narrative

» independent data sample that either acts as a proxy for some process or can be
transformed to do so

» pros: nature includes “all orders”, uses real detector

» cons: extrapolation from control region to signal region requires assumptions,
introduces systematic effects. Appropriate transformation may depend on many
variables, which becomes impractical

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Narrative styles s:zr,z‘:r.:ﬁz';?cf‘%
Effective modeling narrative

» parametrized functional form: eg. Gaussian, falling exponential para polynomial fit
to distribution, etc.

» pros: fast, has analytic scaling, parametric form may be well justified (eg. phase
space, propagation of errors, convolution)

» cons: approximate, parametric form may be ad hoc (eg. polynomial from)
» new ideas: using non-parametric statistical methods

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element
method, ~fast simulation)

- pros: fast, maintains analytic scaling, response usually based on good
understanding of the detector, possible to incorporate some types of uncertainty in
the response analytically, can evaluate P(out|in) for arbitrary out,in.

- cons: approximate, best parametrized detector response is often not available in
convenient form

- new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geantb)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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COSMOLOGY AND L
PARTICLE PHYSICS

Hypothesis Testing
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COSMOLOGY AND =

Hypothesis testing cometeey e Y
One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)
» assume one has pdf for data under two hypotheses:
 Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background
» one makes a measurement and then needs to decide whether
to reject or accept Ho

>
—
z
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<
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o
]
[

£ N

i | 1 1 ‘ | L—J‘;,
80 100 120 140 160 180
Events Observed
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Hypothesis testing cometeey e Y
One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)
» assume one has pdf for data under two hypotheses:
 Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background
» one makes a measurement and then needs to decide whether
to reject or accept Ho
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Hypothesis testing '.i:zr,z‘;‘r;;::;?cf‘{

Before we can make much progress with statistics, we need
to decide what it is that we want to do.

» first let us define a few terms:
- Rate of Type | error ¢ False Positive

Verdict of True Positive (i.e. guilt reported

° Rate Of Type ” 6 'quilty’ unfairly)

Type | error
Decision
« Power = 1 — /8 False Negative
Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

Actual condition
Guilty Not guilty

True Negative

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Hypothesis testing '.i:zr,z‘;‘r;;::;?cf‘{

Before we can make much progress with statistics, we need
to decide what it is that we want to do.

» first let us define a few terms: — e
- Rate of Type | error ¢ False Positive

Verdict of True Positive (i.e. guilt reported

- Rate of Type Il 3 ‘quilty’ unfairly)

Type | error
Decision
« Power = 1 — /8 False Negative
Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
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Hypothesis testing '.i:zr,z‘;‘r;;::;?cf‘{

Before we can make much progress with statistics, we need
to decide what it is that we want to do.

» first let us define a few terms: — e
- Rate of Type | error ¢ False Positive

Verdict of True Positive (i.e. guilt reported

° Rate Of Type ” 6 'quilty’ unfairly)

Type | error
Decision
« Power = 1 — /8 False Negative
Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

Actual condition

True Negative

Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Hypothesis testing '.i:zr,z‘;‘r;;::;?cf‘{

The idea of a “50" discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 5o corresponds to ,, — 92.87. 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0

Probability

80 100 120 140 160 180
Events Observed
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PARTICLE PHYSICS

The idea of a “50" discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 5o corresponds to ,, — 92.87. 107

* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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Hypothesis testing '.i:zr,z‘;‘r;;::;?cf‘{

The idea of a 50 discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87- 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

0.05
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0.025
0.02
0.015
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0.005
0

Probability

80 100 120 140 160 180
Events Observed
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Hypothesis testing covenron WY

PARTICLE PHYSICS

The idea of a “5o " discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87- 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

=52 R
accept = |

[G. Cowan]
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Hypothesis testing covenron WY

PARTICLE PHYSICS

The idea of a “5o " discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87- 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

gt l # Z
accept = |

accept

[G. Cowan]
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The Neyman-Pearson Lemma

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H, (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
a= P(x ¢ W|H,)

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hi is true)

ﬁ:P(ZCEW‘Hl)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



The Neyman-Pearson Lemma

The region W that minimizes the probability of wrongly
accepting Hy is just a contour of the Likelihood Ratio

P($ Hl)
P(CIZ‘ H())

> kq

Any other region of the same size will have less power

The likelihood ratio is an example of a Test Statistic, eg. a
real-valued function that summarizes the data in a way
relevant to the hypotheses that are being tested

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given
size (eg. probability under Hp is 1-(v)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



A short proof of Neyman-Pearson ?’

Now consider a variation on the contour that has the same
size
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A short proof of Neyman-Pearson CosmaLosy Ao

P(\_|Ho) = P(_“|Hy)

Now consider a variation on the contour that has the same size
(eg. same probability under Ho)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



A short proof of Neyman-Pearson

P(\_|Ho) = P(_“|Hy)

P(a|H)
P(x|Ho)

P(\_IH1) < P(\_|[Ho)k,

Because the new area is outside the contour of the likelihood
ratio, we have an inequality

< kg

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



A short proof of Neyman-Pearson

P(\_|Ho) = P(_“|Hy)

P(x|H,)
P(z|Ho)

P(z|Hy)
P(z|Hy)

P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Ho)k,

And for the region we lost, we also have an inequality

< ka >koz

Together they give...

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



A short proof of Neyman-Pearson

K\Ho /\Ho)

P(z|Ho) ~ P(z|Ho)

P(\_|H1) < P(\_|Ho)k4 P(_/|Hy) > P(_/|Ho)k,

P(x|H,) P(z|H,)

<k > kg,

P(\_|H1) < P(_/|H1)

The new region region has less power.
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2 discriminating variables

Often one uses the output of a neural network or multivariate algorithm in
place of a true likelihood ratio.

» That's fine, but what do you do with it?
» If you have a fixed cut for all events, this is what you are doing:

Y1 Y2

q

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Experiments vs. Events

|deally, you want to cut on

the likelihood ratio for your Folqu) Forslaia)
experiment
1-8
» equivalent to a sum of

log likelihood ratios 412 — q1 + ¢

Easy to see that includes
experiments where one

event had a high LR and the
other one was relatively
small

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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LEP Higgs 22$$$MD€?

PARTICLE PHYSICS

L(:U|H1) B Hévchan POZS(nZ|SZ —+ b’l,) H;lz SZfS(a:Z;z::__Z fb(a:w)

L(z|Hy) HﬁVCh“” Pois(n;|b;) H;“ fo(xij)

e Sifs(%‘j)
g=InQ = —St0t+z Zln (1 - bifb(%j))

50 \\\‘\\\‘\\\‘\\\‘\\\

Q:
In that case:
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Expected for background

IETEILE Expected for signal
plus background
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The Test Statistic and its distribution ggir;’cl;f;&gcs(?

To get a feel for the different approaches, consider this schematic diagram

signal + background background-only

Probability Density

O
(on
wn
M
5
o
=a ! B\l

Test Statistic

signal like background like

The “test statistic” is a single number that quantifies the entire experiment, it
could just be number of events observed, but often its more sophisticated, like
a likelihood ratio. What test statistic do we choose?

And how do we build the distribution? Usually “toy Monte Carlo”, but what
about the uncertainties... what do we do with the nuisance parameters?

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Building the distribution of the test statistic (‘Tﬁ

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.

L(z|H,) I Pois(nilsi + by) [T} *=rrpte

¢ J

L(x|Ho) [T, Pois(na|b) [T} fol(2s;)
Nchan 14
L sifs(@y)
g=InQ) = —s In ( >
tot{: Z AT
" . Hu and Nielsen's CLFFT used Fourier Trans-
q(x)=log(1 ,(x,) .63 NPT form and exponentiation trick to transform

o — the log-likelihood ratio distribution for one
" event to the distribution for an experiment

0 =

0, JAN=h{x)

=exp[b(p )
expIb51) + 56, ) Cousins-Highland was used for systematic er-

ror on background rate.

Getting this to work at the LHC is tricky nu-
merically because we have channels with n;

from 10-10000 events (physics/0312050)
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Building the distribution of the test statistic ::zr,z‘::.:;::;?cf%*

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.

L(z|Hy)  TI Pois(nils + by) [T} gt

L(x|Ho) [T, Pois(na|b) [T} fol(2s;)

0 =

Nchan mi

¢=InQ = _3t0t+z Zln (H bfb( ;)

For NV events, use Fourier transform to perform N convolutions

pni(q) = pni(q) @ -+ @ pw,ilg) = F {[7: (Pl,z‘)]N}

-~

N times

To include Poisson fluctuations on N for a given luminosity, one can exponentiate

= i P(N;Lo;) - pn.i(q) = 1 {eLO'i[f(pl’i(q))_l]}

N=0
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With nuisance parameters: Hybrid Solutions

Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist
treatment of the main measurement, while eliminating nuisance
parameters (deal with systematics) with an intuitive Bayesian technique.

