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Statistics plays a vital role in science, it is the way that we:
‣ quantify our knowledge and uncertainty
‣ communicate results of experiments

Big questions:
‣ make discoveries, test theories, measure or exclude parameters, etc.
‣ how do we get the most out of our data
‣ how do we incorporate uncertainties
‣ how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 4 hours.  
In these talks I will try to:

‣ explain some fundamental ideas & prove a few things
‣ enrich what you already know
‣ expose you to some new ideas 

I will try to go slowly, because if you are not following the logic, then it is not very 
interesting.  

‣ Please feel free to ask questions and interrupt at any time
2
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Further Reading
By physicists, for physicists

G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006; 

‣ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.

My favorite statistics book by a statistician:
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!

http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/
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Other lectures
Fred James’s lectures

Glen Cowan’s lectures

Louis Lyons

Bob Cousins gave a CMS lecture, may give it more publicly 
Gary Feldman “Journeys of an Accidental Statistician”

The PhyStat conference series at PhyStat.org:
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http://www.desy.de/~acatrain/

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799

http://indico.cern.ch/conferenceDisplay.py?confId=a063350

http://www.hepl.harvard.edu/~feldman/Journeys.pdf

http://phystat.org
http://phystat.org
http://www.desy.de/~acatrain/
http://www.desy.de/~acatrain/
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
http://www.hepl.harvard.edu/~feldman/Journeys.pdf
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Comments on these lectures
I also gave “Statistics for LHC” academic training lectures in 2009

Now that we have data, I will put emphasis on realistic problems 
representative of current analyses
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http://indico.cern.ch/conferenceDisplay.py?confId=48425

Foundations
of Probability

Generalization for 
complex problems

Modeling & 
Scientific Narrative

 Hypothesis Tests 

Bayesian Methods

Likelihood Methods

 Confidence Intervals
 Hypothesis Tests 

 Confidence Intervals

2009

2011

http://indico.cern.ch/conferenceDisplay.py?confId=48425
http://indico.cern.ch/conferenceDisplay.py?confId=48425
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Lecture 1
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Preliminaries  
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Probability Density Functions
When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function 
(PDF... not parton distribution function)

Note,          is NOT a probability

PDFs are always normalized to unity:
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The Likelihood Function
A Poisson distribution describes a discrete event count n for a real-
valued mean µ.

The likelihood of µ given n is the same
equation evaluated as a function of µ
‣ Now it’s a continuous function
‣ But it is not a pdf!

Common to plot the -2 ln L
‣ helps avoid thinking of it as a PDF
‣ connection to χ2 distribution

9

Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

!"(µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2ln! = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

!"#$%&'(%)*'+,'-)$."/.0'''''''''''''

1*,'2,'345.,'67'789':;88<=

L(µ) = Pois(n|µ)

Pois(n|µ) = µn e−µ

n!
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Parametric PDFs

10

G(x|µ, σ) (µ, σ)
Many familiar PDFs are considered parametric
‣ eg. a Gaussian                  is parametrized by                    
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below 
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Parametric PDFs

10

G(x|µ, σ) (µ, σ)

G

x mu sigma

Many familiar PDFs are considered parametric
‣ eg. a Gaussian                  is parametrized by                    
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below 
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Parametric PDFs

10

G(x|µ, σ) (µ, σ)
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Many familiar PDFs are considered parametric
‣ eg. a Gaussian                  is parametrized by                    
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below 
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Modeling:
The Scientific Narrative

11
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Before one can discuss statistical tests, one must have a “model” for 
the data.  
‣ by “model”, I mean the full structure of P(data | parameters)

● holding parameters fixed gives a PDF for data
● ability to evaluate generate pseudo-data (Toy Monte Carlo)
● holding data fixed gives a likelihood function for parameters

• note, likelihood function is not as general as the full model because it 
doesn’t allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
‣ it’s the objective part that everyone can agree on
‣ it’s the place where our physics knowledge, understanding, and 

intuiting comes in
‣ building a better model is the best way to improve your statistical 

procedure
12

Building a model of the data
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RooFit: A data modeling toolkit

13
Wouter Verkerke, UCSB 

Building realistic models

– Composition (‘plug & play’)

– Convolution

g(x;m,s)m(y;a0,a1)

=

! =

g(x,y;a0,a1,s)
Possible in any PDF

No explicit support in PDF code needed

Wouter Verkerke, UCSB 

Building realistic models

• Complex PDFs be can be trivially composed using operator classes

– Addition

– Multiplication

+ =

* =

Wouter Verkerke, UCSB 

Parameters of composite PDF objects

RooAddPdf

sum

RooGaussian

gauss1
RooGaussian

gauss2
RooArgusBG

argus
RooRealVar

g1frac
RooRealVar

g2frac

RooRealVar

x
RooRealVar

sigma
RooRealVar

mean1

RooRealVar

mean2
RooRealVar

argpar
RooRealVar

cutoff

RooArgSet *paramList = sum.getParameters(data) ;

paramList->Print("v") ;

RooArgSet::parameters:

1) RooRealVar::argpar : -1.00000 C

2) RooRealVar::cutoff :  9.0000 C

3) RooRealVar::g1frac :  0.50000 C

4) RooRealVar::g2frac :  0.10000 C

5) RooRealVar::mean1  :  2.0000 C

6) RooRealVar::mean2  :  3.0000 C

7) RooRealVar::sigma  :  1.0000 C

The parameters of sum
are the combined 
parameters
of its components

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.
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The Scientific Narrative
The model can be seen as a quantitative summary of the analysis
‣ If you were asked to justify your modeling, you would tell a 

story about why you know what you know
● based on previous results and studies performed along the way

‣ the quality of the result is largely tied to how convincing this 
story is and how tightly it is connected to model

I will describe a few “narrative styles”
‣ The “Monte Carlo Simulation” narrative
‣ The “Data Driven” narrative
‣ The “Effective Modeling” narrative
‣ The “Parametrized Response” narrative

Real-life analyses often use a mixture of these

14
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The Monte Carlo Simulation narrative

15

Let’s start with “the Monte Carlo simulation narrative”, which is 
probably the most familiar 

November 8, 2006 Daniel Whiteson/Penn

Calculation

For each event, calculate differential cross-section:

Matrix
 Element

Transfer 
Functions

Phase-space 
Integral

Only partial information available
Fix measured quantities
Integrate over unmeasured parton quantities

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

P = 
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Cross-sections and event rates
From the many, many collision events, we impose some criteria to 
select n candidate signal events.  We hypothesize that it is 
composed of some number of signal and background events.

The number of events that we expect from a given interaction 
process is given as a product of 
‣ L : a time-integrated luminosity (units 1/cm2) that serves as a measure of 

the amount of data that we have collected or the number of trials we have 
had to produce signal events

‣ σ : “cross-section” (units cm2) a quantity that can be calculated from theory
‣ ε : fraction of signal events selected by selection criteria 

16

Pois(n|s+ b)
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The simulation narrative

P =
|�f |i�|2

�f |f��i|i�
P → Lσ

dσ → |M|2dΩ

The language of the Standard Model is Quantum Field Theory
Phase space Ω defines initial measure, sampled via Monte Carlo1)
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The simulation narrative

P =
|�f |i�|2

�f |f��i|i�
P → Lσ

dσ → |M|2dΩ

The language of the Standard Model is Quantum Field Theory
Phase space Ω defines initial measure, sampled via Monte Carlo1)

LSM =
1

4
Wµν · W

µν
−

1

4
BµνB

µν
−

1

4
Ga

µνG
µν
a

︸ ︷︷ ︸

kinetic energies and self-interactions of the gauge bosons

+ L̄γµ(i∂µ −
1

2
gτ · Wµ −

1

2
g′Y Bµ)L + R̄γµ(i∂µ −

1

2
g′Y Bµ)R

︸ ︷︷ ︸

kinetic energies and electroweak interactions of fermions

+
1

2

∣
∣(i∂µ −

1

2
gτ · Wµ −

1

2
g′Y Bµ) φ

∣
∣
2
− V (φ)

︸ ︷︷ ︸

W±,Z,γ,and Higgs masses and couplings

+ g′′(q̄γµTaq) Ga
µ

︸ ︷︷ ︸

interactions between quarks and gluons

+ (G1L̄φR + G2L̄φcR + h.c.)
︸ ︷︷ ︸

fermion masses and couplings to Higgs

R̄φcL

W,Z H
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

18
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

18

f(x) =
∂F (x)

∂x
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‣ alternatively, define density 
as partial of cumulative:
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

18

f(x) =
∂F (x)

∂x
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‣ alternatively, define density 
as partial of cumulative:

‣ same relationship as total and 
differential cross section:

f(E) =
1
σ

∂σ

∂E
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:

18

f(x) =
∂F (x)

∂x
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‣ alternatively, define density 
as partial of cumulative:

‣ same relationship as total and 
differential cross section:

f(E, η) =
1
σ

∂2σ

∂E∂η
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Cumulative Density Functions
Often useful to use a cumulative distribution:
‣ in 1-dimension:
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a) Perturbation theory used to systematically approximate the theory.  
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

2)
The simulation narrative
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Generation of an e+e−

→ tt̄ → bb̄W +W − event

• hard scattering

• (QED) initial/final
state radiation

• partonic decays, e.g.
t → bW

• parton shower
evolution

• nonperturbative
gluon splitting

• colour singlets

• colourless clusters

• cluster fission

• cluster → hadrons

• hadronic decays

a) Perturbation theory used to systematically approximate the theory.  
b) splitting functions, Sudokov form factors, and hadronization models
c) all sampled via accept/reject Monte Carlo P(particles | partons)

2)
The simulation narrative
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Next, the interaction of outgoing particles with the detector is simulated.  
Detailed simulations of particle interactions with matter.  
Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

3)
The simulation narrative
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In addition to the rate of interactions, our theories predict the distributions of 
angles, energies, masses, etc. of particles produced

● we form functions of these called discriminating variables m, 
● and use Monte Carlo techniques to estimate f(m)

In addition to the hypothesized signal process, there are known background 
processes.
‣ thus, the distribution of f(m) is a mixture model
‣ the full model is a marked Poisson process

21

Theoretical Predictions

P (m|s) = Pois(n|s+ b)
n�

j

sfs(mj) + bfb(mj)

s+ b

signal process background process
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Example model
Here is an example prediction from search for H→ZZ and H→WW
‣ sometimes multivariate techniques are used

22

A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

6 3 Control of background rates from data
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Figure 5: NN outputs for signal (blue squares) and background (red circles) events for
mH = 130 GeV (left) and mH = 170 GeV (right). Both distributions are normalized to 1 fb−1

of integrated luminosity.

is performed. The background measurement in the normalization region is used as a reference
to estimate the magnitude of the background in the signal region by multiplying the measured
background events in the normalization region (NN

bkg) by the ratio of the efficiencies:

NS
bkg =

εS
bkg

εN
bkg

NN
bkg. (1)

For the estimation of the tt background, events has to pass the lepton- and pre-selection cuts
described in section 2. Then, since in all Higgs signal regions the central jet veto is applied, in
this case, the presence of two jets are required.

Table 4 shows the expected number of tt and other background events after all selection cuts
are applied for an integrated luminosity of 1 fb−1. The ratio between signal and background
is quite good for all three channels and the uncertainty in the tt is dominated by systematics
uncertainties for this luminosity.

Final state tt WW Other background
µµ 1090 14 82
ee 680 10 50
eµ 2270 40 125

Table 4: Expected number of events for the three final states in the tt normalization region
for an integrated luminosity of 1 fb−1. It is worth noticing that the expected Higgs signal
contribution applying those selection requirements is negligible.

Defining R =
�S

CJV
�C

2jets
,

∆NS
tt

NS
tt

=
∆R
R
⊕

∆NC
tt+background

NC
tt

⊕
∆NC

background

NC
tt

(2)

m = m =

P (m|s) = Pois(n|s+ b)
n�

j

sfs(mj) + bfb(mj)

s+ b
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Parametric vs. Non-Parametric PDFs
No parametric form, need to construct non-parametric PDFs

23

From Monte Carlo samples, one has empirical PDF

femp =
1
N

N�

i

δ(x− xi)
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Classic example of a non-parametric PDF is the histogram

24

fw,s
hist(x) =

1
N

�

i

hw,s
i

Parametric vs. Non-Parametric PDFs
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but they depend on bin width and starting position

fw,s
hist(x) =

1
N

�

i

hw,s
i

Classic example of a non-parametric PDF is the histogram

Parametric vs. Non-Parametric PDFs
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“Average Shifted Histogram” minimizes effect of binning

fw

ASH
(x) =

1
N

N�

i

Kw(x− xi)

Classic example of a non-parametric PDF is the histogram
Parametric vs. Non-Parametric PDFs
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Kernel Estimation

“the data is the model”

Adaptive Kernel estimation puts wider kernels in regions of low 
probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)

27

Neural Network Output
Pr

ob
ab

ili
ty

 D
en

sit
y

f̂1(x) =
n

∑

i

1

nh(xi)
K

(

x − xi

h(xi)

)

h(xi) =

(

4

3

)1/5 √

σ

f̂0(xi)
n−1/5

Kernel estimation is the generalization of Average Shifted 
Histograms

K.Cranmer, Comput.Phys.Commun. 136 (2001). 
[hep-ex/0011057]
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Multivariate, non-parametric PDFs

28

Max Baak 6

Correlations

! 2-d projection of  
pdf from previous 
slide.

! RooNDKeys pdf
automatically 
models (fine) 
correlations 
between 
observables ...

ttbar sample

higgs sample

Kernel Estimation has a nice generalizations to higher 
dimensions
‣ practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N-
dim KEYS pdf described 
in Comput.Phys.Commun. 136 (2001) 
in RooFit.

These pdfs have been 
used as the basis for a 
multivariate 
discrimination 
technique called “PDE”

D(�x) =
fs(�x)

fs(�x) + fb(�x)
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Incorporating Systematic Effects
Of course, the simulation has many adjustable parameters and 
imperfections that lead to systematic uncertainties.
‣ one can re-run simulation with different settings and produce 

variational histograms about the nominal prediction

29
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Explicit parametrization
Important to distinguish between the source of the systematic 
uncertainty (eg. jet energy scale) and its effect.
‣ The same 5% jet energy scale uncertainty will have different effect 

on different signal and background processes
● not necessarily with any obvious functional form

‣ Usually possible to decompose to independent “uncorrelated” sources
Imagine a table that explicitly quantifies the effect of each source of 
systematic.  

‣ Entries are either normalization factors or variational histograms

30

sig bkg 1 bkg 2 ...
syst 1
syst 2
...
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Histogram Interpolation
Several interpolation algorithms exist: eg. Alex Read’s “horizontal” 
histogram interpolation algorithm (RooIntegralMorph in RooFit)
‣ take several PDFs, construct interpolated PDF with additional 

nuisance parameter α

‣ Now in RooFit

31

Simple “vertical” 
interpolation bin-by-bin.

Alternative “horizontal” 
interpolation algorithm by 
Max Baak called 
“RooMomentMorph” in 
RooFit  (faster and 
numerically more stable)
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ATLAS Statistics Forum

DRAFT
7 May, 2010

Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

Let’s consider a simplified problem that has been studied quite a bit to 
gain some insight into our more realistic and difficult problems
‣ number counting with background uncertainty

● in our main measurement we observe non with s+b expected

‣ and the background has some uncertainty
● but what is “background uncertainty”?  Where did it come from?
● maybe we would say background is known to 10% or that it has some pdf

• then we often do a smearing of the background: 

● Where does           come from?
• did you realize that this is a Bayesian procedure that depends on some prior 

assumption about what b is?

Incorporating systematics
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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Figure 10: Flow chart describing the four data samples used in the H →WW (∗) → !ν!ν analysis. S.R
and C.R. stand for signal and control regions, respectively.

Figure 10 summarises the flow chart of the extraction of the main backgrounds. Shown are the four
data samples and how the five scale factors are applied to get the background estimates in a graphical
form. The top control region and theW+jets control regions are considered to be pure samples of top and
W+jets respectively. The normalisation for the WW background is taken from the WW control region
after subtracting the contaminations from top andW+jets in theWW control region. To get the numbers
of top andW+jets events in the signal region and in theWW control region there are four scale factors,
αtop and αW+ jets to get the number of events in the signal region and βtop and βW+ jets to get the number
of events in theWW control region. Finally there is a fifth scale factor, αWW to get the number ofWW
background events in the signal region from the number of background subtracted events in the WW
control region.
Table 12 shows the number ofWW , top backgrounds andW+jets events in each of the four regions.

Other smaller backgrounds are ignored for the purpose of estimating the scale factors. The assumption
that the three control regions are dominated by these three sources of backgrounds is true to a level of
97% or higher. No uncertainty is assigned due to ignoring additional small backgrounds.
The central values for the five scale factors are obtained from ratios of the event counts in Table 12,

and are shown in Table 13. Table 14 shows the impact of systematic uncertainties on these scale factors
for the H + 0 j, H + 1 j and H + 2 j analyses, respectively. The following is a list of the systematic
uncertainties considered in the analyses together with a short description of how they are estimated:

• WW and Top Monte Carlo Q2 Scale: The uncertainty from higher order effects on the scale
factors for WW and top quark backgrounds is estimated from varying the Q2 scale of the WW
and tt̄ Monte Carlo samples. SeveralWW and t t̄ Monte Carlo samples have been generated with
different Q2 scales. Both renormalisation and factorisation scales are multiplied by factors of 8
and 1/8 (4 and 1/4) for theWW (t t̄) process. The uncertainties on the relevant scale factors (αWW ,
αtop and βtop) are taken to be the maximum deviation from the central value for these scale factors
and the values for these scale factors in any of the Q2 scale altered samples [19].

• Jet Energy Scale and Jet Energy Resolution: The Jet Energy Scale (JES) uncertainty is taken
to be 7% for jets with |η | < 3.2 and 15% for jets with |η | > 3.2. To estimate the effect of the
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

S.R.
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Figure 10: Flow chart describing the four data samples used in the H →WW (∗) → !ν!ν analysis. S.R
and C.R. stand for signal and control regions, respectively.

Figure 10 summarises the flow chart of the extraction of the main backgrounds. Shown are the four
data samples and how the five scale factors are applied to get the background estimates in a graphical
form. The top control region and theW+jets control regions are considered to be pure samples of top and
W+jets respectively. The normalisation for the WW background is taken from the WW control region
after subtracting the contaminations from top andW+jets in theWW control region. To get the numbers
of top andW+jets events in the signal region and in theWW control region there are four scale factors,
αtop and αW+ jets to get the number of events in the signal region and βtop and βW+ jets to get the number
of events in theWW control region. Finally there is a fifth scale factor, αWW to get the number ofWW
background events in the signal region from the number of background subtracted events in the WW
control region.
Table 12 shows the number ofWW , top backgrounds andW+jets events in each of the four regions.

Other smaller backgrounds are ignored for the purpose of estimating the scale factors. The assumption
that the three control regions are dominated by these three sources of backgrounds is true to a level of
97% or higher. No uncertainty is assigned due to ignoring additional small backgrounds.
The central values for the five scale factors are obtained from ratios of the event counts in Table 12,

and are shown in Table 13. Table 14 shows the impact of systematic uncertainties on these scale factors
for the H + 0 j, H + 1 j and H + 2 j analyses, respectively. The following is a list of the systematic
uncertainties considered in the analyses together with a short description of how they are estimated:

• WW and Top Monte Carlo Q2 Scale: The uncertainty from higher order effects on the scale
factors for WW and top quark backgrounds is estimated from varying the Q2 scale of the WW
and tt̄ Monte Carlo samples. SeveralWW and t t̄ Monte Carlo samples have been generated with
different Q2 scales. Both renormalisation and factorisation scales are multiplied by factors of 8
and 1/8 (4 and 1/4) for theWW (t t̄) process. The uncertainties on the relevant scale factors (αWW ,
αtop and βtop) are taken to be the maximum deviation from the central value for these scale factors
and the values for these scale factors in any of the Q2 scale altered samples [19].

• Jet Energy Scale and Jet Energy Resolution: The Jet Energy Scale (JES) uncertainty is taken
to be 7% for jets with |η | < 3.2 and 15% for jets with |η | > 3.2. To estimate the effect of the
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

The “on/off” problem
Now let’s say that the background was estimated from some control 
region or sideband measurement.  
‣ We can treat these two measurements simultaneously:

● main measurement: observe non with s+b expected
● sideband measurement: observe noff with      expected

● In this approach “background uncertainty” is a statistical error
● justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?

‣ while        is based on data, it still depends on a prior 
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results. These comments are quite general, and each experiment is expected to have

well-developed techniques that are (hopefully) consistent with what is presented here.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b)� �� �
jointmodel

= Pois(non|s+ b)
� �� �
mainmeasurement

Pois(noff |τb)� �� �
sideband

. (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

Here we rely heavily on the correspondence between hypothesis tests and confidence

intervals [3], and mainly frame the discussion in terms of confidence intervals.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =
�

dbPois(non|s+ b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

1

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.

2

π(b) η(b)
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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‣ introduce a new measurement to constrain it as in the ABCD method
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

C.R.S.R.

αWW



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Going beyond on/off
Often the extrapolation parameter has uncertainty
‣ introduce a new measurement to constrain it as in the ABCD method

35

4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.

]2 [GeV/cllm
0 20 40 60 80 100 120 140 160 180 200

ev
en

ts
 / 

bi
n

-110

1

10

210

310

410 CMS Preliminary
=160 GeV

H
Signal, m
W+Jets, tW
di-boson
tt

Drell-Yan

 Channel-e+  e

 [dg.]llΦ∆
0 20 40 60 80 100 120 140 160 180

ev
en

ts
 / 

bi
n

-110

1

10

210

310

CMS Preliminary
=160 GeV

H
Signal, m
W+Jets, tW
di-boson
tt

Drell-Yan

 Channel-e+  e

Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

C.R.S.R.

αWW



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Going beyond on/off
Often the extrapolation parameter has uncertainty
‣ introduce a new measurement to constrain it as in the ABCD method
‣ what if..., what if ..., what if..., what if ..., what if..., what if ...

35

4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.

]2 [GeV/cllm
0 20 40 60 80 100 120 140 160 180 200

ev
en

ts
 / 

bi
n

-110

1

10

210

310

410 CMS Preliminary
=160 GeV

H
Signal, m
W+Jets, tW
di-boson
tt

Drell-Yan

 Channel-e+  e

 [dg.]llΦ∆
0 20 40 60 80 100 120 140 160 180

ev
en

ts
 / 

bi
n

-110

1

10

210

310

CMS Preliminary
=160 GeV

H
Signal, m
W+Jets, tW
di-boson
tt

Drell-Yan

 Channel-e+  e

Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

C.R.S.R.

αWW



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Going beyond on/off
Often the extrapolation parameter has uncertainty
‣ introduce a new measurement to constrain it as in the ABCD method
‣ what if..., what if ..., what if..., what if ..., what if..., what if ...

35

4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.

]2 [GeV/cllm
0 20 40 60 80 100 120 140 160 180 200

ev
en

ts
 / 

bi
n

-110

1

10

210

310

410 CMS Preliminary
=160 GeV

H
Signal, m
W+Jets, tW
di-boson
tt

Drell-Yan

 Channel-e+  e

 [dg.]llΦ∆
0 20 40 60 80 100 120 140 160 180

ev
en

ts
 / 

bi
n

-110

1

10

210

310

CMS Preliminary
=160 GeV

H
Signal, m
W+Jets, tW
di-boson
tt

Drell-Yan

 Channel-e+  e

Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

C.R.S.R.

αWW



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Classification of Systematic Uncertainties
Taken from Pekka Sinervo’s PhyStat 2003 
contribution

Type I - “The Good”
‣ can be constrained by other sideband/auxiliary/

ancillary measurements and can be treated as 
statistical uncertainties
● scale with luminosity
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Taken from Pekka Sinervo’s PhyStat 2003 
contribution

Type I - “The Good”
‣ can be constrained by other sideband/auxiliary/

ancillary measurements and can be treated as 
statistical uncertainties
● scale with luminosity

Type II - “The Bad”
‣ arise from model assumptions in the 

measurement or from poorly understood features 
in data or analysis technique
● don’t necessarily scale with luminosity
● eg: “shape” systematics
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Classification of Systematic Uncertainties
Taken from Pekka Sinervo’s PhyStat 2003 
contribution

Type I - “The Good”
‣ can be constrained by other sideband/auxiliary/

ancillary measurements and can be treated as 
statistical uncertainties
● scale with luminosity

Type II - “The Bad”
‣ arise from model assumptions in the 

measurement or from poorly understood features 
in data or analysis technique
● don’t necessarily scale with luminosity
● eg: “shape” systematics

Type III - “The Ugly”
‣ arise from uncertainties in underlying theoretical 

paradigm used to make inference using the data
● a somewhat philosophical issue
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Separating the prior from the objective model
Recommendation: where possible, one should express 
uncertainty on a parameter as a statistical (random) process
‣ explicitly include terms that represent auxiliary measurements 

in the likelihood
Recommendation: when using a Bayesian technique, one should 
explicitly express and separate the prior from the objective part of 
the probability density function

Example: 
‣By writing 

● the objective statistical model is for the background uncertainty is clear

‣One can then explicitly express a prior        and obtain:

37

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.

2

ATLAS Statistics Forum

DRAFT
7 May, 2010

Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

η(b)
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Constraints on Nuisance Parameters
Many uncertainties have no clear statistical description or it is impractical to provide
Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice

‣ quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...
For systematics constrained from control samples and dominated by statistical uncertainty, 
a Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

‣ longer tail, good behavior near boundary, natural choice if auxiliary is based on counting

For “factor of 2” notions of uncertainty log-normal is a good choice
‣ can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available
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Truncated Gaussian
Gamma
Log-normal

PDF Prior Posterior
Gaussian uniform Gaussian
Poisson uniform Gamma
Log-normal reference Log-Normal

To consistently switch between frequentist, 
Bayesian, and hybrid procedures, need to 
be clear about prior vs. likelihood function



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Several analyses have used the tool called hist2workspace to build the model (PDF)
‣ command line:  hist2workspace myAnalysis.xml
‣ construct likelihood function below via XML + histograms

Building the model: HistFactory (RooStats)
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8 Exclusion limits on H→ ZZ(∗) → 4!227

The results presented in Section 6 indicate that no excess is observed beyond background expectations

and consequently upper limits are set on the Higgs boson production cross section relative to its predicted

Standard Model value as a function of MH . For each Higgs mass hypothesis a one-sided upper-limit is

placed on the standardized cross-sections µ = σ/σSM at the 95% confidence level (C.L.). The upper
limit is obtained from a binned distribution of M4!. The likelihood function is a product of Poisson

probabilities of each bin for the observed number of events compared with the expected number of

events, which is parametrized by µ and several nuisance parameters αi corresponding to the various
systematic effects. The likelihood function is given by

L (µ,αi) = ∏
m∈bins

Pois(nm|νm) ∏
i=∈Syst

N(αi) (3)

where m is an index over the bins of the template histograms, i is an index over systematic effects, nm is

the observed number of events in bin m, N(αi) is the normal distribution for the nuisance parameter αi
and νm is the expected number of events in bin m given by

νm = µLη1(α) σ1m(α)+ ∑
j∈Bkg Samp

Lη j(α) σ jm(α), (4)

µ = σ/σSM, L is the integrated luminosity, η j(α) parametrizes relative changes in the overall normaliza-
tion, and σ jm(α) contains the nominal normalization and parametrizes uncertainties in the shape of the
distribution of the discriminating variable. Here j is an index of contributions from different processes

with j = 1 being the signal process. The nuisance parameters αi are associated to the source of the sys-
tematic effect (e.g. the muon momentum resolution uncertainty), while η j(α) and σ jm(α) represent the
effect of that uncertainty. The αi are scaled so that αi = 0 corresponds to the nominal expectation and
αi = ±1 correspond to the ±1σ variations of the source, thus N(αi) is the standard normal distribution.
The effect of these variations about the nominal predictions η j(0) = 1 and σ0jm is quantified by dedicated
studies that provide η±

i j and σ±
i jm, which are then used to form

η j(α) = ∏
i∈Syst

I(αi;η+
i j , η−

i j ) (5)

and

σ jm(α) = σ0jm ∏
i∈Syst

I(αi;σ+
i jm/σ0jm, σ−

i jm/σ0jm) (6)

with

I(α ; I+, I−) =











1+α(I+−1) if α > 0

1 if α = 0

1−α(I−−1) if α < 0

(7)

enabling piece-wise linear interpolation in the case of asymmetric response to the source of systematic.228

The exclusion limits are extracted using a fully frequentist technique based on the Neyman Con-229

struction. The test statistic used in the construction is based on the profile likelihood ratio, but it is230

modified for one-sided upper-limits by only considering downward fluctuations with respect to a given231

signal-plus-background hypothesis as being discrepant. Since the limits are based on CLs+b, a “power-232

constraint” is imposed to avoid excluding very small signals for which we have no sensitivity [25]. The233

power-constraint is chosen such that the CLb must be at least 16% (e.g. the −1σ expected limit band).234

The procedure followed is described in more detail in Ref. [26].235
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effect of that uncertainty. The αi are scaled so that αi = 0 corresponds to the nominal expectation and
αi = ±1 correspond to the ±1σ variations of the source, thus N(αi) is the standard normal distribution.
The effect of these variations about the nominal predictions η j(0) = 1 and σ0jm is quantified by dedicated
studies that provide η±

i j and σ±
i jm, which are then used to form

η j(α) = ∏
i∈Syst

I(αi;η+
i j , η−

i j ) (5)

and

σ jm(α) = σ0jm ∏
i∈Syst

I(αi;σ+
i jm/σ0jm, σ−

i jm/σ0jm) (6)

with

I(α ; I+, I−) =











1+α(I+−1) if α > 0

1 if α = 0

1−α(I−−1) if α < 0

(7)

enabling piece-wise linear interpolation in the case of asymmetric response to the source of systematic.228

The exclusion limits are extracted using a fully frequentist technique based on the Neyman Con-229

struction. The test statistic used in the construction is based on the profile likelihood ratio, but it is230

modified for one-sided upper-limits by only considering downward fluctuations with respect to a given231

signal-plus-background hypothesis as being discrepant. Since the limits are based on CLs+b, a “power-232

constraint” is imposed to avoid excluding very small signals for which we have no sensitivity [25]. The233

power-constraint is chosen such that the CLb must be at least 16% (e.g. the −1σ expected limit band).234

The procedure followed is described in more detail in Ref. [26].235

interpolation convention
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Constraint terms
For each systematic effect, we associated a nuisance parameter α
‣ for instance electron efficiency, JES, luminosity, etc.
‣ the background rates, signal acceptance, etc. are parametrized in 

terms of these nuisance parameters
These systematics are usually known (“constrained”) within ± 1σ.  
‣ but here we must be careful about Bayesian vs. frequentist
‣ Why is it constrained? Usually b/c we have an auxiliary 

measurement m and a relationship like:

● Saying that α has a Gaussian distribution is Bayesian.  
• has form “Probability of parameter”

● The frequentist way is to say that that m fluctuates about α
While m is a measured quantity (or “observable”), there is only one 
measurement of m per experiment.  Call it a “Global observable”

40

G(m|α,σ)
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An example ModelConfig from HistFactory
The RooStats tools, use the RooFit PDF interface, but the tools need some additional 
meta information.  The ModelConfig class encapsulates this meta information

‣ The PDF itself, the observables, the “global observables”, the parameter of 
interest, and the nuisance parameters.  Also the prior for Bayesian methods.

41

root [7] modelConfig->Print()
=== Using the following for ModelConfig ===
Observables:             RooArgSet:: = (obs_h2e2nu_200)

Parameters of Interest:  RooArgSet:: = (SigXsecOverSM)

Nuisance Parameters:     RooArgSet:: = 
(Lumi,alpha_SysBtagEff,alpha_SysElecScale,alpha_SysElecSmear,alpha_SysJetScale,alpha_SysJetSmear,alpha_SysM
ETHadScale,alpha_SysMETHadSmear,alpha_SysMuonScale,alpha_SysMuonSmear,alpha_dieleceff,alpha_mjet2enorm,a
lpha_signorm,alpha_topnorm,alpha_wnorm,alpha_wwnorm,alpha_wznorm,alpha_znorm,alpha_zznorm)

Global Observables:      RooArgSet:: = 
(nominalLumi,nom_alpha_dieleceff,nom_alpha_signorm,nom_SysMuonScale,nom_SysMETHadSmear,nom_SysElecSme
ar,nom_SysMuonSmear,nom_SysJetSmear,nom_SysBtagEff,nom_SysJetScale,nom_SysMETHadScale,nom_SysElecSc
ale,nom_alpha_topnorm,nom_alpha_wwnorm,nom_alpha_wznorm,nom_alpha_zznorm,nom_alpha_wnorm,nom_alpha_z
norm,nom_alpha_mjet2enorm)

PDF:                     RooProdPdf::model_h2e2nu_200[ lumiConstraint * alpha_dieleceffConstraint * 
alpha_signormConstraint * alpha_SysMuonScaleConstraint * alpha_SysMETHadSmearConstraint * 
alpha_SysElecSmearConstraint * alpha_SysMuonSmearConstraint * alpha_SysJetSmearConstraint * 
alpha_SysBtagEffConstraint * alpha_SysJetScaleConstraint * alpha_SysMETHadScaleConstraint * 
alpha_SysElecScaleConstraint * alpha_topnormConstraint * alpha_wwnormConstraint * alpha_wznormConstraint * 
alpha_zznormConstraint * alpha_wnormConstraint * alpha_znormConstraint * alpha_mjet2enormConstraint * 
h2e2nu_200_model ] = 0
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CMS Higgs example
The CMS input:
‣ cleanly tabulated effect on each background due to each source of systematic 
‣ systematics broken down into uncorrelated subsets
‣ used lognormal distributions for all systematics, Poissons for observations

Started with a txt input, defined a mathematical representation, and then prepared 
the RooStats workspace

42

3

Input tables

• txt tables are attached to the agenda
• snippet:

• comments will help understand which nuisance 
parameter corresponds to what:

although for technical combination all we need to know is which ones have to be correlated between ATLAS and CMS

4
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ATLAS Higgs Example
The ATLAS input:

‣ Poisson terms 3 signal regions and 6 control regions
‣ Initially uncertainties in extrapolation coefficients treated with one Gaussians and 

it wasn’t possible to identify individual systematics effects
● thus, unable to identify any correlated systematic (eg. theory uncertainty)

‣ Now individual uncertainties are explicitly parameterized

43
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where the products run over jet multiplicity and final state lepton flavor. The various contributions to the91