P(non|s) = / db Pois(ney|s + b) (D), p=3" P(n|s)

nN=—Nobs

Tracing back the origin of z(b)
» clearly state prior 77(b); identify control samples (sidebands) and use:

)  Plnaglb)n(d)
(8) = PORS) = 1 Plalbyn()

Note, if we do not want to use the Hybrid Bayesian-Frequentist approach
for the nuisance parameters, then we must consider both non, and nos
when generating our toy Monte Carlo

P(non, Noft|s, b) = Pois(nen|s + b) Pois(neg|7h).

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Coverage as calibration i W

contours for b, =100, critical regions for t =1

true

This prototype problem has been :
studied extensively. /

No Systematics

N
Ag profile

Ap profile
ad hoc

» instead of arguing about the merits of
various methods, just go and check their
rate of Type | error (coverage)

40* > RO

correct coverage

» Results indicated large discrepancy in
“claimed” coverage and “true” coverage
for various methods

» eg. 50 is really ~4o0 for some points

o Coln I
160 180 200
X

J’/ L L ,\ L
80 100 120 140

Introduce idea of coverage as a calibration
Of our Statlstlcal apparatus Figure 7. A comparison of the various methods critical bou

ary Tcrit(y) (see text). The concentric ovals represent ¢
tours of Lg from Eq. 15.
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http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps
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Coverage as calibration S @

Gaussian-mean problem (relative o), ZN=5

This prototype problem has been P —
studied extensively. s0f

80F

» instead of arguing about the merits of
various methods, just go and check their
rate of Type | error (coverage)

» Results indicated large discrepancy in
“claimed” coverage and “true” coverage
for various methods

» eg. 50 is really ~40 for some points e

| | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Introduce idea of coverage as a calibration relative background uncertainty

of our statistical apparatus Recent work by Bob Cousins & Jordan
Tucker, [physics/0702156]
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The Profile Likelihood Ratio
Define (4 to be signal rate in units of SM expectation
Definer to be the shape parameters (nuisance parameters)

In the LEP approach the likelihood ratio is equivalent to:
_ L(data|lp = 1,b,v)
Qrep = L(data|p = 0,b,v)
» but this variable is sensitive to uncertainty on v/

Alternatively, one can define profile likelihood ratio
L(data|lu = 0,b(u = 0),v(u =0))
L(data|fi,b, )

)

Au=0)=

» where U is best fit with i fixed to 0
»and U is best fit with 1 left floating
» conventional ratio is reciprocal in hypo test <-> limit

Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5,2009
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An example ;i:zr:;t:“.:;;';?cs&%

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

o
VN

L(datalu = 0,b(u = 0), ¥(u = 0))

 Ldaaliih.9) .
L(datal|ft, b, D) L(data|p = 0,b, 1)
| ATLAS g | ATLAS

VBF H(120)—tt—lh - : VBF H(120)—tt—lh -
\s=14TeV, 30f6'] ] / \s=14TeV, 30f5'

Au=0)=

)

;

0 160 180 ? 160 180
M. (GeV) M. (GeV)

i f T

14

35



Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

A = 0) = Ldatalu = 0,b(u=0),v(u =0))
L(data|{,b,v) ’

one can see the function is independent of true values of

» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the
distribution of the profile likelihood ratio has an asymptotic form

—2log A(p = 0) ~ X7
Thus, we can calculate the p-value for the background-only
hypothesis by calculatin
) ) ° —2log A( = 0)

or equivalently:

7 = +/—2log A(u = 0)
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. ; &
Hypothesis Testing Sy
Now on a real PROOF cluster with 30 machines

» real world example throws millions of toys experiments, does full fit on 50
parameters for each toy.

» also supports producing simple shells scripts for use with GRID or batch queues
Now importance sampling is also implemented,

» following presentation at Banff with particle physics & statistics experts

» allows for 1000x speed increase!

» Still being tested in detail

signalplusbackground signalplusbackground

background background

- test statistic data - test statistic data

2-channel 5-channel

3.350 : N 4.40
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Experimentalist Justification g;m?;&-gcf‘{
So far this looks a bit like magic. How can you claim that you

incorporated your systematic just by fitting the best value of your
uncertain parameters and making a ratio?

It won't unless the the parametrization is sufficiently flexible.

So check by varying the settings of your simulation, and see if the
profile likelihood ratio is still distributed as a chi-square

Nominal (Fast Sim) Here it is pretty stable, but

miss

— Smeared P;

Q scale 1 it’s not perfect (and this is
d, scale 2 a log plot, so it hides some

Q2 scale 3

Q? le 4 . . .
e ot pretty big discrepancies)

Leading-order WWbb
Full Simulation

—h
<

>
=
)
®
¥e)
<)
S
o

—r
Qe
N

—r
i
(&)

For the distribution to be
L dt=10 fb™ independent of the nuisance
parameters your
‘. Lo parametrization must be

12 14 16 18 20 - :
log Likelihood Ratio sufficiently flexible.
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Ingredients to Frequentist methods

RooStats supports several statistical methods used in high energy physics
- Choose a test statistic

- simple likelihood ratio (LEP) Qrep = Lsys(pn=1)/Ly(p = 0)

. ratio of profiled likelihoods (Tevatron) Qrev = Lsts(n=1,0)/Ly(n=0,0")

- profile likelihood ratio (LHC) Ap) = Loss (1, 0)/Lgi(f1, D)
- Define your ensemble (sampling strategy)

- toy MC randomizing nuisance parameters according to 7(v)

- aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
- toy MC with nuisance parameters fixed (Neyman Construction)
- assuming asymptotic distribution (Wilks and Wald)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



CENTER FOR
COSMOLOGY AND =
PARTICLE PHYSICS

Lecture 3
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Confidence Intervals (Limits)
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Simple vs. Compound Hypotheses

The Neyman-Pearson lemma is the answer for simple hypothesis
testing

> a hypothesis is simple if it has no free parameters and is
totally fixed f(z|Ho) vs. f(x|Hy)

What about cases when there are free parameters?
- eg. the mass of the Higgs boson f(x|Hg)vs. f(x|H1, mmg)

A test is called similar if it has size a for all values of the
parameters

A test is called Uniformly Most Powerful if it maximizes the
power for all values of the parameter

Uniformly Most Powerful tests don'’t exist in general
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Similar Test Examples

In some cases Uniformly Most Powerful tests do exist:
» some examples just to clarify the concept:
» Ho is simple: a Gaussian with a fixed 1= Ho,0 = 00
» H1 is composite: a Gaussian with i < [o, 0 = 0g

- consider H. and H..

- same size, different power, but both max power
H. Ho

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Similar Test Examples

In some cases Uniformly Most Powerful tests exists:
» some examples just to clarify the concept:
» Ho is simple: a Gaussian with a fixed 1= [0, 0 = 00

» H1 is composite: a Gaussian with ¢4 > po, 0 = 00
- consider H+ and H++

- same size, different power, but both max power
HO H+

N
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Similar Test Examples
Slight variation, a Uniformly Most Powerful test doesn'’t exit:

» some examples just to clarify the concept:

» Ho is simple: a Gaussian with a fixed = lo, 0 = 00

» H1 is composite: a Gaussian with ¢ = o, 0 # 09
- Either H+ has good power and H. has bad power

- Or Vice versa
H- H-

N

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Composite Hypothesis & the Likelihood Function

When a hypothesis is composite typically there is a pdf that can
be parametrized f(Z|0)

» for a fixed g it defines a pdf for the random variable x

» for a given measurement of r one can consider f(Z|0) asa
function of g called the Likelihood function

» Note, this is not Bayesian, because it still only uses
P(data | theory) and

- the Likelihood function is not a pdf!
Sometimes @ has many components, generally divided into:
- parameters of interest: eg. masses, cross-sections, etc.

 nuisance parameters: eg. parameters that affect the shape
but are not of direct interest (eg. energy scale)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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A simple example:

A Poisson distribution describes a discrete event count n for a real-
valued mean u.

Pois(n|u) =

The likelihood of u given n is the same
equation evaluated as a function of u

~

(o)}

» Now it's a continuous function

(0]

» But it is not a pdf!

=2 1In L(ne=3 I )

TN

L(p) = Pois(n|u)

(&

N

Common to plot the -2 In L

—

» helps avoid thinking of it as a PDF

dIII|III|III|III|III|III|III

oIII|III|III|III|III|III|III

12

o

» connection to 2 distribution

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)
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1 —LEP1 and SLD

LEP2 and Tevatron (prel.)
68% CL
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Confidence Interval e i |

[

What is a “Confidence Interval? ] —LEP1 and SLD
LEP2 and Tevatron (prel.)

68% CL
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Confidence Interval e i |

[

What is a “Confidence Interval? ] —LEP1 and SLD
LEP2 and Tevatron (prel.)

- you see them all the time: | eswcl
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[

What is a “Confidence Interval? ] —LEP1 and SLD
LEP2 and Tevatron (prel.)