Likelihood are given by92
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where P(N|n) is the Poisson probability to observe N events given n expected, N
j
X is the number of93

events observed in region X (with X = S R,CR, T B, LL, corresponding to the Signal Region, WW control94

region, top control region, or Loose Lepton control region, respectively) for jet multiplicity j, parameters95

like n
j

tt
(T B) indicate the fitted number of events for the background indicated in the subscript in the96

control region indicated by the superscript, L denotes the integrated luminosity, σ
j
DY(S R) (σ

j
DY(CR)) is97

the predicted cross-section for the Drell-Yan process in the signal region (main WW control region), and98

n
j
s(X) is the expected number of signal events in region X for jet multiplicity j. This last quantity is given99

by100

n
exp
s = µ ×L × σ × BR × ε × (νee f f )ne × (ν

µ
e f f

)nµ × ν j
jets
× νL (6)

where σ× BR is the predicted cross-section times branching ratio, ε is the signal efficiency, ne (nµ) is the101

number of electrons (muons) in the given signal region or control region, and ν
j
jets is a single nuisance102

parameter for each jet multiplicity j representing the contributions to the signal efficiency uncertainty103

which arise from both theoretical errors and uncertainties related to the reconstruction of jets. Note that104

the above formula for the Likelihood function only indicates the eµ channel; the corresponding expres-105

sions for the same-flavor channels, L
j,ee
Pois

and L
j,µµ
Pois

, are similar except that the values of the expected106

backgrounds in the various regions are given by the corresponding value in the eµ channel times a ra-107

tio of cross-sections. (So, for example, α
j
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n
j
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(CR) in the Poisson term for the signal region above108

would be replaced by α
j
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n
j
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(CR)× (σ
j
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(S R, ee)/σ
j
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(S R, eµ)) for the case of the ee channel.) Also109

note that, since the W+jets background in the signal region for the H + 2 j analysis is small, the terms110

corresponding to the W+jets control sample are absent from the Likelihood for the H + 2 j channel.111

The toy Monte Carlo outcomes used to study the sensitivity calculation here explicitly include ran-112

dom Poisson counts in these control regions and re-sampling of the Gaussian constraint terms for the113

nuisance parameters. The resulting limits therefore include the contributions to the background uncer-114

tainty arising from the finite number of events expected in the control regions as well as the contributions115

arising from the extrapolation of the background estimate from the control regions to the signal region.116

2.2 H → ZZ → 4&117

Only a few events are expected in the H → ZZ → 4& channel in 1 fb−1 of 7 TeV collisions. Therefore,118

although previous work on this channel has included detailed studies of fitting algorithms to normalize119

the background under the mass peak, only simple number counting is used here. No control samples are120

considered in the present calculation. The Likelihood function consists of three Poisson terms, corre-121

sponding to the 4e, 2e2µ, and 4µ channels, respectively:122

LZZ = P(N4e|n
exp
4e

) × P(N2e2µ|n
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2e2µ

) × P(N4µ|n
exp
4µ

). (7)
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Data driven estimates
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics.  Using the simulation narrative over 
the data-driven is a choice.  If you trust that narrative, it’s a good choice.
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FIG. 1: The dijet invariant mass distribution. The sum of electron and muon events is plotted. In the left plots we show the

fits for known processes only (a) and with the addition of a hypothetical Gaussian component (c). On the right plots we show,

by subtraction, only the resonant contribution to Mjj including WW and WZ production (b) and the hypothesized narrow

Gaussian contribution (d). In plot (b) and (d) data points differ because the normalization of the background changes between

the two fits. The band in the subtracted plots represents the sum of all background shape systematic uncertainties described

in the text. The distributions are shown with a 8 GeV/c
2
binning while the actual fit is performed using a 4 GeV/c

2
bin size.

resonance with definite mass. The width of the Gaus-
sian is fixed to the expected dijet mass resolution by
scaling the width of the W peak in the same spectrum:

σresolution = σW

�
Mjj

MW
= 14.3 GeV/c2, where σW and

MW are the resolution and the average dijet invariant
mass for the hadronic W in the WW simulations respec-
tively, and Mjj is the dijet mass where the Gaussian tem-
plate is centered.

In the combined fit, the normalization of the Gaus-
sian is free to vary independently for the electron and

muon samples, while the mean is constrained to be the
same. The result of this alternative fit is shown in Figs. 1
(c) and (d). The inclusion of this additional component
brings the fit into good agreement with the data. The
fit χ2/ndf is 56.7/81 and the Kolmogorov-Smirnov test
returns a probability of 0.05, accounting only for statis-
tical uncertainties. The W+jets normalization returned
by the fit including the additional Gaussian component is
compatible with the preliminary estimation from the �ET

fit. The χ2/ndf in the region 120-160 GeV/c2 is 10.9/20.
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8.2 Background Modeling Studies 115

We compare the Mjj distribution of data Z+jets events to ALPGEN MC. Fig. 8.17

shows the two distributions for muons and electrons respectively. Also in this case,

within statistics, we do not observe significant disagreement.
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Figure 8.17: Mjj in Z+jets data and MC in the muon sample (a) and in in the

electron sample (b).

In addition, we compare several kinematic variables between Z+jets data and

ALPGEN MC (see Fig. 8.18) and find that the agreement is good.

8.2.3 ∆Rjj Modeling

In Fig. 8.4, we observed disagreement between data and our background model in

the ∆Rjj distribution of the electron sample.

The main difference between muons and electrons is the method used to model

the QCD contribution: high isolation candidates for muons and antielectrons for

electrons. However, if we compare the ∆R distribution of antieletrons and high

isolation electrons, Fig. 8.19, we observe a significant difference and, in particular,

high isolation electrons seems to behave such that they may cover the disagreement

we see in ∆R. Unfortunately, we cannot use high isolation electrons as a default

because they don’t model well other distribution such as the��ET and quantities re-

lated to the��ET . However, as already discussed in Sec. 8.2.1, high isolation electrons

will be used to assess systematics due to the QCD multijet component.

To further prove that ALPGEN is reproducing the ∆Rjj distribution, we have shown

in Fig. 8.18 that there is a good agreement between the Z+jets data and ALPGEN
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The Effective Model
It is common to describe a distribution with some parametric function
‣ “fit background to a polynomial”, exponential, ...
‣ While this is convenient and the fit may be good, the narrative is weak
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Figure 4. The bb invariant mass spectrum for tt̄H signal and
background processes at Atlas.

(Type I error or false-discovery rate) for both LP and
LG.

Linnemann reviewed thirteen methods and
eleven published examples of this scenario.19 Of the
published examples, only three (the one from his ref-
erence 18 and the two from 19) are near the range of
x,y, and α relevant for LHC searches. Linnemann’s
review asks an equivalent question posed in this pa-
per, but in a different way: what is the significance
(Z in Eq. 12) of a given observation x, y.

3.2 The LHC Standard Model Higgs Search

The search for the standard model Higgs boson is
by no means the only interesting search to be per-
formed at the LHC, but it is one of the most studied
and offers a particularly challenging set of channels
to combine with a single method. Figure 1 shows
the expected significance versus the Higgs mass, mH ,
for several channels individually and in combination
for the Atlas experiment.25 Two mass points are
considered in more detail in Tab. 1, including re-
sults from Refs.1,25,26. Some of these channels will
most likely use a discriminating variable distribu-
tion, f(m), to improve the sensitivity as described
in Sec. 2.3. I have indicated the channels that I sus-
pect will use this technique. Rough estimates on the
uncertainty in the background rate have also been
tabulated, without regard to the classification pro-
posed by Sinervo.

The background uncertainties for the tt̄H chan-
nel have been studied in some detail and separated
into various sources.26 Figure 4 shows the mbb mass

Box

Born

Mass (GeV)

!d 
  /

dM
 (p

b/
G

eV
)

Figure 5. Two plausible shapes for the continuum γγ mass
spectrum at the LHC.

spectrum for this channel.e Clearly, the shape of
the background-only distribution is quite similar to
the shape of the signal-plus-background distribution.
Furthermore, theoretical uncertainties and b-tagging
uncertainties affect the shape of the background-only
spectrum. In this case the incorporation of system-
atic error on the background rate most likely pre-
cludes the expected significance of this channel from
ever reaching 5σ.

Similarly, the H → γγ channel has uncertainty
in the shape of the mγγ spectrum from background
processes. One contribution to this uncertainty
comes from the electromagnetic energy scale of the
calorimeter (an experimental nuisance parameter),
while another contribution comes from the theoreti-
cal uncertainty in the continuum γγ production. Fig-
ure 5 shows two plausible shapes for the mγγ spec-
trum from “Born” and “Box” predictions.

4 Review of Methods

Based on the practical example of the standard
model Higgs search at the LHC and the discussion
in Sec. 2, the list of admissible methods is quite
short. Of the thirteen methods reviewed by Linne-
mann, only five are considered as reasonable or rec-
ommended. These can be divided into three classes:
hybrid Bayesian-frequentist methods, methods based
on the Likelihood Principle, and frequentist methods
based on the Neyman construction.

eIt is not clear if this result is in agreement with the equivalent
CMS result.27

ATLAS detector and physics performance Volume II
Technical Design Report 25 May 1999

680 19   Higgs Bosons

For an integrated luminosity of 100 fb!1, a Standard Model Higgs boson in the mass range be-
tween 105 GeV and 145 GeV can be observed with a significance of more than 5" by using the
H# $$ channel alone. Table 19-2 also contains the estimated significances of the H# $$ channel
for an integrated luminosity of 30 fb-1, corresponding to the first three years of LHC operation.
The significances at low luminosity have been evaluated by taking the resulting improvements
in mass resolution and background rejection into account. A signal in the $$ channel can only be
seen in this case with a significance of % 4" over a narrow mass range between 120 and 130 GeV.

The significances quoted in Table 19-2 are slightly higher than the ones given in the Technical
Proposal. The main reason for this is the removal of the so called pT-balance cut, which was ap-
plied in order to suppress bremsstrahlung background. Although without this cut the back-
ground increases, there is a net gain in the significance. Another reason is the slightly improved
mass resolution which is mainly due to a more sophisticated photon energy reconstruction, sep-
arating converted and non-converted photons. These gains are somewhat offset by the higher
reducible background.

As an example of signal reconstruction above background, Figure 19-4 shows the expected sig-
nal from a Higgs boson with mH = 120 GeV for an integrated luminosity of 100 fb-1. The H# $$

signal is clearly visible above the smooth $$ background, which is dominated by the irreducible
continuum of real photon pairs.

19.2.2.2 Associated production:WH, ZH and ttH

The production of the Higgs boson in association with aW or a Z boson or with a tt pair can also
be used to search for a low-mass Higgs boson. The production cross-section for the associated
production is almost a factor 50 lower than for the direct production, leading to much smaller
signal rates. If the associated W/Z boson or one of the top quarks is required to decay leptoni-
cally, thereby leading to final states containing one isolated lepton and two isolated photons, the
signal-to-background ratio can nevertheless be substantially improved with respect to the direct
production. In addition, the vertex position can be unambiguously determined by the lepton
charged track, resulting in better mass resolution at high luminosity than for the case of direct
H# $$ production.

Figure 19-4 Expected H # $$ signal for mH = 120 GeV and for an integrated luminosity of 100 fb-1. The signal

is shown on top of the irreducible background (left) and after subtraction of this background (right).

10000

12500

15000

17500

20000

105 120 135

m
$$

 (GeV)

E
v

en
ts

 /
 2

 G
eV

0

500

1000

1500

105 120 135

m
$$

 (GeV)

S
ig

n
al

-b
ac

k
g

ro
u

n
d

, 
ev

en
ts

 /
 2

 G
eV



Kyle Cranmer (NYU) Cosmostats, July 28, 2009

Center for 
Cosmology and 
Particle PhysicsThe Effective Model narrative

However, sometimes the effective model comes from a 
convincing narrative

‣ convolution of resolution with known distribution
‣ for example, the “invariant mass” of some final state particles

46

where the ai are the parameters used to parameterize the fake-tau background and ! represents all nui-680

sance parameters of the model: "H ,mZ,"Z,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near m## = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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The parametrized response narrative
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November 8, 2006 Daniel Whiteson/Penn

Calculation

For each event, calculate differential cross-section:

Matrix
 Element

Transfer 
Functions

Phase-space 
Integral

Only partial information available
Fix measured quantities
Integrate over unmeasured parton quantities

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

November 8, 2006 Daniel Whiteson/Penn

Data
20 example events…

November 8, 2006 Daniel Whiteson/Penn

Measurement!

Mt = 164.5 ± 3.9 stat ± 3.9syst GeV/c2

L = 350 pb-1 

Phys. Rev. Lett             96, 152002 (2006)
Phys. Rev. D                 Accepted (2006)
Thesis, A. Kovalev     Penn (2005)

L= 1000 pb-1 

Thesis, B. Jayatilaka  Michigan, 2006
Phys. Rev. Lett,            In preparation

The Matrix-Element technique is conceptually similar to the simulation narrative, 
but the detector response is parametrized.
‣ Doesn’t require building parametrized PDF by interpolating between non-

parametric templates. 
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Example likelihoods from CDF Z’ 
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Fast Simulation
Fast simulations based on parametrized detector response are very useful and 
can often be tuned to perform quite well in a specific analysis context

‣ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

‣ Would be much more useful if the parmaetrized detector response could be 
used as a transfer function in Matrix-Element approach

49
CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis! 36!

Same sign di-lepton + jets + MET search 
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Narrative styles
The Monte Carlo Simulation narrative (MC narrative)

‣ each stage is an accept/reject Monte Carlo based on P(out|in) of some 
microscopic process like parton shower, decay, scattering

‣ PDFs built from non-parametric estimator like histograms or kernel estimation
● need to supplement with interpolation procedures to incorporate systematics
● smearing approach fundamentally Bayesian

‣ pros: most detailed understanding of micro-physics 
‣ cons: computationally demanding, loose analytic scaling properties, relies on 

accuracy of simulation
‣ new ideas: improved interpolation, Radford Neal’s machine learning, “design of 

experiments”
The Data-driven narrative

‣ independent data sample that either acts as a proxy for some process or can be 
transformed to do so

‣ pros: nature includes “all orders”, uses real detector 
‣ cons: extrapolation from control region to signal region requires assumptions, 

introduces systematic effects.  Appropriate transformation may depend on many 
variables, which becomes impractical
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Narrative styles
Effective modeling narrative

‣ parametrized functional form: eg. Gaussian, falling exponential para polynomial fit 
to distribution, etc.

‣ pros: fast, has analytic scaling, parametric form may be well justified (eg. phase 
space, propagation of errors, convolution)

‣ cons: approximate, parametric form may be ad hoc (eg. polynomial from)
‣ new ideas: using non-parametric statistical methods 

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element 
method, ~fast simulation)

‣ pros: fast, maintains analytic scaling, response usually based on good 
understanding of the detector, possible to incorporate some types of uncertainty in 
the response analytically, can evaluate P(out|in) for arbitrary out,in.

‣ cons: approximate, best parametrized detector response is often not available in 
convenient form

‣ new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geant5)
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Combinations, Rich Modeling, and Publishing
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Example of Digital Publishing 

RooFit’s Workspace now provides the 
ability to save in a ROOT file the full 
likelihood model, any priors you might 
want, and the minimal data necessary 
to reproduce likelihood function.

Need this for combinations, as p-value 
is not sufficient information for a proper 
combination.
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Visualization of the ATLAS+CMS Workspace
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The full model has
  12 observables and
~50 parameters 
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Combinations & Rich Modeling
As we saw, constraint terms for nuisance parameters can often be 
related to auxiliary measurements
‣ we only considered very simple auxiliary measurements, like 

number of events in a sideband, but even in that case there 
are likely to be common systematics

‣ idea can be generalized to more sophisticated measurements
● for example, γ-jet or Z-jet balance measurements to constrain the Jet 

Energy Scale uncertainty

The point is that combining these models leads to a qualitiative 
change in how we represent what we know: rich modeling

Now the distinction has been blurred between a Higgs 
combination and a sophisticated modeling of systematics
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Examples of Published Likelihoods

You can find examples of published 
likelihoods in 1D

In 2-D you  just get the contours
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Surely we can do better!

At previous PhyStats, we agreed to publish likelihood functions
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The situation 10 years ago...

57

Origins I:  The First “Statistics in HEP” conference

But a practical problem remained: How to communicate multi-D likelihood?

!"#$%&'()*%+',)-.+'./'0%')01%'./'2)1231).%'2/4%$)5%6'7/-'8$//*',)-.+'./')01%'./'2)1231).%'5//&-%++'/9'9:.;!

http://indico.cern.ch/conferenceDisplay.py?confId=100458

http://indico.cern.ch/conferenceDisplay.py?confId=100458
http://indico.cern.ch/conferenceDisplay.py?confId=100458
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Current scenario
Taken from the GFitter paper
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Eur. Phys. J. C (2009) 60: 543–583 557

information available for 10 discrete data points in the
mass range 155 ≤ MH ≤ 200 GeV based on prelimi-
nary searches using data samples of up to 3 fb−1 inte-
grated luminosity [73]. For the mass range 110 ≤ MH ≤
200 GeV, Tevatron results based on 2.4 fb−1 are provided
for −2 lnQ [72], however not for the corresponding con-
fidence levels.

To include the direct Higgs searches in the complete
SM fit we interpret the −2 lnQ results for a given Higgs
mass hypothesis23 as measurements and derive a log-
likelihood estimator quantifying the deviation of the data
from the corresponding SM Higgs expectation. For this
purpose we transform the one-sided CLs+b into two-
sided confidence levels24 using CL2-sided

s+b = 2CLs+b for
CLs+b ≤ 0.5 and CL2-sided

s+b = 2(1 − CLs+b) for CLs+b >

0.5. The contribution to the χ2 estimator of the fit is
then obtained via δχ2 = 2 · [Erf−1(1−CL2-sided

s+b )]2, where
Erf−1 is the inverse error function,25 and where the under-
lying probability density function has been assumed to be
symmetric (cf. footnote 21 on p. 556).

For the complete mass range available for the LEP
searches (MH ≤ 120 GeV), and for the high-mass region
of the Tevatron searches (155 ≤ MH ≤ 200 GeV), we em-
ploy the CLs+b values determined by the experiments. For
the low-mass Tevatron results (110 ≤ MH ≤ 150 GeV),
where the CLs+b values are not provided, they are esti-
mated from the measured −2 lnQ values that are com-

23This procedure only uses the MH value under consideration, where
Higgs-mass hypothesis and measurement are compared. It thus ne-
glects that in the SM a given signal hypothesis entails background hy-
potheses for all MH values other than the one considered. An analysis
accounting for this should provide a statistical comparison of a given
hypothesis with all available measurements. This however would re-
quire to know the correlations among all the measurement points (or
better: the full experimental likelihood as a function of the Higgs-mass
hypothesis), which are not provided by the experiments to date. The
difference to the hypothesis-only test employed here is expected to
be small at present, but may become important once an experimental
Higgs signal appears, which however has insufficient significance yet
to claim a discovery (which would allow one to discard all other Higgs-
mass hypotheses). We thank Bill Murray (RAL) for bringing this point
to our attention.
24The experiments integrate only the tail towards larger −2 lnQ values
of the probability density function to compute CLs+b (corresponding to
a counting experiment with to too few observed events with respect to
the s + b hypothesis), which is later used to derive CLs in the modified
frequentest approach. They thus quantify Higgs-like (not necessarily
SM Higgs) enhancements in the data. In the global SM fit, however,
one is interested in the compatibility between the SM hypothesis and
the experimental data as a whole, and must hence account for any devi-
ation, including the tail towards smaller −2 lnQ values (corresponding
to a counting experiment with too many Higgs candidates with respect
to the s + b hypothesis where, s labels the SM Higgs signal).
25The use of Erf−1 provides a consistent error interpretation when
(re)translating the χ2 estimator into a confidence level via CL =
1 − Prob(χ2,1) = Erf(

√
χ2/2).

pared with those expected for the s+b hypothesis, and us-
ing the errors derived by the experiments for the b hypoth-
esis. We have tested this approximation in the high-mass
region, where the experimental values of CLs+b from the
Tevatron are provided, and found a systematic overesti-
mation of the contribution to our χ2 test statistics of about
30%, with small dependence on the Higgs mass. We thus
rescale the test statistics in the mass region where the
CLs+b approximation is used (i.e. 110 ≤ MH ≤ 150 GeV)
by the correction factor 0.77.26 Once made available by
the TEVNPH Working Group, this approximation will be
replaced by the published CLs+b values.

Our method follows the spirit of a global SM fit and
takes advantage from downward fluctuations of the back-
ground in the sensitive region to obtain a more restrictive
limit on the SM Higgs production as is obtained with the
modified frequentest approach. The resulting χ2 curves
versus MH are shown in Fig. 4.1. The low-mass exclu-
sion is dominated by the LEP searches, while the infor-
mation above 120 GeV is contributed by the Tevatron
experiments. Following the original figure, the Tevatron
measurements have been interpolated by straight lines for
the purpose of presentation and in the fit which deals with
continuous MH values.

Constraints on the weak mixing angle can also be derived
from atomic parity violation measurements in caesium, thal-
lium, lead and bismuth. For heavy atoms one determines
the weak charge, QW ≈ Z(1 − 4 sin2 θW) − N . Because the
present experimental accuracy of 0.6% (3.2%) for QW from
Cs [77, 78] (Tl [79, 80]) is still an order of magnitude away
from a competitive constraint on sin2 θW , we do not include
it into the fit. (Including it would reduce the error on the
fitted Higgs mass by 0.2 GeV.) Due to the same reason
we do not include the parity violation left-right asymmetry
measurement using fixed target polarised Møller scattering
at low Q2 = 0.026 GeV2 [81].27

The NuTeV Collaboration measured ratios of neutral and
charged current cross sections in neutrino–nucleon scatter-
ing at an average Q2 $ 20 GeV2 using both muon neutrino
and muon anti-neutrino beams [82]. The results derived for
the effective weak couplings are not included in this analy-
sis because of unclear theoretical uncertainties from QCD
effects such as next-to-leading order corrections and nu-
clear effects of the bound nucleon parton distribution func-
tions [83] (for reviews see, e.g., Refs. [84, 85]).

Although a large number of precision results for αS at
various scales are available, including recent 3NLO deter-
minations at the τ -mass scale [17, 18, 86, 87], we do not

26The correction factor reduces the value of the χ2 test statistics. As
described in footnote 32, its application has little impact on the fit re-
sults.
27The main success of this measurement is to have established the run-
ning of the weak coupling strength at the 6.4σ level.
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Combining Results: An Example
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A combination example

• Combining ‘ATLAS’ and ‘CMS’ result from persisted 
workspaces

!"#$%&'(')'*%+'!"#$%,-./$.01233/-4'5

633732809.:%'&./$.0')'(;<=%/,-./$.0-4'5

Read ATLAS
workspace

!"#$%&'(')'*%+'!"#$%,-:>01233/-4'5

633732809.:%'&:>0')'(;<=%/,-:>0-4'5

Read CMS
workspace

633?@@#/#3*'*$$A3>B#,-*$$A3>B#-C-*$$'ADEF?!G?E-C
633?2HE%/,&:>0;<(I*:/#3*,J*$$K4C&./$.0;<(I*:/#3*,J*$$K444'5

Construct
combined LH

633L23(#$%GG'9$$A3>B#,-9$$A3>B#-C-9$$-C*$$A3>B#C&./$.0;<M.2,->N#HH0-44'5

Construct
profile LH
in mHiggs

633L$3/&'>(2.>%')'./$.0;<M.2,->N#HH0-4;<(2.>%,;O1PC;Q1P4'5

./$.0;<(I*:/#3*,J*$$K4;<9$3/R*,>(2.>%44'5

:>0;<(I*:/#3*,J*$$K4;<9$3/R*,>(2.>%4CG#*%E/S$%,8T.0U%@44'5

9$$A3>B#19$3/R*,>(2.>%CG#*%A3$32,86%@44'5

Plot
Atlas,CMS,
combined
profile LH

Wouter Verkerke, NIKHEF 

>(2.>%;<T2.+,4'5'VV'2%0I$/'3*'*%W/'0$#@%
profile LH

A combination example

d
e

 l
ik

e
li
h

o
o

d

Combined

P
r
o

fi
le

‘A l ’‘Atlas’

‘CMS’

Wouter Verkerke, NIKHEF 

By using the workspace, it is easy to share results, ideal for combinations.

Example above shows opening an ‘atlas’ and ‘cms’ workspace, and 
performing a combined fit to a common parameter with profile likelihood.
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Introduction
Michelangelo’s Likelihood Mandate (MLM):
A general assessment of the status and needs of the tools for setting limits on (or fitting) 
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
‣ Characterization & Simplified Models
‣ Fitting Model Parameters

60
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Introduction
Michelangelo’s Likelihood Mandate (MLM):
A general assessment of the status and needs of the tools for setting limits on (or fitting) 
parameters of BSM models, using the multitude of data from searches at the LHC

Two related communities and ongoing discussions
‣ Characterization & Simplified Models
‣ Fitting Model Parameters

60

→ parametrization
→ interpretation

Potential new tasks

• Input for the Strategy Group

• LPCC and experiments required to produce combined assessment of the 
2010-11(-12) findings in Higgs and BSM searches

• TH community, and other expl communities (e.g. LinCol, SuperB, ...), will 
use this to assess the implications of LHC data for BSM and future exptl 
projects

!We need to prepare the framework/tools to enable:

• combination of limits/evidence from ATLAS/CMS(/LHCb)

• use of the results by the rest of the community (e.g. SUSY-models’ fitters)

• This will require coordination with

• ATLAS-CMS statistics forum

• Fitters’ groups

• all LHC “search “ efforts (Higgs, B decays, exotica of all sorts .... )

• ...
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• Input for the Strategy Group

• LPCC and experiments required to produce combined assessment of the 
2010-11(-12) findings in Higgs and BSM searches

• TH community, and other expl communities (e.g. LinCol, SuperB, ...), will 
use this to assess the implications of LHC data for BSM and future exptl 
projects

!We need to prepare the framework/tools to enable:

• combination of limits/evidence from ATLAS/CMS(/LHCb)

• use of the results by the rest of the community (e.g. SUSY-models’ fitters)

• This will require coordination with

• ATLAS-CMS statistics forum

• Fitters’ groups

• all LHC “search “ efforts (Higgs, B decays, exotica of all sorts .... )

• ...

Goals for this meeting

• Review the progress made by the experiments

• Status report on the SLAC WG

• Collect further input from all fields (TH + exps)

• In the context of simplified models, start outlining the roadmap and the 
workflow to go from analysis, to publication, to combination of the results of 
different experiments, to conclude with the exploitation of the published 
results by a random theorist.

analysis

format of the 
published result

combination among 
experiments

use of the results by a theorist, in 
the context of a new model
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SUSY Fitting tools
Usually simplify input from experiments to be a single Gaussian
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First interface with SuperBayes
Repeated same analysis as Bridges, KC, Trotta et al (1011.4306) with 
RooStats likelihood
‣ see consistent results! 
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Table 8: Resulting SUSY particle masses and mass differences within SU3 and SU4 from the χ 2 mini-
mization fit using the dilepton and lepton+jets edges. Shown are the measured masses mmeas and mass
differences ∆mmeas followed first by the parabolic errors as returned by MIGRAD and then by the jet
energy scale errors. When the measured parameter is anticorrelated with the jet energy scale variation,
this is indicated by a ∓ sign. The input Monte Carlo masses mMC and mass differences ∆mMC are also
shown. The integrated luminosity assumed is 1 fb−1 for SU3 and 0.5 fb−1 for SU4.

Observable SU3 mmeas SU3 mMC SU4 mmeas SU4 mMC
[GeV] [GeV] [GeV] [GeV]

mχ̃01
88±60∓2 118 62±126∓0.4 60

mχ̃02
189±60∓2 219 115±126∓0.4 114

mq̃ 614±91±11 634 406±180±9 416
m!̃ 122±61∓2 155
Observable SU3 ∆mmeas SU3 ∆mMC SU4 ∆mmeas SU4 ∆mMC

[GeV] [GeV] [GeV] [GeV]
mχ̃02

−mχ̃01
100.6±1.9∓0.0 100.7 52.7±2.4∓0.0 53.6

mq̃−mχ̃01
526±34±13 516.0 344±53±9 356

m!̃−mχ̃01 34.2±3.8∓ 0.1 37.6

to constrain the fits.

9.2 Observables and fit assumptions
To demonstrate the feasibility of parameter determination with initial data, we show the constraints one
would obtain for our benchmark points if one assumed an mSUGRA framework.
The SUSY parameter-fitting package Fittino version 1.4.1 [24] is used, interfaced to a beta version

of SPheno3 [25] to perform the theoretical calculations for a given set of parameters.
The fit is given the measurements presented in sections 3, 4 and 6. The lepton and the jet energy

scale uncertainties are each considered to be 100% correlated between measurements. Uncertainties on
the theoretical predictions are not taken into account. For illustration purposes an additional parame-
ter determination is performed where – following a prescription used in [26] – 1% (0.5%) uncertainty
on the theoretical calculation of the pole masses of coloured (un-coloured) sparticles is assumed. No
correlations between the theoretical uncertainties on the pole masses are considered.

9.3 Markov chain analysis
To obtain a first glimpse of the possible parameter space a Markov chain analysis is performed. With this
technique it is possible to efficiently sample from a large-dimensional parameter spaces. This allows us
to check whether there are several topologically disconnected parameter regions which are favoured by
the given measurements.
Figure 12 shows two-dimensional likelihood maps for M0 and M1/2 (left) as well as tanβ and A0

(right) for sign µ = +1 obtained for the given set of measurements. The plots demonstrate that for a
given sign µ preferred parameters are found around the true parameter points independent of the starting
point. No further preferred regions occur. For M0 and M1/2 a clearly preferred region is found around
the SU3 values of 100 GeV and 300 GeV, respectively. As expected, given the measurements used, the
determination of tanβ and A0 is more difficult. Nevertheless, here too the region around the nominal
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Benchmark based on counting
Max Baak’s demonstrated interpolation of signal yield and uncertainties 
in a 3-d mSUGRA scan with a simple number counting analysis
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Ultimate Goal
Publish likelihoods along with papers
‣ first goal, the LEP Higgs
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Lecture 2
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Modeling:
The Scientific Narrative

(continued)
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Review
In Monte Carlo Simulation approach, use simulated events to build 
histograms and construct the “Marked Poisson” model below

68

A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9
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Figure 5: NN outputs for signal (blue squares) and background (red circles) events for
mH = 130 GeV (left) and mH = 170 GeV (right). Both distributions are normalized to 1 fb−1

of integrated luminosity.

is performed. The background measurement in the normalization region is used as a reference
to estimate the magnitude of the background in the signal region by multiplying the measured
background events in the normalization region (NN

bkg) by the ratio of the efficiencies:

NS
bkg =

εS
bkg

εN
bkg

NN
bkg. (1)

For the estimation of the tt background, events has to pass the lepton- and pre-selection cuts
described in section 2. Then, since in all Higgs signal regions the central jet veto is applied, in
this case, the presence of two jets are required.

Table 4 shows the expected number of tt and other background events after all selection cuts
are applied for an integrated luminosity of 1 fb−1. The ratio between signal and background
is quite good for all three channels and the uncertainty in the tt is dominated by systematics
uncertainties for this luminosity.

Final state tt WW Other background
µµ 1090 14 82
ee 680 10 50
eµ 2270 40 125

Table 4: Expected number of events for the three final states in the tt normalization region
for an integrated luminosity of 1 fb−1. It is worth noticing that the expected Higgs signal
contribution applying those selection requirements is negligible.
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�S

CJV
�C

2jets
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∆NS
tt

NS
tt
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R
⊕

∆NC
tt+background

NC
tt
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∆NC

background

NC
tt
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

m =

sig bkg 1 bkg 2 ...
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syst 2

...

Tabulate effect of individual variations of sources of systematic uncertainty
‣ use some form of interpolation to parametrize ith variation in terms of 

nuisance parameter αi 
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s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Review

69

A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
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bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.

Transverse Mass [GeV]
160 180 200 220 240 260 280 300

]
-1

Ev
en

ts
 [f

b

0

10

20

30

40

50

60

70
 = 7 TeV)s=200 GeV,  

H
 (m!! ll"H 

Signal
Total BG
tt

ZZ
WZ
WW
Z
W

ATLAS Preliminary (simulation)

Transverse Mass [GeV]
150 200 250 300 350 400 450 500

]
-1

Ev
en

ts
 [f

b

0

1

2

3

4

5

6

7
 = 7 TeV)s=300 GeV,  

H
 (m!! ll"H 

Signal
Total BG
tt

ZZ
WZ
WW
Z
W

ATLAS Preliminary (simulation)

Transverse Mass [GeV]
250 300 350 400 450 500

]
-1

Ev
en

ts
 [f

b

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

 = 7 TeV)s=400 GeV,  
H

 (m!! ll"H 
Signal
Total BG
tt

ZZ
WZ
WW
Z
W

ATLAS Preliminary (simulation)

Transverse Mass [GeV]
300 350 400 450 500 550 600 650

]
-1

Ev
en

ts
 [f

b

0

0.1

0.2

0.3

0.4

0.5

0.6
 = 7 TeV)s=500 GeV,  

H
 (m!! ll"H 

Signal
Total BG
tt

ZZ
WZ
WW
Z
W

ATLAS Preliminary (simulation)

Transverse Mass [GeV]
350 400 450 500 550 600 650 700 750

]
-1

Ev
en

ts
 [f

b

0

0.05

0.1

0.15

0.2

0.25
 = 7 TeV)s=600 GeV,  

H
 (m!! ll"H 

Signal
Total BG
tt

ZZ
WZ
WW
Z
W

ATLAS Preliminary (simulation)

Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
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−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

m =

Tabulate effect of individual variations of sources of systematic uncertainty
‣ use some form of interpolation to parametrize ith variation in terms of 

nuisance parameter αi 

P (m|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)
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Something must ‘constrain’ the α 
‣ the data itself: sidebands; some control region
‣ constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’

P (m|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)

ATLAS detector and physics performance Volume II
Technical Design Report 25 May 1999

680 19   Higgs Bosons

For an integrated luminosity of 100 fb!1, a Standard Model Higgs boson in the mass range be-
tween 105 GeV and 145 GeV can be observed with a significance of more than 5" by using the
H# $$ channel alone. Table 19-2 also contains the estimated significances of the H# $$ channel
for an integrated luminosity of 30 fb-1, corresponding to the first three years of LHC operation.
The significances at low luminosity have been evaluated by taking the resulting improvements
in mass resolution and background rejection into account. A signal in the $$ channel can only be
seen in this case with a significance of % 4" over a narrow mass range between 120 and 130 GeV.

The significances quoted in Table 19-2 are slightly higher than the ones given in the Technical
Proposal. The main reason for this is the removal of the so called pT-balance cut, which was ap-
plied in order to suppress bremsstrahlung background. Although without this cut the back-
ground increases, there is a net gain in the significance. Another reason is the slightly improved
mass resolution which is mainly due to a more sophisticated photon energy reconstruction, sep-
arating converted and non-converted photons. These gains are somewhat offset by the higher
reducible background.

As an example of signal reconstruction above background, Figure 19-4 shows the expected sig-
nal from a Higgs boson with mH = 120 GeV for an integrated luminosity of 100 fb-1. The H# $$

signal is clearly visible above the smooth $$ background, which is dominated by the irreducible
continuum of real photon pairs.