- you see them all the time: | eswcl

Want to say there is a 68% chance
that the true value of (mw, mt) is in
this interval
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Confidence Interval Commocaor ano
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[

What is a “Confidence Interval? ] —LEP1 and SLD
LEP2 and Tevatron (prel.)

- you see them all the time: | eswcl

Want to say there is a 68% chance
that the true value of (mw, mt) is in
this interval

- but that's P(theory|data)!
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Confidence Interval covenron WY

PARTICLE PHYSICS

[

What is a “Confidence Interval? ] —LEP1 and SLD
LEP2 and Tevatron (prel.)

> you see them all the time: 1 68%CL

Want to say there is a 68% chance
that the true value of (mw, mt) is in
this interval

- but that's P(theory|data)!

Correct frequentist statement is that

the interval covers the true value
68% of the time

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Confidence Interval covenron WY

PARTICLE PHYSICS

[

What is a “Confidence Interval? ] —LEP1 and SLD
LEP2 and Tevatron (prel.)

> you see them all the time: 1 68%CL

Want to say there is a 68% chance
that the true value of (mw, mt) is in
this interval

- but that's P(theory|data)!

Correct frequentist statement is that

the interval covers the true value
68% of the time

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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Confidence Interval
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What is a “Confidence Interval?
> you see them all the time:

Want to say there is a 68% chance
that the true value of (mw, mt) is in

this interval < _

- but that's P(theory|data)!

Correct frequentist statement is that

the interval covers the true value
68% of the time

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment

1 —LEP1 and SLD

[

LEP2 and Tevatron (prel.)
68% CL
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Confidence Interval covenron WY

PARTICLE PHYSICS

[

What is a “Confidence Interval? ] —LEP1 and SLD
LEP2 and Tevatron (prel.)

> you see them all the time: 1 68%CL

Want to say there is a 68% chance
that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

Correct frequentist statement is that

the interval covers the true value m, [GeV]

5 .
68% of the time -Bayesian “credible interval” does

mean probability parameter is
in interval. The procedure is
very intuitive:

) ) /(@) (0)
POeV)= /‘/W(e\x) ) defdgf(x|9)7r(9)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 118
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Neyman Construction example

For each value of gconsider f(x|0)

f(x|0)
A

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Neyman Construction example

Let’s focus on a particular point f(x|0,)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Neyman Construction example g:me;&-gcf‘{

Let’s focus on a particular point f(z|0,)
» we want a test of size o
» equivalent to a 100(1 — )% confidence interval ong
» so we find an acceptance region with1l — o probability

A

f(x|6o)
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Neyman Construction example

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
» here’s an example of a lower limit

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Neyman Construction example

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
»and an example of a central limit

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Neyman Construction example

Let’s focus on a particular point f(z|6,)
» choice of this region is called an ordering rule

» In Feldman-Cousins approach, ordering rule is the
likelihood ratio. Find contour of L.R. that gives size o

A

f(x|6o)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Neyman Construction example Coe e

Now make acceptance region for every value of ¢

f(x|0)
A

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Neyman Construction example

This makes a confidence belt for 6

0,

o

CENTER FOR

-

Kyle Cranmer (NYU)
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Neyman Construction example

This makes a confidence belt for 0

the regions of data in the confidence belt can be
considered as consistent with that value of 6

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Neyman Construction example

Now we make a measurement =g

the points ¢ where the belt intersects zo a part of the
confidence interval in 4 for this measurement

€g. [9—7 H-I-]

0

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Neyman Construction example

For every point @, if it were true, the data would fall in its
acceptance region with probability 1 — «

If the data fell in that region, the pointgd would be in the
interval [§_, 6. ]
So the interval[f—, 04 ] covers the true value with probability 1 — «

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



A Point about the Neyman Construction

This is not Bayesian... it doesn’t mean the probability
that the true value ofg is in the interval is1 — a!

a7
N

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




Inverting Hypothesis Tests

There is a precise dictionary that explains how to move from from
hypothesis testing to parameter estimation.

» Type | error: probability interval does not cover true value of the
parameters (eq. it is now a function of the parameters)

» Power is probability interval does not cover a false value of the
parameters (eq. it is now a function of the parameters)

- We don’t know the true value, consider each point 6’0 as if it were true

What about null and alternate hypotheses?
» when testing a pointfyit is considered the null
» all other points considered “alternate”
So what about the Neyman-Pearson lemma & Likelihood ratio?
- as mentioned earlier, there are no guarantees like before
>~ @ common generalization that has good power is:

f(x|Hop)
f(x|Hy)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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There is a formal 1-to-1 mapping between hypothesis tests and
confidence intervals:

» some refer to the Neyman Construction as an “inverted
hypothesis test”

Table 20.1 Relationships between hypothesis testing and interval estimation

Property of corresponding

Property of test confidence interval
Size = « Confidence coefficient = 1 — «
Power = probability of rejecting a  Probability of not covering a false
false value ot 8 =1 -8 valueof 0 =1 - 8
Most powerful Uniformly most accurate

Unbiased
l—ﬁzal
Equal-tails test o) = a2 = Central interval

<« —>

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Discovery in pictures ::zr;;gegﬁzgfcs(%’
Discovery: test b-only (null: s=0 vs. alt: s>0)
- note, one-sided alternative. larger N is “more discrepant”

b-only p-value

aka “CLb”

~
~
Sao

Nevens = more discrepant —»

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 133
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Sensitivity for discovery in pictures comereer e Y
When one specifies 50 one specifies a critical value for the data before
“rejecting the null”.

Leaves open a question of sensitivity, which is quantified as “power” of the test
against a specific alternative

> In Frequentist setup, one chooses a “test statistic” to maximize power

- Neyman-Pearson lemma: likelihood ratio most powerful test for one-sided alternative

Power of test against s

Critical region defined by 50

N events

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Measurements in pictures :gzr,z;gG;H:-;fcs(‘T’
Measurement typically denoted o0 = Xt Y.

» X is usually the “best fit” or maximum likelihood estimate

» £Y usually means [X-Y, X+Y] is a 68% confidence interval
Intervals are formally “inverted hypothesis tests”: (null: s=so vs. alt: s# so)

> One hypothesis test for each value of so against a two-sided alternative

> No “uniformly most powerful test” for a two-sided alternative

obs, (Sbest+b)

2.5%

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Upper limits in pictures o S

What do you think is meant by “95% upper limit” ?

Is it like the picture below?
» ie. increase s, until the probability to have data “more discrepant” is < 5%

Sgs+b excluded
aka “C Ls+b” R ‘,
5%

O
R
™~

0N
.
o

-+
O
\~~
~~~~
~~--___

«— more discrepant ——— N events
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Upper limits in pictures g:zr;:f:;g;?cs(‘%
Upper-limits are trying to exclude large signal rates.

» form a 95% “confidence interval” on s of form [0,Sos]
Intervals are formally “inverted hypothesis tests”: (null: s=so vs. alt: s<so)

> One hypothesis test for each value of sp against a one-sided alternative
Power of test depends on specific values of null sp and alternate s’

- but “uniformly most powerful” since it is a one-sided alternative

Sg5+Db excluded

«— more discrepant ——— N events
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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The sensitivity problem gzimmgcf‘{

The physicist’'s worry about limits in general is that if there is a strong
downward fluctuation, one might exclude arbitrarily small values of s

» with a procedure that produces proper frequentist 95% confidence
intervals, one should expect to exclude the true value of s 5% of the time,
no matter how small s is!

» This is not a problem with the procedure, but an undesirable consequence of the Type | / Type
|l error-rate setup

e

N events

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




CENTER FOR

Power in the context of limits ',i:if,";;";;;;‘;‘,’cs(‘Tﬁ
Remember, when creating confidence intervals the null is s=sg
» and power is defined under a specific alternative (eg. s=0)

Power of test against s=0

b-only Sgs+b

P(N | s+b)

4

N events

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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To address the sensitivity problem, CLs was introduced

» common (misused) nomenclature: CLs = CLs+b/CLp

» idea: only exclude if CLs<5% (if CLb is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%
- Note: CLs is NOT a probability

“The CLs ... methods combine size and power in a very ad hoc way and are

L unlikely to have satisfactory statistical properties.” -- D. Cox & N. Reid
b

*

N events

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



CENTER FOR

The Power Constraint gzi;«me;&.gcf‘{

An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as
50% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

Power of test against s=0

b-only Sgs+b

P(N | s+b)

4

N events

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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The Power Constraint g:zr;:g:;;g;f‘{
An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as
50% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

Power of test against s=0 10°
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The Power Constraint g:f,r;:f:;;;';?cf‘{
An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as
950% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

“ Both measures are useful quantities that should be reported in order to extract the most science from catalogs’

Power of test against s=0 10°

1 IIIIIIII I IIIIIIII I Illlllt
v

i
i

I T TTTTL

b-only Sgs+b
Taken from
Feldman-Cousins

paper

P(N | s+b)
Am?® (eVZ/ch
1 1 IIIIIIIN
1 1 IIIIIII

[e—
e}

90% C.L. ——

Sensitivity ----

~
~
~
~
~
~
~
~
~
~
~
I I -
IIIII 11 1 1111l 11 1 1111l N N E NN

~
N~~
-—y
——

10200\
mn-(26)

N events

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011


http://arxiv.org/abs/1006.4334v1
http://arxiv.org/abs/1006.4334v1

“Power-Constrained” CLs+b limits ((Tﬁ
Even for s=0, there is a 5% chance of a strong downward fluctuation that would
exclude the background-only hypothesis

» we don’t want to exclude signals for which we have no sensitivity

» idea: don’t quote limit below some threshold defined by an N-oc downward
fluctuation of b-only pseudo-experiments (Choose -10 by convention)

11

b-only expectation

— -10 background
fluctuation

Observed limit is
“too lucky” for

- comfort, impose
“power constraint”

=
bl/)
~~
b
c
o
=
E
T
| -
v
Q
Q
D
X
LN
o

-20 band must go
to 0 by simple
logical argument,
SO remove it
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“Power-Constrained” CLs+b limits ((Tﬁ
Even for s=0, there is a 5% chance of a strong downward fluctuation that would
exclude the background-only hypothesis

» we don’t want to exclude signals for which we have no sensitivity

» idea: don’t quote limit below some threshold defined by an N-oc downward
fluctuation of b-only pseudo-experiments (Choose -10 by convention)

11

b-only expectation

- -10 background
fluctuation

Observed limit is
“too lucky” for

- comfort, impose
“power constraint”

. | . S . i -20 band must go
130 140 150 160 170 180 190 20(;(‘_@& tO O by Simple

m, (GeV) logical argument,
so remove it

=
bl/)
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o
=
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Q
Q
D
X
LN
o
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Coverage Comparison with CLs e |
The CLs procedure purposefully over-covers (“conservative™)
» and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until
the constraint is applied, at which point the coverage is 100%

» limits are not ‘aggressive’ in the sense that they under-cover

Coverage probability

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Coverage Comparison with CLs e |
The CLs procedure purposefully over-covers (“conservative™)
» and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until
the constraint is applied, at which point the coverage is 100%

» limits are not ‘aggressive’ in the sense that they under-cover

Coverage probability
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Discrete Problems gzi;«me;&.gcj({

In discrete problems (eg. number counting analysis with counts
described by a Poisson) one sees:

» discontinuities in the coverage (as a function of parameter)
» over-coverage (in some regions)

» Important for experiments with few events. There is a lot of
discussion about this, not focusing on it here

@Vé’?’)ﬂ CoVERAGE oF ‘[’%FOUENTQT ?0.%
UpPeR Linirs PR SHALL PO',SJM] &Jm

.

‘ve , w o ‘ .
t P«oﬁ(ﬂfﬂ;ﬂ:ﬂ) v e

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Flip-Flopping

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



CENTER FOR
COSMOLOGY AND =
PARTICLE PHYSICS

flip/flop point

one-sided
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flip/flop point

one-sided

+ Two-sided
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Flip-flopping coverage ST e |
The flip-flopping procedure will under-cover

» can be avoided with a ‘unified method’ or if we always provide both p-value for b-only and
1-sided upper-limit

“As 1s emphasized in Neal [4], upper and lower one-sided confidence limits should replace
confidence intervals, and a full plot of the log-likelihood function is better still.” - D. Cox, N. Reid

In practice, we care about coverage on physical parameters (eg. a cross-section, not the
number of events). This leads to a subtle semi-philosophical point

» So the relevant ‘ensemble’ of experiments may be different. With 100x more data one
might quickly leave the regions effected by flip-flopping

JIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_

I Coverage for a=0.1 with Flip-Flopping at 5-sigma |

1F Tommaso Dorigo

IIII|IIII|IIII IIII|IIII|IIII:

1 2 3 4 5 6 7 8 True value of  (in G units)
Measured Mean x
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Now let’s study Feldman-Cousins gg;«;;;m;f‘{

Feldman & Cousins “Unified Approach” looks like this:

Neyman Construction
- For each p: find region R,
with probability 1 — «

-

IIIIIIIIIIIII%IIII

(o)

9]

- Confidence Interval includes all
consistent with observation at xg

w
N

(98]

Ordering Rule specifies what region

\]

[E—

F-C ordering rule is the Likelihood Ratio ’
%IIIIIIIIIIIIIIIII

i
RM:{CE‘ | L(L(xm))>ka} T2 3 45 e

33|,Ubest

o

oIIIIIIIIIIIIIIIIIIIIIIIIIII

-

The F-C ordering rule follows naturally from Neyman-Pearson Lemma
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A different way to picture Feldman-Cousins
Most people think of plot on left when thinking of Feldman-Cousins
Wi P(z|p)dx =

bars are regions “ordered by” R = P(n|u)/P(n|uest), With /
But this picture doesn’t generalize well to many measured quantities

Instead, just use R as the test statistic... and R is A(p)
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Generalizing the Likelihood Ratio with Nuisance Parameters coswowosyan S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)
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Generalizing the Likelihood Ratio with Nuisance Parameters coswowosyan S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.

f(z|Ho) ~ f(z]6o)
f(z|Hy) f(@|Opest (2))
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Generalizing the Likelihood Ratio with Nuisance Parameters coswowosyan S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?
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Generalizing the Likelihood Ratio with Nuisance Parameters cosvowcs ane 'S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

physics parameters
nuisance parameters

unconditionally maximize L(:z:|9Ar, és)

conditionally maximize L(x|60,, és)

llepuay| wo.4
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Generalizing the Likelihood Ratio with Nuisance Parameters cosvowcs ane 'S

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

physics parameters
nuisance parameters

unconditionally maximize L(:z:|9Ar, és)
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Generalizing the Likelihood Ratio with Nuisance Parameters S |

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)
Then we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?

Variable Meaning

physics parameters
nuisance parameters

unconditionally maximize L(:z:|9Ar, és)

conditionally maximize L(x|60,, és)

Now consider the Likelihood Ratio
 L(x]6y0,05)
L(z|6,,8,)

Intuitively [ is a reasonable test statistic for Hy: it is the maximum likelihood

llepuay| wo.4

under Hy as a fraction of its largest possible value, and large values of [ signify

that Hj is reasonably acceptable.

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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An example ;i:zr:;t:“.:;;';?cs&%

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

o
VN

L(datalu = 0,b(u = 0), ¥(u = 0))

 Ldaaliih.9) .
L(datal|ft, b, D) L(data|p = 0,b, 1)
| ATLAS g | ATLAS

VBF H(120)—tt—lh - : VBF H(120)—tt—lh -
\s=14TeV, 30f6'] ] / \s=14TeV, 30f5'

Au=0)=

)

;

0 160 180 ? 160 180
M. (GeV) M. (GeV)

i f T

14

5
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Feldman-Cousins with and without constraint ggzr;‘ff;;;';?cs«%