19.2.2.2 Associated production:WH, ZH and ttH

The production of the Higgs boson in association with aW or a Z boson or with a tt pair can also
be used to search for a low-mass Higgs boson. The production cross-section for the associated
production is almost a factor 50 lower than for the direct production, leading to much smaller
signal rates. If the associated W/Z boson or one of the top quarks is required to decay leptoni-
cally, thereby leading to final states containing one isolated lepton and two isolated photons, the
signal-to-background ratio can nevertheless be substantially improved with respect to the direct
production. In addition, the vertex position can be unambiguously determined by the lepton
charged track, resulting in better mass resolution at high luminosity than for the case of direct
H# $$ production.

Figure 19-4 Expected H # $$ signal for mH = 120 GeV and for an integrated luminosity of 100 fb-1. The signal

is shown on top of the irreducible background (left) and after subtraction of this background (right).
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‣ constraint term: idealized form of auxiliary measurement or ad hoc ‘prior’
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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The Data-Driven narrative
In the data-driven approach, backgrounds are estimated by assuming (and 
testing) some relationship between a control region and signal region
‣ flavor subtraction, same-sign samples, fake matrix, tag-probe, ....

Pros: Initial sample has “all orders” theory :-) and all the details of the detector
Cons: assumptions made in the transformation to the signal region can be 
questioned

71

Table 3: Number of lepton pairs passing the selection cuts optimized for the SUSY sample SU1 (above),
SU3 (middle) and SU4 (below), for 1 fb−1 of integrated luminosity. The contribution from t t̄ produc-
tion is indicated separately as it constitutes most of the Standard Model background. The remaining
background events are from W, Z and WW, WZ, ZZ production. The background due to QCD jets is
negligible.

Sample e+e− µ+µ− OSSF OSDF
SUSY SU1 56 88 144 84
Standard Model (tt̄) 35 (35) 65 (63) 101 (99) 72 (68)
SUSY SU3 274 371 645 178
Standard Model (tt̄) 76 (75) 120 (115) 196 (190) 172 (165)
SUSY SU4 1729 2670 4400 2856
Standard Model (tt̄) 392 (377) 688 (657) 1081 (1035) 1104 (1063)
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Figure 1: Left: distribution of the invariant mass of same-flavour and different-flavour lepton pairs for
the SUSY benchmark points and backgrounds after the cuts optimized from data in presence of the SU3
signal (left), and the SU4 signal (right). The integrated luminosities are 1 fb−1 and 0.5 fb−1 respectively.

The invariant mass distribution after flavour subtraction is shown in the left plot of Fig. 2 in the
presence of the SU3 signal and for an integrated luminosity of 1 fb−1. The distribution has been fitted
with a triangle smeared with a Gaussian. The value obtained for the endpoint is (99.7±1.4±0.3) GeV
where the first error is due to statistics and the second is the systematic error on the lepton energy scale
and on the β parameter [2]. This result is consistent with the true value of 100.2 GeV calculated from
Eq. (5).
The right plot of Fig. 2 shows the flavour-subtracted distribution in the presence of the SU4 signal for

an integrated luminosity of 0.5 fb−1. The fit was performed using the function from [5] which describes
the theoretical distribution for the 3-body decay in the limit of large slepton masses, smeared for the
experimental resolution. This function vanishes near the endpoint and is a better description of the true
distribution for SU4 than the triangle with a sharp edge. The endpoint from the fit is (52.7± 2.4±
0.2) GeV, consistent with the theoretical endpoint of 53.6 GeV.
Since the true distribution will not be known for data, the distribution was also fitted with the smeared

triangle expected for the 2-body decay chain. This also gives a good χ 2 with an endpoint of (49.1±
1.5± 0.2) GeV. A larger integrated luminosity will be required to use the shape of the distribution to
discriminate between the two-body and the three-body decays.
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Figure 2: Left: Distribution of invariant mass after flavour subtraction for the SU3 benchmark point with
an integrated luminosity of 1 fb−1. Right: the same distribution is shown for the SU4 benchmark point
and an integrated luminosity of 0.5 fb−1. The line histogram is the Standard Model contribution, while
the points are the sum of Standard Model and SUSY contributions. The fitting function is superimposed
and the expected position of the endpoint is indicated by a dashed line.
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Figure 3: Distribution of invariant mass after flavour subtraction for the SU1 point and for an integrated
luminosity of 1 fb−1 (left) and 18 fb−1 (right). The points with error bars show SUSY plus Standard
Model, the solid histogram shows the Standard Model contribution alone. The fitted function is super-
imposed (right), the vertical lines indicate the theoretical endpoint values.

In Fig. 3 the flavour-subtracted distribution of the dilepton mass is shown for the SU1 point at an
integrated luminosity of 1 fb−1 (left) and 18 fb−1 (right) 3). While there is already a clear excess of
SF-OF entries at 1 fb−1 , a very convincing edge structure cannot be located. At 18 fb−1 the two
edges are visible. A fit function consisting of a double triangle convoluted with a Gaussian, the latter
having a fixed width of 2 GeV, returns endpoint values of 55.8± 1.2± 0.2 GeV for the lower edge and
99.3± 1.3± 0.3 GeV for the upper edge, consistent with the true values of 56.1 and 97.9 GeV. As can
be seen from Fig. 3 (right) the m!! distribution also contains a noticeable contribution from the leptonic
decay of Z bosons present in SUSY events. Even though the upper edge is located close to the Z mass,
3)Only 1 fb−1 of simulated Standard Model background was available. To scale the Standard Model contribution to higher

luminosities a probability density function for the m(ll) distribution was constructed by fitting a Landau function to the 1 fb−1
distribution, assuming statistically identical shapes for e+e−, µ+µ− and e±µ∓ and normalisation according to a β of 0.86. The
systematic uncertainty on the endpoint determination from this procedure was estimated to be a small fraction of the statistical
uncertainty.
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CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis! 19!

All-hadronic searches with !"# 

3 jets, ET>50 |$|<2.5 

HT > 350 and MHT > 150 

Event cleaning cuts. 

Predict each bkgd separately 
QCD: rebalance & smear 
W & ttbar from µ control 
Z⟶%% from &+jets and Z⟶µµ    

Search for high pT jets, high HT and high MHT (= vector sum of jets) 
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Data driven estimates
In the case of the CDF bump, the Z+jets control sample provides a data-
driven estimate, but limited statistics.  Using the simulation narrative over 
the data-driven is a choice.  If you trust that narrative, it’s a good choice.
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FIG. 1: The dijet invariant mass distribution. The sum of electron and muon events is plotted. In the left plots we show the

fits for known processes only (a) and with the addition of a hypothetical Gaussian component (c). On the right plots we show,

by subtraction, only the resonant contribution to Mjj including WW and WZ production (b) and the hypothesized narrow

Gaussian contribution (d). In plot (b) and (d) data points differ because the normalization of the background changes between

the two fits. The band in the subtracted plots represents the sum of all background shape systematic uncertainties described

in the text. The distributions are shown with a 8 GeV/c
2
binning while the actual fit is performed using a 4 GeV/c

2
bin size.

resonance with definite mass. The width of the Gaus-
sian is fixed to the expected dijet mass resolution by
scaling the width of the W peak in the same spectrum:

σresolution = σW

�
Mjj

MW
= 14.3 GeV/c2, where σW and

MW are the resolution and the average dijet invariant
mass for the hadronic W in the WW simulations respec-
tively, and Mjj is the dijet mass where the Gaussian tem-
plate is centered.

In the combined fit, the normalization of the Gaus-
sian is free to vary independently for the electron and

muon samples, while the mean is constrained to be the
same. The result of this alternative fit is shown in Figs. 1
(c) and (d). The inclusion of this additional component
brings the fit into good agreement with the data. The
fit χ2/ndf is 56.7/81 and the Kolmogorov-Smirnov test
returns a probability of 0.05, accounting only for statis-
tical uncertainties. The W+jets normalization returned
by the fit including the additional Gaussian component is
compatible with the preliminary estimation from the �ET

fit. The χ2/ndf in the region 120-160 GeV/c2 is 10.9/20.
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Figure 4.2: Example of one of the numerous diagrams for the production of W+jets

(left) and Z+jets (right).
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Figure 4.3: Feynman diagram for tt̄ production.
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Figure 4.4: Feynman diagrams for single top production.
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Figure 4.5: Feynman diagrams for QCD multijet production.
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We compare the Mjj distribution of data Z+jets events to ALPGEN MC. Fig. 8.17

shows the two distributions for muons and electrons respectively. Also in this case,

within statistics, we do not observe significant disagreement.
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Figure 8.17: Mjj in Z+jets data and MC in the muon sample (a) and in in the

electron sample (b).

In addition, we compare several kinematic variables between Z+jets data and

ALPGEN MC (see Fig. 8.18) and find that the agreement is good.

8.2.3 ∆Rjj Modeling

In Fig. 8.4, we observed disagreement between data and our background model in

the ∆Rjj distribution of the electron sample.

The main difference between muons and electrons is the method used to model

the QCD contribution: high isolation candidates for muons and antielectrons for

electrons. However, if we compare the ∆R distribution of antieletrons and high

isolation electrons, Fig. 8.19, we observe a significant difference and, in particular,

high isolation electrons seems to behave such that they may cover the disagreement

we see in ∆R. Unfortunately, we cannot use high isolation electrons as a default

because they don’t model well other distribution such as the��ET and quantities re-

lated to the��ET . However, as already discussed in Sec. 8.2.1, high isolation electrons

will be used to assess systematics due to the QCD multijet component.

To further prove that ALPGEN is reproducing the ∆Rjj distribution, we have shown

in Fig. 8.18 that there is a good agreement between the Z+jets data and ALPGEN
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renormalization and factorization scales to 2!0 instead of
!0 reduces the cross section prediction by 5%–10%, and
setting Rsep ¼ 2 increases the cross section by& 10%. The
PDF uncertainties estimated from 40 CTEQ6.1 error PDFs
and the ratio of the predictions using MRST2004 [37] and
CTEQ6.1 are shown in Fig. 1(b). The PDF uncertainty is
the dominant theoretical uncertainty for most of the mjj

range. The NLO pQCD predictions for jets clustered from
partons need to be corrected for nonperturbative under-
lying event and hadronization effects. The multiplicative
parton-to-hadron-level correction (Cp!h) is determined on
a bin-by-bin basis from a ratio of two dijet mass spectra.
The numerator is the nominal hadron-level dijet mass
spectrum from the PYTHIA Tune A samples, and the de-
nominator is the dijet mass spectrum obtained from jets
formed from partons before hadronization in a sample
simulated with an underlying event turned off. We assign
the difference between the corrections obtained using
HERWIG and PYTHIA Tune A as the uncertainty on the
Cp!h correction. The Cp!h correction is 1:16" 0:08 at
low mjj and 1:02" 0:02 at high mjj. Figure 1 shows the
ratio of the measured spectrum to the NLO pQCD predic-
tions corrected for the nonperturbative effects. The data
and theoretical predictions are found to be in good agree-
ment. To quantify the agreement, we performed a "2 test
which is the same as the one used in the inclusive jet cross
section measurements [15,17]. The test treats the system-
atic uncertainties from different sources and uncertainties
on Cp!h as independent but fully correlated over all mjj

bins and yields "2=no: d:o:f: ¼ 21=21.

VI. SEARCH FOR DIJET MASS RESONANCES

We search for narrow mass resonances in the measured
dijet mass spectrum by fitting the measured spectrum to a
smooth functional form and by looking for data points that
show significant excess from the fit. We fit the measured
dijet mass spectrum before the bin-by-bin unfolding cor-
rection is applied. We use the following functional form:

d#

dmjj
¼ p0ð1$ xÞp1=xp2þp3'lnðxÞ; x ¼ mjj=

ffiffiffi
s

p
; (2)

where p0, p1, p2, and p3 are free parameters. This form fits
well the dijet mass spectra from PYTHIA, HERWIG, and NLO
pQCD predictions. The result of the fit to the measured
dijet mass spectrum is shown in Fig. 2. Equation (2) fits the
measured dijet mass spectrum well with "2=no: d:o:f: ¼
16=17. We find no evidence for the existence of a resonant
structure, and in the next section we use the data to set
limits on new particle production.

VII. LIMITS ON NEW PARTICLE PRODUCTION

Several theoretical models which predict the existence
of new particles that produce narrow dijet resonances are
considered in this search. For the excited quark q( which

decays to qg, we set its couplings to the SM SUð2Þ, Uð1Þ,
and SUð3Þ gauge groups to be f ¼ f0 ¼ fs ¼ 1 [1], re-
spectively, and the compositeness scale to the mass of q(.
For the RS graviton G( that decays into q !q or gg, we use
the model parameter k= !MPl ¼ 0:1 which determines the
couplings of the graviton to the SM particles. The produc-
tion cross section increases with increasing k= !MPl; how-
ever, values of k= !MPl ) 0:1 are disfavored theoretically
[38]. For W 0 and Z0, which decay to q !q0 and q !q respec-
tively, we use the SM couplings. The leading-order pro-
duction cross sections of the RS graviton, W 0, and Z0 are
multiplied by a factor of 1.3 to account for higher-order
effects in the strong coupling constant $s [39]. All these
models are simulated with PYTHIATune A. Signal events of
these models from PYTHIA are then passed through the
CDF detector simulation. For all the models considered
in this search, new particle decays into the modes contain-
ing the top quark are neither included in the #sig predic-
tions nor in the signal dijet mass distribution modeling,
since such decays generally do not lead to the dijet
topology.
The dijet mass distributions from q( simulations with

masses 300, 500, 700, 900, and 1100 GeV=c2 are shown in
Fig. 2. The dijet mass distributions for the q(, RS graviton,
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FIG. 2 (color online). (a) The measured dijet mass spectrum
(points) fitted to Eq. (2) (dashed curve). The bin-by-bin unfold-
ing corrections is not applied. Also shown are the predictions
from the excited quark, q(, simulations for masses of 300, 500,
700, 900, and 1100 GeV=c2, respectively (solid curves). (b) The
fractional difference between the measured dijet mass distribu-
tion and the fit (points) compared to the predictions for q( signals
divided by the fit to the measured dijet mass spectrum (curves).
The inset shows the expanded view in which the vertical scale is
restricted to "0:04.
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renormalization and factorization scales to 2!0 instead of
!0 reduces the cross section prediction by 5%–10%, and
setting Rsep ¼ 2 increases the cross section by& 10%. The
PDF uncertainties estimated from 40 CTEQ6.1 error PDFs
and the ratio of the predictions using MRST2004 [37] and
CTEQ6.1 are shown in Fig. 1(b). The PDF uncertainty is
the dominant theoretical uncertainty for most of the mjj

range. The NLO pQCD predictions for jets clustered from
partons need to be corrected for nonperturbative under-
lying event and hadronization effects. The multiplicative
parton-to-hadron-level correction (Cp!h) is determined on
a bin-by-bin basis from a ratio of two dijet mass spectra.
The numerator is the nominal hadron-level dijet mass
spectrum from the PYTHIA Tune A samples, and the de-
nominator is the dijet mass spectrum obtained from jets
formed from partons before hadronization in a sample
simulated with an underlying event turned off. We assign
the difference between the corrections obtained using
HERWIG and PYTHIA Tune A as the uncertainty on the
Cp!h correction. The Cp!h correction is 1:16" 0:08 at
low mjj and 1:02" 0:02 at high mjj. Figure 1 shows the
ratio of the measured spectrum to the NLO pQCD predic-
tions corrected for the nonperturbative effects. The data
and theoretical predictions are found to be in good agree-
ment. To quantify the agreement, we performed a "2 test
which is the same as the one used in the inclusive jet cross
section measurements [15,17]. The test treats the system-
atic uncertainties from different sources and uncertainties
on Cp!h as independent but fully correlated over all mjj

bins and yields "2=no: d:o:f: ¼ 21=21.

VI. SEARCH FOR DIJET MASS RESONANCES

We search for narrow mass resonances in the measured
dijet mass spectrum by fitting the measured spectrum to a
smooth functional form and by looking for data points that
show significant excess from the fit. We fit the measured
dijet mass spectrum before the bin-by-bin unfolding cor-
rection is applied. We use the following functional form:

d#

dmjj
¼ p0ð1$ xÞp1=xp2þp3'lnðxÞ; x ¼ mjj=

ffiffiffi
s

p
; (2)

where p0, p1, p2, and p3 are free parameters. This form fits
well the dijet mass spectra from PYTHIA, HERWIG, and NLO
pQCD predictions. The result of the fit to the measured
dijet mass spectrum is shown in Fig. 2. Equation (2) fits the
measured dijet mass spectrum well with "2=no: d:o:f: ¼
16=17. We find no evidence for the existence of a resonant
structure, and in the next section we use the data to set
limits on new particle production.