With a physical constraint (u>0) the confidence band changes, but
conceptually the same. Do not get empty intervals.

oy L)

= P ) _ L(0,6(0
t, =—2InA(n) f,=—2InA(u) = L(( g(( ))))
_21n M, A/J/

L(f1,0)

Two-sided Two-sided
unconstrained constrained

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Modified test statistic for 1-sided upper limits gg:,:;;;e;g;»cf?

For 1-sided upper-limit one construct a test that is more powerful for all

u>0 (but has no power for y=0) simply by discarding “upward fluctuations”
_on L8 5

“2InA(p) A<p. I R
qu:{ ) Un <—21n% 0<i<u

0 pm> Qs

One-sided
constrained |

One-sided
unconstrained

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



A real life example

Each colored curve is represents a single pseudo-experiment
» the test statistic is changing as u, the parameter of interest, changes
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Recall: Hybrid Solutions

Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist
treatment of the main measurement, while eliminating nuisance
parameters (deal with systematics) with an intuitive Bayesian technique.

P(non|s) = / db Pois(ney|s + b) (D), p=3" P(n|s)

nN=—Nobs

Tracing back the origin of z(b)
» clearly state prior 77(b); identify control samples (sidebands) and use:

)  Plnaglb)n(d)
(8) = PORS) = 1 Plalbyn()

Note, if we do not want to use the Hybrid Bayesian-Frequentist approach
for the nuisance parameters, then we must consider both non and nos
when generating our toy Monte Carlo

P(non, Noft|s, b) = Pois(nen|s + b) Pois(neg|7h).

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Conditional vs. Unconditional Ensemble e, @8

PARTICLE PHYSICS

In the Conditional ensemble the
global observables / auxiliary
measurements are always the same

Il[llllll

Threshold
w

N
()]

'I'IIIITITI'I ITIIIIII’I'ITI]I’I'

)

- if there are very few events
expected, the test statistic takes
on discrete values

E'llllll I llllll:
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In the Unconditional ensemble the
global observables / auxiliary
measurements fluctuate “smearing 8] H
out” the value of the test statistic.
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~ also more fluctuations in results
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More on conditioning tomorrow! :




Conditional vs. Unconditional Ensemble
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Coverage comrnren WY

PARTICLE PHYSICS

Coverage can be different
at each point in the
parameter space

Example: 7 . L
o Pl FHSIATO - Oxford, B i< /7///{////%/7//7;//%%////

Poisson(+background), with a systematic uncertainty on etticiency:

x ~ Pois(euL+b) e~ G(g,0)

e is a measurement of the unknown efficiency €, with resolution ¢

€ 1s the efficiency (a “normalization factor”, can be larger than 1).

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Neyman Construction with Nuisance parameters oo

In the strict sense, one wants coverage for u for all values of the nuisance
parameters (here €)

» The “full construction” one n

Challenge for full Neyman Construction is computational time (scan in 50-
D isn’t practical) and to avoid significant over-coverage

» note: projection of nuisance parameters is a union (eg. set theory) not
an integration (Bayesian)

ideal shape of conf. region full construction

H min b

G. Punzi - PHYSTAT 05 - Oxford, UK K. Cranmer - PHYSTAT 03 - SLAC

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Profile Construction comenror Y

Gary Feldman presented an approximate Neyman priie constraint
Construction, based on the profile likelihood Bl

ratio as an ordering rule, but only performing the R
construction on a subspace (eg. their conditional

maximum likelihood estimate) /’\/

PARTICLE PHYSICS

Ay

LY

e

A Subtlety, [Hustrated

ooooo
00000

mo

oa

oo

oa

g
r

"
-

b known exactly

The profile construction means that one does
not need to scan each nuisance parameter (keeps
dimensionality constant)

» easier computationally

This approximation does not guarantee exact
coverage, but

» tests indicate impressive performance

» one can expand about the profile construction to
Improve coverage, with the limiting case being
the full construction

Gary Feldman

12 Formidab Workshop

Kyle Cranmer (NYU)

CERN Academic Training, Statistics, April 2011



CENTER FOR

Profile Construction: professional literature ggg;;;e;;;gcf‘{

While | have been calling it the “profile construction”, it has been called
a “hybrid resampling” technique by professional statisticians

» Note: ‘hybrid’ here has nothing to do with Bayesian-Frequentist Hybrid, but
a connection to “boot-strapping”

Statistica Sinica 19 (2009), 301-314

ON THE UNIFIED METHOD WITH
NUISANCE PARAMETERS

Bodhisattva Sen, Matthew Walker and Michael Woodroofe

. . . The University of Michigan
Resampling methods for confidence intervals in group

sequential trials

By CHIN-SHAN CHUANG

Department of Statistics, University of Wisconsin at Madison, Madison, Wisconsin 53706,
US.A.

cchuang@stat.wisc.edu

AND TZE LEUNG LAI
Department of Statistics, Stanford University, Stanford, California 94305, U.S.A.
lait@leland.stanford.edu

Chuang, C. and Lai, T. L. (1998). Resampling methods for confidence intervals in group se-
quential trials. Biometrika 85, 317-332.

Chuang, C. and Lai, T. L. (2000). Hybrid resampling methods for confidence intervals. Statist.
Sinica 10, 1-50.

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Previous ways of addressing spurious exclusion

The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

Virgil L. Highland, Estimation of Upper Limits from Experimental Data, July 1986,
Revised February 1987, Temple University Report C00-3539-38.

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A.L. Read, J.
Phys. G 28, 2693 (2002).

and led to the “CL_” procedure.

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Lecture 4
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What drives the choice of statistical method? ‘;:zrl‘;‘;‘f;“:";cs(?

Do we insist on addressing Prob(theory | data )?

» if yes, then some form of Bayesian (requires priors)
Do we want to be able to incorporate subjective information in our inference?
» if yes, then subjective Bayesian
Do we insist on Coverage OR the Likelihood Principle? (Can’t have both)
» If we insist on Coverage, then must use Frequentist
» If we insist on Likelihood Principle, two options:
- Likelihood-based inference (no prior, approximate coverage, MINOS)
- Bayesian (need prior, can be objective, can try for approximate coverage)
Do we want to provide the most information or go straight to inference?

» If we do, then we should publish probability model / likelihood function

- Allows for all types of statistical analysis. Avoids the comparison problem.
What do we want to conclude?
» is a signal present?
» what production rate and model parameters of the new signal are still allowed?
» what is the best estimate and allowed range of rate and model parameters?

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Asymptotic Properties of likelihood based tests

&

Likelihood-based methods
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Wilks’s theorem

Wilks’s theorem says that asymptotically the distribution of

—2log A(0p) =—2log f(:z:l@o)
f(x|0(x))
when 0y is true approaches a chi-square distribution, with the

number of degrees of freedom equal to the number of parameters
of interest

—2log A\(0) ~ X7

n

It does not assume that
the pdf is Gaussian!

\ ‘ It is true for every value of g
, eg. “distribution free”

T

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Likelihood-based Intervals

Wilks’s theorem tells us how the profile
likelihood ratio evaluated at 6 is
“asymptotically” distributed when 0 is true

» asymptotically means there is sufficient
data that the log-likelihood function is
parabolic

» does NOT require the model f(x|0) to be
Gaussian

» there are some conditions that must be
met for this to true

Note common exceptions:

» a parameter has no effect on the
likelihood (eg. mu when testing s=0)
related to look-elsewhere effect

» require s20, but this just leads to a
O-function at 0 + 15y?

|

—
—2log \(60)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Likelihood-based Intervals

Wilks’s theorem tells us how the profile
likelihood ratio evaluated at O is
“asymptotically” distributed when 0 is true

» asymptotically means there is sufficient
data that the log-likelihood function is
parabolic

» does NOT require the model f(x|0) to be I

Gaussian

—

» there are some conditions that must be —2log A(0)
met for this to true

Note common exceptions:

» a parameter has no effect on the Trial factors or the look
likelihood (eg. my when testing s=0)  elsewhere effect in high energy
related to look-elsewhere effect physics.

Eilam Gross, Ofer Vitells

4 require SZO, but this jUSt leads to a Eur.Phys.J. C70 (2010) 525-530

. e-Print: arXiv:1005.1891 [physics.data-an]
O-function at 0 + 15y?
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



http://inspirebeta.net/author/Gross%2C%20Eilam?recid=854732&ln=en
http://inspirebeta.net/author/Gross%2C%20Eilam?recid=854732&ln=en
http://inspirebeta.net/author/Vitells%2C%20Ofer?recid=854732&ln=en
http://inspirebeta.net/author/Vitells%2C%20Ofer?recid=854732&ln=en

Likelihood-based Intervals

Wilks’s theorem tells us how the profile
likelihood ratio evaluated at 6 is
“asymptotically” distributed when 0 is true

» asymptotically means there is sufficient
data that the log-likelihood function is

parabolic

» does NOT require the model f(x|0) to be
Gaussian

So we don't really need to go to the
trouble to build its distribution by using
Toy Monte Carlo or fancy tricks with
Fourier Transforms

We can go immediately to the threhsold
value of the profile likelihood ratio

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Demonstration of Central Limit Theorem ::zr,z‘;f.:ﬁz';?cf‘{

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Demonstration of Central Limit Theorem ‘ﬂT’

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood

Ll 1
-2 @
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Demonstration of Central Limit Theorem ‘ﬂT’

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood
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Demonstration of Central Limit Theorem ‘ﬂTﬂ

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood

8.5

8.45
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Demonstration of Central Limit Theorem ‘ﬂTﬂ

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood

8.5

8.45
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Likelihood-based Intervals
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Likelihood-based Intervals

And typically we only show the likelihood
curve and don’t even bother with the
implicit (asymptotic) distribution

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Likelihood-based Intervals

~—~
a
~

—21In L(ne=3 | 1)

|III|III|III|III

élII|III|III|III|III|III|III

0

S

Figure from R. Cousins, And typically we only show the likelihood
Am. J. Phys. 63 398 (1995) curve and don't even bother with the
implicit (asymptotic) distribution

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Feldman-Cousins with and without constraint oo &

PARTICLE PHYSICS

Wilks’s theorem gives a short-cut for the Monte Carlo procedure used to find
threshold on test statistic = MINOS is asymptotic approximation of Feldman-Cousins

- With a physical constraint (u>0) the confidence band changes |
_9p Lmb(n)
ty = —2InA(u) f,=—2InX(p) = L(0.6(0))

o L(u0(w))
2In =00

Two-sided Two-sided
unconstrained constrained

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Modified test statistic for 1-sided upper limits g:zr;;‘f;;;';?cs«%
For 1-sided upper-limit the threshold on the test statistic is different

- and with physical boundaries, it is again more complicated
_on L8 5

“2InA(p) A<p. I R
qu:{ ) Un <—21n% 0<i<u

One-sided
constrained |

One-sided
unconstrained

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



CENTER FOR

: W
“The Asimov paper” e |
Recently we showed how to generalize this asymptotic approach
» generalize Wilks’s theorem when boundaries are present
» use result of Wald to get f(-2logh(p) | u’)

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

Eur.Phys.J.C71:1554,2011

http://arxiv.org/abs/1007.1727v2

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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The Non-Central Chi-Square «Tﬁ

Wald's theorem allows one to find the distribution of -2logA(u) when p
IS not true -- the result is a non-central chi-square distribution

Let Xi be kindependent, normally distributed

random variables with means i and

variances . Then the random variable
(5
i—1 \Ti

is distributed according to the noncentral chi-

square distribution. It has two parameters: &

which specifies the number of degrees of

freedom (i.e. the number of Xi), and A which is
related to the mean of the random variables

Xi by: £/ 2
e o) -

A is sometime called the noncentrality
parameter. Note that some references define
A in other ways, such as half of the above
sum, or its square root.

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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The main results covrenron (Y

PARTICLE PHYSICS

The Model is just a binned version of the 5= stot [ folw:0)de
marked Poisson we have considered

(18 +05)" (s, +0, u "
L ,9:” e~ (Hsj+bj) || ke~ Uk
(1, 0) o n;! k=1mk!

The “Asimov Data” is an artificial dataset
where the “observations” are set equal to

the expected values given the parameters

of the model  nja = En =v; = i/'s(0) +b:(0) ,

mi,A = E[mz] = uZ(H) .

We proved that fits to the Asimov data can
be used to get the non-centrality parameter

! (92 InL N T n; (92%' 8%‘ (9%‘ n;
needed for Wald’s theorem D> (_ _1) S o MV—E]

_ 2 _
— 21n )\A (/,L) ~ (M IUI) — A i (@_Q 0%u; ou; aUz’mi]

2 [\ u 80,00,  06; 90, u2

o
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How well does it work? s:zr::‘f:;;;';?cf‘{

Monte Carlo test of asymptotic formulae

Asymptotic f(q,|1) good already for fairly small samples.
Median[g,|1] from Asimov data set; good agreement with MC.

III?

o= 10%

10

q

. 0,Asimov

: median[qﬂ|1]

10

G. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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How well does it work gzim;ﬂgcs(%

Monte Carlo test of asymptotic formula

n ~ Poisson(pus + b)

m ~ Poisson(7b)

Here take 7= 1.

Asymptotic formula 1s
good approximation to So
level (g, = 25) already for
b ~ 20.

I|IIII
5 30 35

Using the Profile Likelihood in Searches for New Physics / Banff 2010
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Some non-trivial tests: boundaries NS

Monte Carlo test of asymptotic formulae

Same message for test based on g "

q,and g, give similar tests to
the extent that asymptotic
formulae are valid.

. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Some non-trivial tests: boundaries ﬁzzr::‘ff.:x;?cf?

Monte Carlo test of asymptotic formulae

sty = @ (2 o)

Same message for test based on ¢ " oo [ (Vi - )] 0<a<iion,

(ér(u272uu’)/02)2]

q,and g, give similar tests to /e
the extent that asymptotic
formulae are valid.

Qp > p2/o? .

We now can describe
effect of the boundary on
the distribution of the
test statistic.

—
O~
&)
@l
_I_

o=l
=

. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010
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Median & bands from asymptotics “T”

Get Median and bands in seconds, not days!

95

Mop

CL = 95% limits
s+b

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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The problem with p-values g;m?;&gcf‘{

The decision to reject the null hypothesis is based on the probability for data
you didn’t get to agree less well with the hypothesis...

- doesn’t sound very convincing when you put it that way. Other criticisms:

- test statistic is “arbitrary” (not really, it is designed to be powerful against
an alternative)

- what is the ensemble? Related to conditioning

b-only p-value

Nevents ——— more discrepant ——»

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011 182




CENTER FOR
COSMOLOGY AND =
PARTICLE PHYSICS

Conditioning (cont.)
- The 1956 thought expt of David R. Cox focused the issue:

— Your procedure for weighing an object consists of
flipping a coin to decide whether to use a weighing
machine with a 10% error or one with a 1% error; and then
measuring the weight.

— Then “surely” the error you quote for your measurement
should reflect which weighing machine you actually used,
and not the average error of the “whole space” of all
measurements!

— But classic most powerful N-P hypothesis test uses the
whole space!

- In more complicated situations, ancillary statistics do not
exist, and it is not at all clear how to restrict the “whole
space” to the relevant part for frequentist coverage.

...In methods obeying the likelihood principle, in effect one
conditions on the exact data obtained, giving up the
frequentist coverage criterion for the guarantee of relevance.

Bob Cousins, CMS, 2008 51

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Cox’s Conditioning argument ((Tﬁ

6], Sir David Cox gave a simple convincing example in 1958 that the most powerful
test is not always the most relevant test. A version of the argument adapted to HEP
is as follows. (Cox’s arguments is often applied to “weighing machines”, although that
phrase is not actually in Ref. [6].)

Suppose that one is “weighing” an elementary particle, i.e., measuring the mass m of
a particle that happens to have two decay modes 4, each with 50% branching fraction.
Suppose that the mass measurement for decay mode ¢ = 1 has mass resolution with
rms 03 = 10 GeV, and for decay mode i = 2, it is 05 = 1 GeV. (The modes are
distinguishable; one could be decay to neutrals and the other to charged tracks.) One
is testing the null hypothesis that predicts the mass to be 100 GeV in a one-sided test
against larger alternative masses. We set the significance level to be 0.05. L.e., from the
data, we use a recipe to calculate a 95% C.L. lower limit on m and compare to 100

GeV.

We do the experiment and get one decay sampled randomly from the two modes, with
measured mass x sampled randomly from a Gaussian with the resolution for that mode.
Using the fact that the one-tailed probability for x > 1.64¢ is 0.05 for a Gaussian, the
“obvious” recipe for testing the null hypothesis (m = 100 GeV) is:

e [f decay mode 1 is observed, reject the null if z > 100 GeV + 1.64 0, = 116.4 GeV;
e If decay mode 2 is observed, reject the null if x > 100 GeV + 1.64 05, = 101.64 GeV.

except from a note by Bob Cousins

I.e., we use the o which is relevant for the mode actually observed in performing the
one-sided test. One says that the tail probabilities that are calculated are conditional
probabilities, calculated conditionally on the mode that was actually observed.
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Cox’s Conditioning argument ((Tﬁ

It is easy to see that this is not the same result that one obtains by using the uncondi-
tional probability for obtaining z, which is the sum of two Gaussians (one with ¢; and
one with o3), each weighted by 0.5.

Now let us consider a specific alternative hypothesis m4 = 110 GeV, and ask what is
the power (1 — (3) of the above conditional test. The probability 3 of accepting the null
(100 GeV) when the alternative (110 GeV) is true is p(x < 116.4 | m = 110) =~ 0.75 for
mode 1 and p(x < 101.64 | m = 110) ~ 0 for mode 2. Recalling that the probability of
cach mode is 50%, 8 ~ 0.38 and the power is 1 — 3 = 0.62.

Remarkably, it is easy to show that, among tests with significance level 0.05, this is not
the most powerful test for the whole sample space, i.e., for the unconditional ensemble

which includes both decay modes. A test which is more powerful against the alternative
110 GeV is:

e If decay mode 1 is observed, reject the null if x > 100 GeV + 1.28 07 = 112.8 GeV;
e If decay mode 2 is observed, reject the null if z > 100 GeV + 509 = 105 GeV.

The significance level is again 0.05. The Type 1 errors are not divided equally between
the two modes, but rather occur ~ 10% of the time in decay mode 1, and by comparison
negligibly in decay mode 2.
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The probability 5 of accepting the null (100 GeV) when the alternative m, (110 GeV)
is true is p(xr < 112.8|m = 110) ~ 0.4 for mode 1 and p(x < 105|m = 110) ~ 0 for
mode 2. Recalling that the probability of each mode is 50%, § ~ 0.2 and the power is
0.8.
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The Likelihood Principle (‘T*

Likelihood Principle

As noted above, in both Bayesian methods and likelihood-ratio
based methods, the probability (density) for obtaining the data at
hand is used (via the likelihood function), but probabilities for
obtaining other data are not used!

In contrast, in typical frequentist calculations (e.g., a p-value which
is the probability of obtaining a value as extreme or more extreme