VII. LIMITS ON NEW PARTICLE PRODUCTION

Several theoretical models which predict the existence
of new particles that produce narrow dijet resonances are
considered in this search. For the excited quark q( which

decays to qg, we set its couplings to the SM SUð2Þ, Uð1Þ,
and SUð3Þ gauge groups to be f ¼ f0 ¼ fs ¼ 1 [1], re-
spectively, and the compositeness scale to the mass of q(.
For the RS graviton G( that decays into q !q or gg, we use
the model parameter k= !MPl ¼ 0:1 which determines the
couplings of the graviton to the SM particles. The produc-
tion cross section increases with increasing k= !MPl; how-
ever, values of k= !MPl ) 0:1 are disfavored theoretically
[38]. For W 0 and Z0, which decay to q !q0 and q !q respec-
tively, we use the SM couplings. The leading-order pro-
duction cross sections of the RS graviton, W 0, and Z0 are
multiplied by a factor of 1.3 to account for higher-order
effects in the strong coupling constant $s [39]. All these
models are simulated with PYTHIATune A. Signal events of
these models from PYTHIA are then passed through the
CDF detector simulation. For all the models considered
in this search, new particle decays into the modes contain-
ing the top quark are neither included in the #sig predic-
tions nor in the signal dijet mass distribution modeling,
since such decays generally do not lead to the dijet
topology.
The dijet mass distributions from q( simulations with

masses 300, 500, 700, 900, and 1100 GeV=c2 are shown in
Fig. 2. The dijet mass distributions for the q(, RS graviton,
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FIG. 2 (color online). (a) The measured dijet mass spectrum
(points) fitted to Eq. (2) (dashed curve). The bin-by-bin unfold-
ing corrections is not applied. Also shown are the predictions
from the excited quark, q(, simulations for masses of 300, 500,
700, 900, and 1100 GeV=c2, respectively (solid curves). (b) The
fractional difference between the measured dijet mass distribu-
tion and the fit (points) compared to the predictions for q( signals
divided by the fit to the measured dijet mass spectrum (curves).
The inset shows the expanded view in which the vertical scale is
restricted to "0:04.
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laid, and the bin-by-bin significance of the data-background
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each ν, the backgrounds in the bins bνi were evaluated
from a simultaneous five-parameter fit of the signal and
background distributions to ensure that the background
determination would not be biased by the presence of
any signal. The four background parameters were those
in Eqn. 1; the fifth parameter consisted of the normaliza-
tion of the predicted νth q∗ signal template. To avoid ac-
ceptance bias, the lowest q∗ test mass used was 300 GeV.
For every q∗ mass, Eqn. 2 was computed for a range of
possible signal yields, s, and the resulting likelihood func-
tion was multiplied by a flat prior in s to give a posterior
probability density in s. The 95% probability region was
then determined by integration of the posterior proba-
bility distribution. This Bayesian technique was found
to yield credibility intervals that corresponded well with
frequentist confidence intervals. This was verified by per-
forming a series of pseudo-experiments to determine, by
way of a standard frequentist calculation, the coverage,
or the fraction of times that the 95% Bayesian credibility
interval contained the true number of signal events.
The dominant sources of systematic uncertainty, in de-

creasing order of importance, were the absolute jet en-
ergy scale (JES), the background fit parameters, the in-
tegrated luminosity, and the jet energy resolution (JER).
The JES uncertainty was quantified as a function of pT
and ηjet, with values in the range 6 ∼ 9% [20, 33, 34].
The jet calibration relied on the MC simulation of the
response of the ATLAS detector; its uncertainty was con-
strained by varying the ATLAS simulation and from in

situ information. The systematic uncertainty on the de-
termination of the background was taken from the uncer-
tainty on the parameters resulting from the fit of Eqn. 1
to the data sample. The uncertainty on σ · A due to
integrated luminosity was estimated to be ±11% [35].
The JER uncertainty was treated as uniform in pT and
ηjet with a value of ±14% on the fractional pT resolu-
tion of each jet [36]. The effects of JES, background
fit, integrated luminosity, and JER were incorporated
as nuisance parameters into the likelihood function in
Eqn. 2 and then marginalized by numerically integrating
the product of this modified likelihood, the prior in s,
and the priors corresponding to the nuisance parameters
to arrive at a modified posterior probability distribution.
In the course of applying this convolution technique, the
JER was found to make a negligible contribution to the
overall systematic uncertainty.
Figure 2 depicts the resulting 95% CL upper limits on

σ ·A as a function of the q∗ resonance mass after incorpo-
ration of systematic uncertainties. Linear interpolations
between test masses were used to determine where the
experimental bound intersected with a theoretical pre-
diction to yield a lower limit on allowed mass. The cor-
responding observed 95% CL excited-quark mass exclu-
sion region was found to be 0.30 < mq∗ < 1.26 TeV us-
ing MRST2007 PDFs in the ATLAS default MC09 tune.
Table I shows the results obtained using CTEQ6L1 [37]
and CTEQ5L [38] PDF sets. The variations in the ob-
served limit associated with the error eigenvectors of
a CTEQ PDF set were found to be smaller than the
spread displayed in Table I. The excluded regions were
∼30 GeV greater when only statistical uncertainties were
taken into account. The expected limits corresponding to
the data sample were computed using an analogous ap-
proach, but replacing the actual data with pseudo-data
generated by random fluctuations around the smooth
function described by fitting the data with Eqn. 1; these
are shown in Fig. 2, with a resulting expected q∗ mass
exclusion region of 0.30 < mq∗ < 1.06 TeV using
MRST2007 PDFs. As indicated in Table I, the two other
PDF sets yielded similar results, with expected exclusion
regions extending to near 1 TeV. An indication of the de-
pendence of the mq∗ limits on the theoretical prediction
for the q∗ signal was obtained by simultaneously vary-
ing both the renormalization and factorization scales by
factors of 0.5 and 2, which was tantamount to modifying
the predicted cross section by approximately ±20%; this
changed the observed MRST2007 limit of 1.26 TeV to
1.32 TeV and 1.22 TeV, respectively.
In conclusion, a model-independent search for new

heavy particles manifested as mass resonances in dijet
final states was conducted using a 315 nb−1 sample of
7 TeV proton-proton collisions produced by the LHC and
recorded by the ATLAS detector. No evidence of a res-
onance structure was found and upper limits at the 95%
CL were set on the products of cross section and signal
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Zbb̄ ZZ H Zbb̄ ZZ H Zbb̄ ZZ H

4e 4µ 2e2µ
Scale +0.5% (+1%) +1.5 +0.1 +0.9 +2.4 +0.4 +1.3 +1.9 +0.1 +0.9

Scale -0.5% (-1%) -1.1 -0.2 -0.5 -2.3 -0.3 -2.5 -1.7 -0.2 -1.4

Resolution -0.5 -0.1 -0.4 +0.1 -0.1 -2.6 -0.2 -0.1 -0.5

Rec. efficiency -1.0 -0.7 -0.5 -3.8 -4.0 -3.8 -2.0 -2.1 -1.7

Luminosity 3 3 3

Total 3.6 3.1 3.2 5.4 5.0 6.0 4.1 3.7 3.8

Table 13: Impact, in %, of the systematic uncertainties on the overall selection efficiency, as obtained for

a mH = 130 GeVin the 4e,4µ , and 2e2µ final states.

the results obtained after varying the background shape, the fit range and even including background-

only fits without the signal hypothesis, are the main subject of this section. An alternative approach with

a global two-dimensional (2D) fit on the (mZ∗ ,m4�) plane is also briefly discussed.

The baseline method used as input to the combination of all ATLAS Standard Model Higgs boson

searches, is based on a fit of the 4-lepton invariant mass distribution over the full range from 110 to

700 GeV. The method, whose details are described in [21], is summarized below.

The 4-lepton reconstructed invariant mass after the full event selection (except the final cut on the

4-lepton reconstructed mass) is used as a discriminating variable to construct a likelihood function. The

likelihood is calculated on the basis of parametric forms of signal and background probability density

functions (pdf) determined from the MC. For a given set of data, the likelihood is a function of the

pdf parameters �p and of an additional parameter µ defined as the ratio of the signal cross-section to

the Standard Model expectation (i.e. µ = 0 means no signal, and µ = 1 corresponds to the signal rate

expected for the Standard Model). To test a hypothesized value of µ the following likelihood ratio is

constructed:

λ (µ) =
L(µ, ˆ̂�p)
L(µ̂,�̂p)

(1)

where
ˆ̂�p is the set of pdf parameters that maximize the likelihood L for the analysed dataset and for

a fixed value of µ (conditional Maximum Likelihood Estimators), and (µ̂,�̂p) are the values of µ and

�p that maximise the likelihood function for the same dataset (Maximum Likelihood Estimators). The

profile likelihood ratio is used to reject the background only hypothesis (µ = 0) in the case of discovery,

and the signal+background hypothesis in the case of exclusion. The test statistic used is qµ =−2lnλ (µ),
and the median discovery significance and limits are approximated using expected signal and background

distributions, for different mH , luminosities and signal strength µ . The MC distributions, with the content

and error of each bin reweighted to a given luminosity (in the following referred to as “Asimov data”,

see [21]), are fitted to derive the pdf parameters: in the fit, mH is fixed to its true value, while σH is allowed

to float in a ±20% range around the value obtained from the signal MC distributions. All parameters

describing the background shape are floating within sensible ranges. The irreducible background has

been modelled using a combination of Fermi functions which are suitable to describe both the plateau

in the low mass region and the broad peak corresponding to the second Z coming on shell. The chosen

model is described by the following function:

f (mZZ) =
p0

(1+ e

p6−mZZ

p7 )(1+ e

mZZ−p8

p9 )
+

p1

(1+ e

p2−mZZ

p3 )(1+ e

p4−mZZ

p5 )
(2)
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The first plateau, in the region where only one of the two Z bosons is on shell, is modelled by the first

term, and its suppression, needed for a correct description at higher masses, is controlled by the p8 and

p9 parameters. The second term in the above formula accounts for the shape of the broad peak and the

tail at high masses. This function can describe with a negligible bias the ZZ background shape with good

accuracy over the full mass range. The Zbb̄ contribution is relevant to the background shape only when

searching for very light Higgs boson (in this study, only at mH = 120 GeV). In this case, an additional

term is added to the ZZ continuum, with a functional form similar to the second part of equation 2. For

the signal modelling a simple gaussian shape has been used for mH ≤ 300 GeV, while a relativistic Breit-

Wigner formula is needed at higher values of the Higgs boson mass. In Figs. 34 and 35 two examples of

pseudo-experiments with the resulting fit functions for signal and background are shown.
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Figure 34: A pseudo-experiment corresponding to

30 fb
−1

of data for a Higgs boson mass of 130 GeV.

The functions fitting the signal and the background

are shown.
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Figure 35: A pseudo-experiment corresponding to

30 fb
−1

of data for a Higgs boson mass of 180 GeV.

The functions fitting the signal and the background

are shown.

The results presented in the following approximate the significance from the test statistics as

�
−2lnλ (µ).

In order for the results of the method to be valid, the test statistic qµ =−2lnλ (µ) should be distributed

as a χ2
with one degree of freedom. The results obtained with the strategy described above must thus

be validated using toy MC. Such validation tests show a good agreement of the test statistic with the

expected χ2
distribution, as discussed in detail in [21]. This allows to approximate the significance from

the test statistic as

�
−2lnλ (µ). The significances obtained as the square root of the median profile

likelihood ratios for discovery, −2lnλ (µ = 0) are shown in Table 14 for all mH values considered in this

paper, and for various luminosities. In Fig. 36, the significance obtained from the profile likelihood ra-

tio, after the fit of signal+background is shown. The significance is compared to the Poisson significance

shown in Section 4. The slightly reduced discovery potential is due to the fact that several background

shape and normalization parameters are derived from the data-like sample.

Concerning exclusion, the median profile likelihood ratios are calculated under the background only

hypothesis, and the integrated luminosity needed to exclude the signal at 95% C.L. is the one correspond-

ing to

√
−2lnλ=1.64. The integrated luminosity needed for exclusion is shown in Fig. 37.

The median significance estimation with Asimov data can be validated using toy MC pseudo-exp-

eriments. For each mass point, 3000 background-only pseudo-experiments are generated. For each

experiment, the profile likelihood ratio method is used to find which µ value can be excluded at 95%

CL. The resulting distributions are then analysed to find the median and ±1σ and ±2σ intervals. The

outcome of this test is summarized in Fig. 38, where the 95% CL exclusion µ obtained from single fits

on the full MC datasets is plotted as well. As shown, the agreement is good over the full mass range.

Fitting the 4-lepton mass distribution with all parameters left free in function 2 allows the fit to absorb

23

HIGGS – SEARCH FOR THE STANDARD MODEL H → ZZ
∗ → 4l

69

1265

H→ ZZ → 4l



Kyle Cranmer (NYU) Cosmostats, July 28, 2009

Center for 
Cosmology and 
Particle PhysicsThe Effective Model Narrative

Sometimes the effective model comes from a convincing narrative
‣ convolution of detector resolution with known distribution

● Ex: MissingET resolution propagated through Mττ in collinear approximation
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where the ai are the parameters used to parameterize the fake-tau background and ! represents all nui-680

sance parameters of the model: "H ,mZ,"Z,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near m## = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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Wouter Verkerke, NIKHEF 

Tools for building effective models
• RooFit’s convolution PDFs can aid in building more effective 

models with a more convincing narrative

–

// Construct landau (x) gauss (10000 samplings 2nd order interpolation)
t.setBins(10000,”cache”) ;
RooFFTConvPdf lxg("lxg","landau (X) gauss",t,landau,gauss,2) ;
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November 8, 2006 Daniel Whiteson/Penn

Calculation

For each event, calculate differential cross-section:

Matrix
 Element

Transfer 
Functions

Phase-space 
Integral

Only partial information available
Fix measured quantities
Integrate over unmeasured parton quantities

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

November 8, 2006 Daniel Whiteson/Penn

Data
20 example events…

November 8, 2006 Daniel Whiteson/Penn

Measurement!

Mt = 164.5 ± 3.9 stat ± 3.9syst GeV/c2

L = 350 pb-1 

Phys. Rev. Lett             96, 152002 (2006)
Phys. Rev. D                 Accepted (2006)
Thesis, A. Kovalev     Penn (2005)

L= 1000 pb-1 

Thesis, B. Jayatilaka  Michigan, 2006
Phys. Rev. Lett,            In preparation

The Matrix-Element technique is conceptually similar to the simulation narrative, 
but the detector response is parametrized.
‣ Doesn’t require building parametrized PDF by interpolating between non-

parametric templates. 
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November 8, 2006 Daniel Whiteson/Penn

Calculation

For each event, calculate differential cross-section:

Matrix
 Element

Transfer 
Functions

Phase-space 
Integral

Only partial information available
Fix measured quantities
Integrate over unmeasured parton quantities

November 8, 2006 Daniel Whiteson/Penn

Data
20 example events…

November 8, 2006 Daniel Whiteson/Penn

Measurement!

Mt = 164.5 ± 3.9 stat ± 3.9syst GeV/c2

L = 350 pb-1 

Phys. Rev. Lett             96, 152002 (2006)
Phys. Rev. D                 Accepted (2006)
Thesis, A. Kovalev     Penn (2005)

L= 1000 pb-1 

Thesis, B. Jayatilaka  Michigan, 2006
Phys. Rev. Lett,            In preparation

The Matrix-Element technique is conceptually similar to the simulation narrative, 
but the detector response is parametrized.
‣ Doesn’t require building parametrized PDF by interpolating between non-

parametric templates. 
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“a matrix element based likelihood 
providing an approximately 20% relative 
increase in cross section sensitivity at large 
Z′ mass”
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FIG. 2: Observed 95% CL limits in 1D raster scan (top) and
2D intervals (bottom) for data with 4.6 fb−1 of integrated lu-
minosity. The solid circle indicates the best-fit value and the
lines define regions in which 25, 50, 68, 95, and 99% of exper-
iments would yield results less consistent with the standard
model and the data.

tion. While the resulting discovery significance of the
corrected raster scan will be correct, one will still be left
with an interval in the signal fraction at every mass. In
contrast, in the presence of a signal, the 2D analysis will
provide a range of masses that is consistent with the sig-
nal.

TABLE I: Mass limits on specific spin-1 Z′ models [12] in data
with 4.6 fb−1 of integrated luminosity at 95% confidence level.

Model Z′
l Z′

sec Z′
N Z′

ψ Z′
χ Z′

η Z′
SM

Mass Limit (GeV/c2) 817 858 900 917 930 938 1071

Dominant systematic uncertainties [4] include uncer-
tainties on the PDFs and the dependence of the next-
to-leading order cross section on the dimuon invariant
mass. These weaken the final limits by 5-10% depending
on mass. Additional uncertainties are the level of initial
state radiation and muon acceptance at large transverse
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FIG. 3: Observed 95% CL limits for data with 4.6 fb−1 of
integrated luminosity expressed as limits on the up and down
type charges cu and cd [12]. The solid and dotted lines show
possible models in U(1)B−XL and U(1)10+x5̄ groups, respec-
tively. The dashed lines show the range for models in the
U(1)q+xu group.

momentum.

The raster scan in mass allows us to set strong limits
on specific models of Z ′ production; see Fig. 2 and Table
I. The production cross section times branching fraction
to the dimuon final state is determined by the couplings
of the fermions to the Z ′. Figure 3 shows how mass limits
depend on the charges of the up- and down-type fermions
to the U(1) group associated with the Z ′. Table I shows
the limits for the specific models described in Ref [12].

In conclusion, we have applied the matrix-element-
based likelihood technique to a search for new spin-1 res-
onances decaying to muon pairs, set the strongest limits
to date on the resonance cross section and mass, and in-
troduced a statistical analysis approach that is useful for
this analysis as well as for potential LHC discoveries.

We acknowledge useful conversations with Tim Tait.
We thank the Fermilab staff and the technical staffs of
the participating institutions for their vital contributions.
This work was supported by the U.S. Department of En-
ergy and National Science Foundation; the Italian Isti-
tuto Nazionale di Fisica Nucleare; the Ministry of Educa-
tion, Culture, Sports, Science and Technology of Japan;
the Natural Sciences and Engineering Research Council
of Canada; the National Science Council of the Repub-
lic of China; the Swiss National Science Foundation; the
A.P. Sloan Foundation; the Bundesministerium für Bil-
dung und Forschung, Germany; the World Class Uni-
versity Program, the National Research Foundation of
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FIG. 1: Top: The distributions of Mµµ for data with 4.6 fb−1

of integrated luminosity (triangles) and expected SM back-
grounds (histograms) with two example Z′

SM signals. Bot-
tom: The relative difference between observed and expected
data, as a function of dimuon mass. Error bars show statisti-
cal uncertainty.

The dependence of the per-event likelihood is given by

L(xi|MZ′ , sZ′) = sZ′LZ′(xi|MZ′) + (1− sZ′)LZ/γ∗(xi),

and the likelihood LZ′ is calculated by integrating the
matrix element for Z ′ production convolved with PDFs
and the detector resolution functions:

LZ′(xi = p1, p2,σpT1
,σpT2

, Njets|MZ′) =

∫
dΦ(q1, q2)|MZ′(q1, q2,MZ′)|2fp

PDF f
p̄
PDF

×× T (p1, q1,σpT1
)T (p2, q2,σpT2

)× PPT (q1 + q2, Njets),

where p1,2 represent the four-vectors of the two measured
muons, q1,2 represent the unknown four-vectors of the
two true muons, Φ represents phase space for the true
muons, M is the matrix element, fPDF is the parton

distribution function, T (p, q,σpT
) is the transfer function

that parametrizes the detector resolution as a function of
the measured uncertainty σpT

, and PPT is the probability
density function for pT of the µµ system, parameterized
in the number of jets (Njets) with ET > 15 GeV and
|η| < 2.5. The distributions of σpT

for the Z ′ signal and
dominant Z/γ∗ background are the same in the phase
space region near the hypothesized Z ′ mass, thus they
do not affect the likelihood ratio ordering. The distri-
bution of PPT is obtained from simulated samples with
initial- and final-state radiation. An analogous expres-
sion is used for LZ/γ∗ , which describes the likelihood for
the dominant Z/γ∗ background.

We analyze the resulting likelihood in two ways. First,
we aim to discover the regions in (MZ′ , sZ′) that are con-
sistent with the data and inconsistent with the SM, mak-
ing no assumptions about the relationship between MZ′

and sZ′ . We refer to this as the 2D interval analysis.
Second, we wish to set limits on the Z ′ mass in specific
models. In that case, we perform a raster scan, in which
we choose a set of values of MZ′ , and at each point derive
limits on sZ′ . Together with a prediction for sZ′(MZ′)
in a specific theory, we can use the raster scan to place
lower limits on MZ′ .

The 2D interval is constructed via the unified ordering
scheme [17] in two dimensions, resonance mass and cross
section (see Fig. 2). At each test point in the (MZ′ , sZ′)
space, we calculate the ratio of the likelihood at the
test point to the likelihood at the best-fit point where
the likelihood is maximized. To determine which test
points are consistent with the data at a given confidence
level, we perform pseudo-experiments to determine how
often we expect to observe such a likelihood ratio. The
pseudo-experiments include all backgrounds and interfer-
ence effects between the Z and Z ′, as well as variation
of the nuisance parameters from systematic uncertain-
ties described below. This approach is well designed for
discovery, as it tests the background hypothesis exactly
once. The significance of an observation corresponds to
the first confidence-level contour that includes a signal
rate of zero. It also provides a summary of Z ′ mod-
els consistent with the data without relying on specific
model details. In the 2D interval analysis, the best-fit
signal cross section of σ = 26 fb occurs at a resonance
mass of M = 199 GeV/c2, but is consistent with zero at
16% confidence level.

The raster scan is the traditional approach used in
many analyses, including the previous Z ′ search [4]. It
provides mass limits on theories that enforce a relation-
ship between the signal fraction and the resonance mass,
and is appropriate if outside information indicates a par-
ticular mass is interesting. In the presence of a significant
excess above the background-only hyphothesis, one must
account for the number of possible Z ′ masses, each of
which tests the background-only hypothesis: the look-
elsewhere effect. The 2D analysis needs no such correc-

still stronger than 
ATLAS & CMS
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Examples of parametrized response
While we often see the parametrized response as overly simplistic, the 
parametrizations are often based on some deeper understanding
‣ and parameters can often be measured in data with in situ calibration 

strategies.  No reason we can’t propagate uncertainty to next stage.
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The results show that the linearity is recovered over a wide energy range, both in the central (|η | < 0.5)
and in the intermediate (1.5 < |η | < 2) regions. For the cone algorithm, at low energy (E = 20−30GeV),
the linearity differs by up to 5% from 1 in the central region. At low energy, there is a 5% residual non
linearity, not fully recovered by the parametrization chosen for the scale factor.

Concerning the intermediate pseudorapidity region, we can see a similar behavior around 100 GeV
(note that in this region E ∼ 100GeV corresponds to ET = E/coshη ∼ 35GeV).

The linearity plot for the kT algorithm shows a more pronounced deviation from 1 at low energy
(�Erec/Etruth� = 5% at 50GeV, 8% at 30GeV). The linearity is fully recovered above ∼ 100GeV in the
central region, ∼ 300GeV in the intermediate region.

The uniformity of the response over pseudorapidity is also satisfactory. Figure 4 shows the depen-
dence of the ratio E rec

T /E truth
T on the pseudorapidity of the matched truth jet for three different transverse

energy bins. Again, the left plot refers to cone 0.7 jets, while the right one refers to kT jets with R = 0.6.
We can observe that for the lowest considered transverse energy bin, the ratio increases with the pseudo-
rapidity. This is a consequence of the fact that energy increases with η at fixed ET and that the linearity
improves with increasing energy.
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Figure 4: Dependence of the ratio Erec
T /E truth

T on the pseudorapidity for the cone algorithm with
Rcone = 0.7 (on the left) and for the kT algorithm with R = 0.6 (on the right). An ideal detector geometry
has been used to simulate the events.

We can also observe (in particular for the kT algorithm) the remnants of the calorimeter structure,
which is not completely corrected by the procedure. There is a first, small dip at |η | ∼ 1.5, in corre-
spondence with the gap between the TileCal barrel and extended barrel [2]. A second dip is observed in
correspondence with the calorimeter crack between the End-Cap and the forward calorimeters.

Even if the effect is smaller when higher ET bins are considered, it is still present in the crack region.
Jets with ET ∼ 400GeV still show a slight η dependence in their response. As a last indicator of the
quality of the correction factors, we consider the energy resolution σ(Erec)/Erec. The dependence of the
energy resolution on the jet energy is shown in Fig. 5 for the cone (left) and kT (right) algorithms in two
pseudorapidity bins. The fit to the data is done considering three terms contributing independently to the
resolution:

σ
E

=
a�

E (GeV)
⊕b⊕ c

E
. (9)

The sampling term (a) is due to the statistical, poissonian, fluctuations in the energy deposits in the
calorimeters. The constant term (b) reflects the effect of the calorimeter non-compensation and all the
detector non-uniformities involved in the energy measurement. The noise term (c) is introduced to de-
scribe the noise contribution to the energy measurement. Although the physics origin of the different
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Jet ResolutionMuon Energy Loss (Landau)

However, when passing through materials made of high-Z elements the radiative effects can be already
significant for muons of energies ≈10 GeV [9].

Ionization energy losses have been studied in detail, and an expression for the mean energy loss per
unit length as a function of muon momentum and material type exists in the form of the Bethe-Bloch
equation [10]. Other closed-form formulae exist to describe other properties of the ionization energy loss.
Bremsstrahlung energy losses can be well parameterized using the Bethe-Heitler equation. However,
there is no closed-form formula that accounts for all energy losses. Nevertheless, theoretical calculations
for the cross-sections of all these energy loss processes do exist. With these closed-form cross-sections,
simulation software such as GEANT4 can be used to calculate the energy loss distribution for muons
going through a specific material or set of materials.

The fluctuations of the ionization energy loss of muons in thin layers of material are characterized
by a Landau distribution. Here “thin” refers to any amount of material where the muon loses a small
percentage of its energy. Once radiative effects become the main contribution to the energy loss, the
shape of the distribution changes slowly into a distribution with a larger tail. Fits to a Landau distribution
still characterize the distribution fairly well, with a small bias that pushes the most probable value of the
fitted distribution to values higher than the most probable energy loss [11]. These features are shown
for the energy loss distributions of muons going from the beam-pipe to the exit of the calorimeters in
Figure 4.
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Figure 4: Distribution of the energy loss of muons passing through the calorimeters (|η | < 0.15) as
obtained for 10 GeV muons (left) and 1 TeV muons (right) fitted to Landau distributions (solid line).

As can be seen in Figure 4 the Landau distribution is highly asymmetrical with a long tail towards
higher energy loss. For track fitting, where most of the common fitters require gaussian process noise,
this has a non-trivial consequence: in general, a gaussian approximation has to be performed for the
inclusion of material effects in the track fitting [12].

In order to express muon spectrometer tracks at the perigee, the total energy loss in the path can be
parameterized and applied to the track at some specific position inside the calorimeters. As the detector
is approximately symmetric in φ , parameterizations need only be done as a function of muon momentum
and η . The η-dependence is included by performing the momentum parameterizations in different η
bins of width 0.1 throughout the muon spectrometer acceptance (|η | < 2.7). The dependence of the most
probable value of the energy loss, Empv

loss , as a function of the muon momentum, pµ , is well described by

Empv
loss (pµ) = ampv

0 +ampv
1 ln pµ +ampv

2 pµ , (2)

where ampv
0 describes the minimum ionizing part, ampv

1 describes the relativistic rise, and ampv
2 describes

the radiative effects. The width parameter, σloss, of the energy loss distribution is well fitted by a linear
function σloss(pµ) = aσ

0 + aσ
1 pµ . Some of these fits are illustrated in Figure 5. This parameterization is

5
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Figure 5: Parameterization of the Empv

loss
(left) and σloss (right) of the Landau distribution as a function of

muon momentum for different η regions. One sees a good agreement between the GEANT4 values and

the parameterization.

used as part of the Muid algorithm for combined muon reconstruction [3].

An alternative approach exists in the ATLAS tracking. In this approach, the energy loss is param-

eterized in each calorimeter or even calorimeter layer. The parameterization inside the calorimeters is

applied to the muon track using the detailed geometry described in Section 2.

The most probable value and width parameter of the Landau distribution are not affected by radiative

energy losses in thin materials in the muon energy range of interest (∼5 GeV to a few TeV). This justifies

treating energy loss in non-instrumented material, such as support structures, up to the entrance of the

muon spectrometer as if it was caused by ionization processes only. The most probable value of the

distribution of energy loss by ionization can be calculated if the distribution of material is known [13].

Since material properties are known in each of the volumes in the geometry description used, it is easy

to apply this correction to tracks being transported through this geometry.

For the instrumented regions of the calorimeters, a parameterization that accounts for the large radia-

tive energy losses is required. To provide a parameterization that is correct for the full η range and for

track transport inside the calorimeters, a study of energy loss as a function of the traversed calorimeter

thickness, x, was performed. Two parameters that characterize fully the pdf of the energy loss for muons

were fitted satisfactorily using several fixed momentum samples as

Empv,σ
loss

(x, pµ) = bmpv,σ
0

(pµ)x+bmpv,σ
1

(pµ)x lnx. (3)

The momentum dependence of the bi(pµ) parameters was found to follow the same form as in Equa-

tion 2. Fits for some of the absorber materials are shown in Figure 6. These parameterizations have

been validated over the η range from -3 to 3. A direct comparison of the most probable energy loss in

GEANT4 simulation and in the geometry of the ATLAS tracking algorithms is shown in Figure 7 for

muons propagating from the beam-pipe to the exit of the electromagnetic calorimeters and to the exit of

the hadronic calorimeters.

3.2 Measurements of the Energy Deposited in the Calorimeters

In this section the measurement of the muon energy loss in the calorimeters is discussed. Understanding

this measurement is important because it allows for an improvement in the energy loss determination.

This section provides a basic description of the ATLAS calorimeters and their measurements which is

important for understanding the topics discussed in Sections 3.3, 3.4 and 4.

6
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Fast Simulation
Fast simulations based on parametrized detector response are very useful and 
can often be tuned to perform quite well in a specific analysis context

‣ For example: tools like PGS, Delphis, ATLFAST, ...

81

CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis! 36!
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Fast Simulation
Fast simulations based on parametrized detector response are very useful and 
can often be tuned to perform quite well in a specific analysis context

‣ For example: tools like PGS, Delphis, ATLFAST, ...
But these tools still use accept/reject Monte Carlo.

‣ Would be much more useful if the parmaetrized detector response could be 
used as a transfer function in Matrix-Element approach

81

CMS SUSY Results, D. Stuart, April 2011, SUSY Recast, UC Davis! 36!
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Narrative styles
The Monte Carlo Simulation narrative (MC narrative)

‣ each stage is an accept/reject Monte Carlo based on P(out|in) of some 
microscopic process like parton shower, decay, scattering

‣ PDFs built from non-parametric estimator like histograms or kernel estimation
● need to supplement with interpolation procedures to incorporate systematics
● smearing approach fundamentally Bayesian

‣ pros: most detailed understanding of micro-physics 
‣ cons: computationally demanding, loose analytic scaling properties, relies on 

accuracy of simulation
‣ new ideas: improved interpolation, Radford Neal’s machine learning, “design of 

experiments”
The Data-driven narrative

‣ independent data sample that either acts as a proxy for some process or can be 
transformed to do so

‣ pros: nature includes “all orders”, uses real detector 
‣ cons: extrapolation from control region to signal region requires assumptions, 

introduces systematic effects.  Appropriate transformation may depend on many 
variables, which becomes impractical
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Narrative styles
Effective modeling narrative

‣ parametrized functional form: eg. Gaussian, falling exponential para polynomial fit 
to distribution, etc.

‣ pros: fast, has analytic scaling, parametric form may be well justified (eg. phase 
space, propagation of errors, convolution)

‣ cons: approximate, parametric form may be ad hoc (eg. polynomial from)
‣ new ideas: using non-parametric statistical methods 

Parametrized detector response narrative (eg. kinematic fitting, Matrix-Element 
method, ~fast simulation)

‣ pros: fast, maintains analytic scaling, response usually based on good 
understanding of the detector, possible to incorporate some types of uncertainty in 
the response analytically, can evaluate P(out|in) for arbitrary out,in.

‣ cons: approximate, best parametrized detector response is often not available in 
convenient form

‣ new ideas: fast simulation is typically parametrized, but we use it in an accept/
reject framework (see Geant5)
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Hypothesis Testing
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Hypothesis testing
One of the most common uses of statistics in particle physics is 
Hypothesis Testing (e.g. for discovery of a new particle)
‣ assume one has pdf for data under two hypotheses:

● Null-Hypothesis, H0:  eg. background-only
● Alternate-Hypothesis H1: eg. signal-plus-background

‣ one makes a measurement and then needs to decide whether 
to reject or accept H0
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 

86
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 

Treat the two hypotheses asymmetrically
‣ the Null is special.  

● Fix rate of Type I error, call it “the size of the test”
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 

Treat the two hypotheses asymmetrically
‣ the Null is special.  

● Fix rate of Type I error, call it “the size of the test”

Now one can state “a well-defined goal”
‣Maximize power for a fixed rate of Type I error

86
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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The Neyman-Pearson Lemma

89

The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)
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The region     that minimizes the probability of wrongly 
accepting     is just a contour of the Likelihood Ratio

Any other region of the same size will have less power 

The likelihood ratio is an example of a Test Statistic, eg. a 
real-valued function that summarizes the data in a way 
relevant to the hypotheses that are being tested

90

The Neyman-Pearson Lemma

P (x|H1)
P (x|H0)

> kα

W
H0
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A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given 
size (eg. probability under H0 is 1-   )

91

P (x|H1)
P (x|H0)

> kα

α

W WC
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A short proof of Neyman-Pearson

92

Now consider a variation on the contour that has the same 
size
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A short proof of Neyman-Pearson

93

P ( |H0) = P ( |H0)

Now consider a variation on the contour that has the same size 
(eg. same probability under H0)
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A short proof of Neyman-Pearson

94

Because the new area is outside the contour of the likelihood 
ratio, we have an inequality

P (x|H1)
P (x|H0)

< kα

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0)kα
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A short proof of Neyman-Pearson

95

P (x|H1)
P (x|H0)

< kα
P (x|H1)
P (x|H0)

> kα

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)kα kα

And for the region we lost, we also have an inequality
Together they give...
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A short proof of Neyman-Pearson

96

The new region region has less power.

P (x|H1)
P (x|H0)

< kα
P (x|H1)
P (x|H0)

> kα

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)kα kα
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2 discriminating variables
Often one uses the output of a neural network or multivariate algorithm in 
place of a true likelihood ratio.
‣ That’s fine, but what do you do with it?
‣ If you have a fixed cut for all events, this is what you are doing:

97

x1 x2

y2y1

q

q = lnQ = −s + ln
�

1 +
sfs(x, y)
bfb(x, y)

�
fb(q) fs(q)
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Experiments vs. Events

Ideally, you want to cut on 
the likelihood ratio for your 
experiment
‣ equivalent to a sum of 

log likelihood ratios
Easy to see that includes 
experiments where one 
event had a high LR and the 
other one was relatively 
small

98
x1 x2

y2y1

q1 q2

q12 = q1 + q2 q1

q2

q 12

fb(q12) fs+b(q12)

α

1− β
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LEP Higgs

In that case:
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The Test Statistic and its distribution

100

To get a feel for the different approaches, consider this schematic diagram

The “test statistic” is a single number that quantifies the entire experiment, it 
could just be number of events observed, but often its more sophisticated, like 
a likelihood ratio.  What test statistic do we choose?
And how do we build the distribution?  Usually “toy Monte Carlo”, but what 
about the uncertainties... what do we do with the nuisance parameters?
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Building the distribution of the test statistic

101

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.
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Hu and Nielsen’s CLFFT used Fourier Trans-
form and exponentiation trick to transform
the log-likelihood ratio distribution for one
event to the distribution for an experiment

Cousins-Highland was used for systematic er-
ror on background rate.