than that observed), one uses probabilities of data not seen.

This difference is captured by the Likelihood Principle*: If two
experiments yield likelihood functions which are proportional, then
Your inferences from the two experiments should be identical.

L.P. is built in to Bayesian inference (except e.g., when Jeffreys
prior leads to violation).

L.P. is violated by p-values and confidence intervals.

Although practical experience indicates that the L.P. may be too
restrictive, it is useful to keep in mind. When frequentist results
“make no sense” or “are unphysical”, in my experience the
underlying reason can be traced to a bad violation of the L.P.

*There are various versions of the L.P., strong and weak forms, etc.
Bob Cousins, CMS, 2008
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Goal of Likelihood-based Methods

Likelihood-based methods settle between two conflicting desires:

» We want to obey the likelihood principle because it implies a lot of nice
things and sounds pretty attractive

» We want nice frequentist properties (and the only way we know to

incorporate those properties “by construction” will violate the likelihood
principle)

The asymptotic results give us
a a way to approximately cover
while simultaneously obeying
the likelihood principle and
NOT using a prior

\

to

[
!

T
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Bayesian methods
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Two centuries later (when this Book
had become an official prayer book of
the Church of England) Thomas Bayes
was a non-conformist minister
(Presbyterian) who refused to use

Cranmer’s book

Archbishop of Canterbury Thomas
Cranmer (born: 1489, executed:
1556) author of the “Book of

Common Prayer”

CERN Academic Training, Statistics, April 2011
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Axioms of Probability

These Axioms are a mathematical starting
point for probability and statistics
1. probability for every element, E, is non-
negative P(E)>0 VECF=2
2. probability for the entire space of
possibilitiesis 1 P(Q2) = 1.

3. If elements E; are disjoint, probability is
additive P(E,UE,uU---)=Y P(E).

Consequences:
P(AuUB)= P(A)+ P(B) — P(AN B)
P(Q\ F)=1- P(FE)

Kolmogorov
axioms (1933)
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Different definitions of Probability '.i:ir::;?;;::;?cf‘{
Frequentist
» defined as limit of long term frequency
» probability of rolling a 3 := limit of (# rolls with 3 / # trials)
- you don’t need an infinite sample for definition to be useful
- sometimes ensemble doesn’t exist
« 9. P(Higgs mass = 120 GeV), P(it will snow tomorrow)
» Intuitive if you are familiar with Monte Carlo methods

» compatible with orthodox interpretation of probability in Quantum
Mechanics. Probability to measure spin projected on x-axis if spin of beam
IS polarized along +z , 1

(=1 DP =3

Subjective Bayesian

- Probability is a degree of belief (personal, subjective)
- can be made quantitative based on betting odds

- most people’s subjective probabilities are not coherent and do not obey
laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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Bayes’ Theorem s

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B
P(B|A) P(A)

P(B)

P(A) is the prior probability or marginal probability of A. It is "prior" in the sense
that it does not take into account any information about B.
P(AIB) is the conditional probability of A, given B. It is also called the posterior
probability because it is derived from or depends upon the specified value of B.
P(BlA) is the conditional probability of B given A.

= P(B) is the prior or marginal probability of B, and acts as a normalizing constant

P(A|B) =

Derivation from conditional probabilities

To derive the theorem, we start from the definition of conditional probability. The probability of event A given event B is
P(ANB)

P(B)
Equivalently, the probability of event B given event A is
P(AN B)

P(A)
Rearranging and combining these two equations, we find

P(A|B) P(B) = P(AN B) = P(B|A) P(A).

This lemma is sometimes called the product rule for probabilities. Dividing both sides by P(B), providing that it is non-zero, we obtain Bayes' theorem:
P(ANB) P(B|A)P(A)

P(B)  P(B)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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... in pictures (from Bob Cousins) ggir;";;&"s?cs(%

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures

() -
PA) = —— P(B) = —
Whole space L L

9 9
‘D P(AIB) = @ P(BIA) = T

O
P(A) x P(BIA) = - X .
@ ¢

X
N e

Bob Cousins, CMS, 2008 = P(BIA) = P(AIB) X P(B) / P(A)

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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... in pictures (from Bob Cousins)
P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures
U P(B) =

o = O @
Whole space L L

0
'B P(AIB) = " P(BIA) =

P(Aﬁ B): -

Don't forget about “Whole space™(2. | will drop it from the
notation typically, but occasionally it is important.

Bob Cousins, CMS, 2008 = P(BIA) = P(AIB) X P(B) / P(A)
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




Louis’s Example

P (Data;Theory) % P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%
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Bob’s Example §:ir::‘:r.:;::;?cs(‘79
A b-tagging algorithm gives a curve like this
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Background rejection
o

——sBbr )
LIkeIihOOd ............... ............... ............... ............... . ;

0.8 0.9
Signal efficiency

One wants to decide where to cut and to optimize analysis
- For some point on the curve you have:
- P(btag| b-jet), l.e., efficiency for tagging b’s
- P(btag| not a b-jet), i.e., efficiency for background
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Bob’s example of Bayes’ theorem

Now that you know:
» P(btag| b-jet), I.e., efficiency for tagging b’s
» P(btag| not a b-jet), i.e., efficiency for background

Question: Given a selection of jets with btags, what fraction of them are
b-jets?
- |.e., what is P(b-jet | btag) ?

Answer: Cannot be determined from the given information!
> Need to know P(b-jet): fraction of all jets that are b-jets.
- Then Bayes’ Theorem inverts the conditionality:

* P(b-jet | btag) «P(btag|b-jet) P(b-jet)

Note, this use of Bayes’ theorem is fine for Frequentist

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



An different example of Bayes’ theorem
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An different example of Bayes’ theorem

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events

+ you know P(N | no Higgs)
- signal expectation is 10 events

- you know P(N | Higgs )
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- background expectation is 0.1 events
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- signal expectation is 10 events
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An different example of Bayes’ theorem

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events

+ you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )

Question: one observes 8 events, what is P(Higgs | N=8) ?
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An different example of Bayes’ theorem

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events

+ you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )

Question: one observes 8 events, what is P(Higgs | N=8) ?
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An different example of Bayes’ theorem

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events
+ you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )

Question: one observes 8 events, what is P(Higgs | N=8) ?

Answer: Cannot be determined from the given information!
 Need in addition: P(Higgs)
- no ensemble! no frequentist notion of P(Higgs)

» prior based on degree-of-belief would work, but it is subjective.
This is why some people object to Bayesian statistics for
particle physics

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011



Change of variable x, change of parameter 0

For pdf p(xI0) and change of variable from x to y(x):
p(y(x)I6) = p(x10) / Idy/dxl.

Jacobian modifies probability density, guaranties that
P(y(X,)<y<y(x))) = P(Xx;, <x<X,),i.e., that

Probabilities are invariant under change of variable x.

— Mode of probability density is not invariant (so, e.g.,
criterion of maximum probability density is ill-defined).

— Likelihood ratio is invariant under change of variable x.
(Jacobian in denominator cancels that in numerator).
For likelihood £(0) and reparametrization from 0 to u(0):
L(0) = L(u(e)) ().
— Likelihood £ (0) is invariant under reparametrization of
parameter 0 (reinforcing fact that £ is not a pdf in 0).

Bob Cousins, CMS, 2008
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




Probability Integral Transform

“...seems likely to be one of the most fruitful conceptions
introduced into statistical theory in the last few years”
— Egon Pearson (1938)

Given continuous x € (a,b), and its pdf p(x), let
y(x) =/, p(x)dx .
Theny e (0,1) and p(y) =1 (uniform) for all y. (!)
So there always exists a metric in which the pdf is uniform.

Many issues become more clear (or trivial) after this
transformation®. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(u) for parameter
u is equivalent to the choice of the metric f(u1) in which
the pdf is uniform. This is a deep issue, not always
recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008
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The Jeffreys Prior i W

Physicist Sir Harold Jeffreys had the clever
idea that we can “objectively” create a flat
prior uniform in a metric determined by 1(6)

Adds “minimal information” in a precise
sense, and results in: 1)(5) = ](g’)_

It has the key feature that it is invariant under reparameterization of the

—

parameter vectorgin particular, for an alternate parameterization ) we

can derive 96,
p(F) = p(H) (Itl( )
(

¥

]

x | [1(B)det? (‘)9 )

\/ dp

1t("”‘) “( [ananD “(09,) Unfortunately, the Jeffreys

= 4 [ de de : - det | — . . .

Vo \o By B, d¢;)  prior in multiple
= |asilin Z(')okz)lnLe)lnL;)o, dimensions causes some

Doi My 90, Dy problems, and in certain

m( M"L(HHLD - circumstances gives
=\ 9e: Op; |}~ VI undesirable answers.
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Jeffreys’s Prior @Tg
Jeffreys’s Prior is an “objective” prior based on formal rules

(it is related to the Fisher Information and the Cramer-Rao bound]

7(6) \/detI (67). (Z(0),; =—E ae?gej lnf(X;9)| e] .

Eilam, Glen, Ofer, and | showed in arXiv:1007.1727 that the Asimov
data provides a fast, convenient way to calculate the Fisher Information

Vjﬁ:—E[

9%In L B _82 In L Z ov; Oy; 1 Z Oou; Ou; 1
89]89k B 8038@; 8(9 8(9k Vz 8(9 8(9k uz

Use this as basis to calculate

’ . I |
Jeffreys'’s prior for an arbitrary PDF! Validate on a Poisson

RooWorkspace w("w");
w.factory("Uniform::u(x[0,1]1)"); .
w.factory("mu[100,1,200]"); : Analytic _
w.factory("ExtendPdf::p(u,mu)"); i RooStats numerical

w.defineSet("poi","mu");
w.defineSet("obs","x");

// w.defineSet("obs2","n"); e e T ey s Lt T R L ad e
20 40 60 80 100 120 140 160 180

RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
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Jeffreys’s Prior '.i:zr,z‘;‘r;;::;?cf‘{
Validate Jeffreys’s Prior on a Gaussian y, o, and (J,0)

RooWorkspace w("w");
w.factory("Gaussian::g9(x[0,-20,20],mu[0,-5,5],sigma[1l,0,10])");
w.factory("n[10,.1,200]1");
w.factory("ExtendPdf::p(g,n)");
w.var("n")->setConstant();

w.var("sigma")->setConstant();
w.defineSet("poi","mu");

w.defineSet("obs", "x");
RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

Ertries 199
- o Mean x 192807

| Histogram of 2dJeffreys__mu_sigma | T~

i T |Meany 200
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$.008]- Analytic 2
i RooStats numerical 0.02
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! 0.01f _
0.002| = Analytic
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i RooStats numerical
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Reference Priors ((Tﬁ

Refrerence priOrS are Ideally, such a method should be very general,

applicable to all kinds of measurements regardless

another type of ObjeCtive of the number and type of parameters and data in-
priOI"S, that try to save volved. It should make use of all available informa-

Jeﬁ:reyss basic idea. tion, and coherently so, in the sense that if there is

more than one way to extract all relevant informa-
tion from data, the final result will not depend on the

Noninformative priors have been studied for a long chosen way. The desiderata of generality, exhaustive-
time and most of them have been found defective in ness and coherence are satisfied by Bayesian proce-
more than one way. Reference analysis arose from dures, but that of objectivity is more problematic
this study as the only general method that produces  due to the Bayesian requirement of specifying prior

priors that have the required invariance properties, 1, .ohabjlities in terms of degrees of belief. Reference
deal successfully with the marginalization paradoxes,

_ . _ analysis?, an objective Bayesian method developed
and have consistent sampling properties. X

over the past twenty-five years, solves this problem
by replacing the question “what is our prior degree

of belief?” by “what would our posterior degree of

belief be, if our prior knowledge had a minimal effect,
relative to the data, on the final inference?”

See Luc Demortier’s PhyStat 2005 proceedings
http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
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The Bayesian Solution ';:f,r;::f;,,:';?cs(‘{
Bayesian solution generically have a prior for the parameters of
Interest as well as nuisance parameters

» 2010 recommendations largely echoes the PDG's stance.

Recommendation: When performing a Bayesian analysis one should separate
the objective likelihood function from the prior distributions to the extent possible.

Recommendation: \When performing a Bayesian analysis one should investigate
the sensitivity of the result to the choice of priors.

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading
results.

Recommendation: When performing a Bayesian analysis for a single parameter
of interest, one should attempt to include Jeffreys's prior in the sensitivity analysis.
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Words of wisdom on Bayesian methods e, @8

PARTICLE PHYSICS

To support the points raised above, here are some quotes from professional statisticians
(taken from selected PhyStat talks and selections from Bob Cousins lectures):

“Perhaps the most important general lesson is that the facile use of what appear to be
uninformative priors is a dangerous practice in high dimensions.” — Brad Effron

“meaningful prior specification of beliefs in probabilistic form over very large possibility

spaces is very difficult and may lead to a lot of arbitrariness in the specification.” —
Michael Goldstein

“Sensitivity Analysis is at the heart of scientific Bayesianism.” — Michael Goldstein

“Non-subjective Bayesian analysis is just a part — an important part, I believe of a
healthy sensitivity analysis to the prior choice...” J.M. Bernardo

“Objective Bayesian analysis is the best frequentist tool around” — Jim Berger
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Coverage & Likelihood principle ::zr,z‘:r;s;?cf‘{
Methods based on the Neyman-Construction always cover.... by
construction.

- this approach violates the likelihood principle

Bayesian methods obey likelihood principle, but do not
necessarily cover

» that doesn’t mean Bayesians shouldn’t care about coverage

Coverage can be thought of as a calibration of our statistical
apparatus. [explain under-/over-coverage]

What shevll be +he Wiew ‘6049;';

Olvjer'éive; | 5-=yfsf*an ?"?I‘rﬁs is the
best Frequeatist teel 2memd. -JimBerger
Bayesian and Frequentist results answer different questions

- major differences between them may indicate severe coverage
problems and/or violations of the likelihood principle

Kyle Cranmer (NYU) Cosmostats, July 28,2009
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“‘Bayesians address the question everyone is
iInterested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

-L. Lyons
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Profile Likelihood Ratio & MINUIT

Rolke, Lopez, Conrad published a method
based on the profile likelihood ratio (NIM A551) -
before the term was used much in HEP g

 noticed identical results with MINOS limits, i~
extensive numerical tests =

MINUIT long writeup explains algorithm

» limits based on extreme values of the
contour -

» algorithm does not sound much like the

profile likelihood ratio, % profile consiraint
E b(s)*,

o

But it's not hard to show extreme points must lie
on profile constraint and lie on same likelihood
contour

Figure 7.2: MINOS emror confidence region for pa-
rameter 1
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The Profile Likelihood Ratio in RooFit/RooStats ‘::zr.‘:‘;‘f;;;';?csd{

An early request from RooStats to RooFit was to
provide a profile likelihood ratio

root [0] RooAbsPdf* pdf = ...;
root [1] RooRealVar* parameter = ...;
root [2] RooAbsData* data = ..;

4 4 42 44 43 48

root [3] nll = pdf->createNLL(*data)

root [4] profile = nll->createProfile(*parameter)
root [5] frame = parameter->frame()

root [6] profile->plotOn(frame)

L Te T

v

root [7] frame->Draw() B 0102 03 od 05 06 o7 tos

frac

e \ery easy to perform an analysis with
the profile likelihood ratio now

e MINOS error box and profile likelihood
give same error
for multi-dimensional likelihood

T FERTE TR FTRTI NTA R I sasadanas ]y s
01 02 03 04 05 06 0.7 08 059
frac

Taken from Wouter Verkerke, NIKHEF
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Decision Theory

One of the deficiencies of the Neyman-Pearson approach is
that one must specify the size of the test «

» But where does aocome from?

- IS it purely conventional or is there a reason?

A great deal of literature related to statistics (and economics,
etc.) is devoted to making decisions.

» need to consider Utility or Risk of different outcomes

In the context of decision and utility theory there can be a
justification, but this is rarely done in particle physics

Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011
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Floating mass & look-elsewhere effect ::zr,zzf;“:z;f‘f

In the floating mass case, it is clear that there is a degradation in
significance due to the look-elsewhere effect (aka “trials factor”)

- naive estimate of factor is Range/(mass resolution)

Formally, the conditions required for Wilks’s theorem do not hold
because floating mass parameter makes no sense in a background-only
model. See a Higgs example below.
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5107

ary
%
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Arbitra

fixed mass

5 10 15 20 25 30 35 40 50 5 10 15 20 25 30 35 40
ANLL ANLL

The effect depends on range that the fit considers (non-local): eg. a 120
GeV Higgs pays price for considering 1TeV

For another example, see L. Demortier, p-vaues: http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf
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Decision Theory §:zr,z‘;‘:.:;::;?cf‘Ty
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Decisions: Bayesian & Frequentist e, @

PARTICLE PHYSICS

F. James, Ch. 6

Structure of P(x|Ho) & P(Xx|H1) puts limits | 120 S Meheis i Smpenmenial Sy
on allowable ranges of alpha, beta

» Bayesians want to minimize
expected risk based on priors and
risk/utility of outcomes

Frequentists don’t have priors to work
with, so they only have risk/utility in two
situations

» “minimax” approach aims to
minimize maximum risk

- most conservative
- paranoid for games against nature
Frequentist choice of a interpreted in
Bayesian framework implies this ratio:
y P L (1 — ) P(X|Hy) < louP(X|Ho)
P(X|H,) lopt

<
oD _ lop P(X|H [1(1 —
04 = i (X[Ho) — (1 —=p)
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Type Illl Systematics

Type lll Systematics are related to variations in inference from
uncertainty in the overall theoretical framework

» Bayesian approach: assign priors over the “framework space”

» Sinervo suggests Frequentist can’t incorporate them because one
cannot find an ensemble associated to the theories

- but theoretical framework can be thought of as an additional
nuisance parameter (possibly discrete) - can be incorporated!

- only need an ensemble of some observable if one wants to
constrain the space of the theories, not to incorporate them

- if theoretical framework influences our experimental result, then we
don’t really know what we are doing!

Taken from Cousins’ Phystat05 talk:

 AW.F. Edwards (in Kalbfleisch 1970): “Let me say at once that | can
see no reason why it should always be possible to eliminate
nuisance parameters. Indeed, one of the many objections to

Bayesian inference is that is always permits this elimination."
Kyle Cranmer (NYU) CERN Academic Training, Statistics, April 2011