Getting this to work at the LHC is tricky nu-
merically because we have channels with ni

from 10-10000 events (physics/0312050)

The Calculation in Words (Cranmer & Plehn)

The problem for experimentalists is we don’t know L(x|H0) & L(x|H1) – It’s a convolution
of |M|2 with detector

By neglecting/simplifying detector effects, we can analytically calculate an upper limit
on the expected significance of a new particle search

From MC generator, we can calculate
distribution of q for one event

Using Fourier Transform, we can eas-
ily calculate distribution of q for N
events (N convolutions).

Using exponentiation trick, we can
obtain distribution of q for a given
luminosity including Poisson fluctua-
tions of N
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Building the distribution of the test statistic
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luminosity including Poisson fluctua-
tions of N

!  (q)
1,b

! (q)
1,s

!
s+b

!
b

!
b

!
s+b

!
s+b

bf (x)
b

sq(x)=log(1+        )
sf (x)f (x)

b

f (x)
s f (x)

b
!
1,b

(q(x))=
!  (q)
1,s

!  (q)
1,b

!
s+b

!= exp[b(  !1) + s(   !1)]
1,b

!
1,s

!= exp[b(    !1)]
b
!

1,b

FFT
!1

FFT

!
b

CL
b

!s L

!s ~(s+b)L
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The Calculation in Equations

Define likelihood ratio for a single event at phase space x

q(x) = ln

„
L(x|H1)
L(x|H0)

«

= ln

„

1 +
|MH |2 · dLIPS
|MZ |2 · dLIPS

«

x

Define the distribution of these q-values for 1 signal (background) event

ρ1,s(q0) =
1

σH

Z

x

dLIPS |MH |2 · δ(q0 − q(x))

ρ1,b(q0) =
1

σZ

Z

x

dLIPS |MZ |
2 · δ(q0 − q(x))

For N events, use Fourier transform to perform N convolutions

ρN,i(q) = ρN,i(q) ⊕ · · ·⊕ ρN,i(q)
| {z }

N times

= F−1
n

[F (ρ1,i)]
N

o

To include Poisson fluctuations on N for a given luminosity, one can exponentiate

ρi(q) =
∞X

N=0

P (N ; Lσi) · ρN,i(q) = F−1
n

eLσi[F(ρ1,i(q))−1]
o
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Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist 
treatment of the main measurement, while eliminating nuisance 
parameters (deal with systematics) with an intuitive Bayesian technique.

Tracing back the origin of π(b)
‣ clearly state prior        ; identify control samples (sidebands) and use:

Note, if we do not want to use the Hybrid Bayesian-Frequentist approach 
for the nuisance parameters, then we must consider both non and noff 
when generating our toy Monte Carlo

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1
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Coverage as calibration
This prototype problem has been 
studied extensively.
‣ instead of arguing about the merits of 

various methods, just go and check their 
rate of Type I error (coverage)

‣ Results indicated large discrepancy in 
“claimed” coverage and “true” coverage 
for various methods

‣ eg. 5σ is really ~4σ for some points
Introduce idea of coverage as a calibration 
of our statistical apparatus
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Figure 3. The signal-like region and sideband for H → γγ in
which τ is correlated to b via the model parameter a.

the likelihood function that provides the connection
between the nuisance parameter(s) and the auxiliary
measurements.

The most common choices for the likelihood of
the auxiliary measurement are L(y|b) = Pois(y|τb)
and L(y|b) = G(y|τb, σy), where τ is a constant that
specifies the ratio of the number of events one expects
in the sideband region to the number expected in the
signal-like region.d

A constant τ is appropriate when one simply
counts the number of events y in an “off-source” mea-
surement. In a more typical case, one uses the distri-
bution of some other variable, call it m, to estimate
the number of background events inside a range of
m (see Fig. 3). In special cases the ratio τ is inde-
pendent of the model parameters. However, in many
cases (e.g. f(m) ∝ e−am), the ratio τ depends on the
model parameters. Moreover, sometimes the side-
band is contaminated with signal events, thus the
background and signal estimates can be correlated.
These complications are not a problem as long as
they are incorporated into the likelihood.

The number of nuisance parameters and aux-
iliary measurements can grow quite large. For in-
stance, the standard practice at BaB̄ar is to form
very large likelihood functions that incorporate ev-
erything from the parameters of the unitarity tri-
angle to branching fractions and detector response.
These likelihoods are typically factorized into multi-

dNote that Linnemann19 used α = 1/τ instead, but in this
paper α is reserved for the rate of Type I error.

ple pieces, which are studied independently at first
and later combined to assess correlations. The fac-
torization of the likelihood and the number of nui-
sance parameters included impact the difficulty of
implementing the various scenarios considered below.

3 Practical and Toy Examples

In this Section, a few practical and toy examples are
introduced. The toy examples are meant to provide
simple scenarios where results for different methods
can be easily obtained in order to expedite their com-
parison. The practical examples are meant to ex-
clude methods that provide nice solutions to the toy
examples, but do not generalize to the realistic situ-
ation.

3.1 The Canonical Example

Consider a number-counting experiment that mea-
sures x events in the signal-like region and y events
in some sideband. For a given background rate b in
the signal-like region, say one can expect τb events
in the sideband. Additionally, let the rate of signal
events in the signal-like regions – the parameter of in-
terest – be denoted µ. The corresponding likelihood
function is

LP (x, y|µ, b) = Pois(x|µ + b) · Pois(y|τb). (14)

This is the same case that was considered in
Refs. 20,22,23,24 for x, y = O(10) and α = 5%.
For LHC searches, we will be more interested in
x, y = O(100) and α = 2.85 · 10−7. Furthermore, the
auxiliary measurement will rarely be a pure number
counting sideband measurement, but instead the re-
sult of some fit. So let us also consider the likelihood
function

LG(x, y|µ, b) = Pois(x|µ + b) · G(y|τb,
√

τb). (15)

As a concrete example in the remaining sections,
let us consider the case b = 100 and τ = 1. Opera-
tionally, one would measure y and then find the value
xcrit(y) necessary for discovery. In the language of
confidence intervals, xcrit(y) is the value of x nec-
essary for the 100(1 − α)% confidence interval in µ
to exclude µ0 = 0. In Sec. 4 we check the coverage
(Type I error or false-discovery rate) for both LP and
LG.

Linnemann reviewed thirteen methods and
eleven published examples of this scenario.19 Of the

10

an approximation of the full construction, that does
not necessarily cover. To the extent that the use of
the profile likelihood ratio as a test statistic provides
similar tests, the profile construction has good cover-
age properties. The main motivation for the profile
construction is that it scales well with the number of
nuisance parameters and that the “clipping” is built
in (only one value of the nuisance parameters is con-
sidered).

It appears that the chooz experiment actually
performed both the full construction (called “FC cor-
rect syst.”) and the profile construction (called “FC
profile”) in order to compare with the strong confi-
dence technique.36

Another perceived problem with the full con-
struction is that bad over-coverage can result from
the projection onto the parameters of interest. It
should be made very clear that the coverage proba-
bility is a function of both the parameters of interest
and the nuisance parameters. If the data are con-
sistent with the null hypothesis for any value of the
nuisance parameters, then one should probably not
reject it. This argument is stronger for nuisance pa-
rameters directly related to the background hypoth-
esis, and less strong for those that account for instru-
mentation effects. In fact, there is a family of meth-
ods that lie between the full construction and the
profile construction. Perhaps we should pursue a hy-
brid approach in which the construction is formed for
those parameters directly linked to the background
hypothesis, the additional nuisance parameters take
on their profile values, and the final interval is pro-
jected onto the parameters of interest.

5 Results with the Canonical Example

Consider the case btrue = 100, τ = 1 (i.e. 10% sys-
tematic uncertainty). For each of the methods we
find the critical boundary, xcrit(y), which is neces-
sary to reject the null hypothesis µ0 = 0 at 5σ when
y is measured in the auxiliary measurement. Figure 7
shows the contours of LG, from Eq. 15, and the criti-
cal boundary for several methods. The far left curve
shows the simple s/

√
b curve neglecting systematics.

The far right curve shows a critical region with the
correct coverage. With the exception of the profile
likelihood, λP , all of the other methods lie between
these two curves (ie. all of them under-cover). The
rate of Type I error for these methods was evaluated

contours for btrue=100, critical regions for ! = 1

40

50

60

70

80

90

100

110

120

130

60 80 100 120 140 160 180 200

No Systematics

Z
5"

Z
N

correct coverage

ad hoc

#
P
 profile

#
G
 profile

x

y

Figure 7. A comparison of the various methods critical bound-
ary xcrit(y) (see text). The concentric ovals represent con-
tours of LG from Eq. 15.

for LG and LP and presented in Table 2.
The result of the full Neyman construction and

the profile construction are not presented. The full
Neyman construction covers by construction, and
it was previously demonstrated for a similar case
(b = 100, τ = 4) that the profile construction gives
similar results.22 Furthermore, if the λP were used
as an ordering rule in the full construction, the criti-
cal region for b = 100 would be identical to the curve
labeled “λP profile” (since λP actually covers).

It should be noted that if one knows the likeli-
hood is given by LG(x, y|µ, b), then one should use
the corresponding profile likelihood ratio, λG(x, y|µ),
for the hypothesis test. However, knowledge of the
correct likelihood is not always available (Sinervo’s
Class II systematic), so it is informative to check
the coverage of tests based on both λG(x, y|µ) and
λP (x, y|µ) by generating Monte Carlo according to
LG(x, y|µ, b) and LP (x, y|µ, b). In a similar way, this
decoupling of true likelihood and the assumed likeli-
hood (used to find the critical region) can break the
“guaranteed” coverage of the Neyman construction.

It is quite significant that the ZN method under-
covers, since it is so commonly used in HEP. The de-
gree to which the method under-covers depends on
the truncation of the Gaussian posterior P (b|y). Lin-
nemann’s table also shows significant under-coverage
(over estimate of the significance Z). In order to ob-

http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps

http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps
http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps
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Figure 3. The signal-like region and sideband for H → γγ in
which τ is correlated to b via the model parameter a.

the likelihood function that provides the connection
between the nuisance parameter(s) and the auxiliary
measurements.

The most common choices for the likelihood of
the auxiliary measurement are L(y|b) = Pois(y|τb)
and L(y|b) = G(y|τb, σy), where τ is a constant that
specifies the ratio of the number of events one expects
in the sideband region to the number expected in the
signal-like region.d

A constant τ is appropriate when one simply
counts the number of events y in an “off-source” mea-
surement. In a more typical case, one uses the distri-
bution of some other variable, call it m, to estimate
the number of background events inside a range of
m (see Fig. 3). In special cases the ratio τ is inde-
pendent of the model parameters. However, in many
cases (e.g. f(m) ∝ e−am), the ratio τ depends on the
model parameters. Moreover, sometimes the side-
band is contaminated with signal events, thus the
background and signal estimates can be correlated.
These complications are not a problem as long as
they are incorporated into the likelihood.

The number of nuisance parameters and aux-
iliary measurements can grow quite large. For in-
stance, the standard practice at BaB̄ar is to form
very large likelihood functions that incorporate ev-
erything from the parameters of the unitarity tri-
angle to branching fractions and detector response.
These likelihoods are typically factorized into multi-

dNote that Linnemann19 used α = 1/τ instead, but in this
paper α is reserved for the rate of Type I error.

ple pieces, which are studied independently at first
and later combined to assess correlations. The fac-
torization of the likelihood and the number of nui-
sance parameters included impact the difficulty of
implementing the various scenarios considered below.

3 Practical and Toy Examples

In this Section, a few practical and toy examples are
introduced. The toy examples are meant to provide
simple scenarios where results for different methods
can be easily obtained in order to expedite their com-
parison. The practical examples are meant to ex-
clude methods that provide nice solutions to the toy
examples, but do not generalize to the realistic situ-
ation.

3.1 The Canonical Example

Consider a number-counting experiment that mea-
sures x events in the signal-like region and y events
in some sideband. For a given background rate b in
the signal-like region, say one can expect τb events
in the sideband. Additionally, let the rate of signal
events in the signal-like regions – the parameter of in-
terest – be denoted µ. The corresponding likelihood
function is

LP (x, y|µ, b) = Pois(x|µ + b) · Pois(y|τb). (14)

This is the same case that was considered in
Refs. 20,22,23,24 for x, y = O(10) and α = 5%.
For LHC searches, we will be more interested in
x, y = O(100) and α = 2.85 · 10−7. Furthermore, the
auxiliary measurement will rarely be a pure number
counting sideband measurement, but instead the re-
sult of some fit. So let us also consider the likelihood
function

LG(x, y|µ, b) = Pois(x|µ + b) · G(y|τb,
√

τb). (15)

As a concrete example in the remaining sections,
let us consider the case b = 100 and τ = 1. Opera-
tionally, one would measure y and then find the value
xcrit(y) necessary for discovery. In the language of
confidence intervals, xcrit(y) is the value of x nec-
essary for the 100(1 − α)% confidence interval in µ
to exclude µ0 = 0. In Sec. 4 we check the coverage
(Type I error or false-discovery rate) for both LP and
LG.

Linnemann reviewed thirteen methods and
eleven published examples of this scenario.19 Of the

http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps

http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps
http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer_LHCStatisticalChallenges.ps
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Figure 13: Figure (a) shows that the shapes are similar for these backgrounds and that the shape is stable

in the final stages of the cut flow. The tau-tau invariant mass for tt̄ andW+jets backgrounds after all cuts
for the ll-channel (b)and lh-channel (c) with a fourth order polynomial fit to the spectrum. The solid and

dashed curves show the result of the simultaneous fit to the control sample and signal candidates with

and without the signal contribution, respectively.

likelihood ratio, # ,

# (µ = 0) =
L(data|µ = 0, ˆ̂b(µ = 0), ˆ̂$(µ = 0))

L(data|µ̂, b̂, $̂)
, (12)

where µ represents signal strength in units of the standard model expectation and $ represents the nui-

sance parameters needed to describe the shape. Asymptotically, the distribution of profile likelihood

ratio approaches a "2 distribution with the number of degrees of freedom given by the number of param-

eters of interest. The motivation for µ is that it enforces the relationship of the standard model branching

ratios when combining the individual channels and maintains the distribution of # as a "2 with one de-

gree of freedom. This improves the power compared to a method which lets the signal in each channel

vary independently. Accordingly, results represented in the µ −MH plane should be derived from a "
2

distribution with two degrees of freedom, in which case there is no impact from the “look-elsewhere

effect”. In contrast, if the look-elsewhere effect must be considered if the test mass MH is not explic-

itly fixed; however, the effect is rather small for this channel given the 9 GeV mass resolution and the

∼ 50 GeV mass range of interest.
The likelihood function corresponding to the simultaneous fit is simply a product of the likelihoods

from the individual measurements:

L(data|µ,MH ,$) = Ltrack(track multiplicity|rQCD) (13)

× LZ(Z+ jets control|%Z)
× LQCD(QCD control|a0,a1,a2,a3)
× Ls+b(signal candidates|µ,MH ,%H ,%Z,rQCD,a0,a1,a2,a3),

where the ai are the parameters of the Chebychev polynomial used to parametrize the fake-tau back-

ground and $ represents all nuisance parameters of the model: %H ,%Z,rQCD,a0,a1,a2,a3.
Figure 14 shows the fit to the signal candidates for a MH = 120 GeV Higgs in the lh=channel with

(a) and without (b) the signal contribution. It can be seen that the background shapes and normalizations

are trying to accommodate the excess nearM!! = 120 GeV, but the control samples are constraining the

variation. Table ?? shows the significance calculated from the profile likelihood ratio for the ll-channel,

the lh-channel, and the combined fit for various Higgs masses.
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QLEP =
L(data|µ = 1, b, ν)
L(data|µ = 0, b, ν)

µ
ν

ν

ν̂

ˆ̂ν µ
µ

Define    to be signal rate in units of SM expectation
Define    to be the shape parameters (nuisance parameters)

In the LEP approach the likelihood ratio is equivalent to:

‣ but this variable is sensitive to uncertainty on 
Alternatively, one can define profile likelihood ratio

‣ where    is best fit with    fixed to 0 
‣ and    is best fit with    left floating
‣ conventional ratio is reciprocal in hypo test <-> limit
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Figure 13: Figure (a) shows that the shapes are similar for these backgrounds and that the shape is stable

in the final stages of the cut flow. The tau-tau invariant mass for tt̄ andW+jets backgrounds after all cuts
for the ll-channel (b)and lh-channel (c) with a fourth order polynomial fit to the spectrum. The solid and

dashed curves show the result of the simultaneous fit to the control sample and signal candidates with

and without the signal contribution, respectively.

likelihood ratio, # ,

# (µ = 0) =
L(data|µ = 0, ˆ̂b(µ = 0), ˆ̂$(µ = 0))

L(data|µ̂, b̂, $̂)
, (12)

where µ represents signal strength in units of the standard model expectation and $ represents the nui-

sance parameters needed to describe the shape. Asymptotically, the distribution of profile likelihood

ratio approaches a "2 distribution with the number of degrees of freedom given by the number of param-

eters of interest. The motivation for µ is that it enforces the relationship of the standard model branching

ratios when combining the individual channels and maintains the distribution of # as a "2 with one de-

gree of freedom. This improves the power compared to a method which lets the signal in each channel

vary independently. Accordingly, results represented in the µ −MH plane should be derived from a "
2

distribution with two degrees of freedom, in which case there is no impact from the “look-elsewhere

effect”. In contrast, if the look-elsewhere effect must be considered if the test mass MH is not explic-

itly fixed; however, the effect is rather small for this channel given the 9 GeV mass resolution and the

∼ 50 GeV mass range of interest.
The likelihood function corresponding to the simultaneous fit is simply a product of the likelihoods

from the individual measurements:

L(data|µ,MH ,$) = Ltrack(track multiplicity|rQCD) (13)

× LZ(Z+ jets control|%Z)
× LQCD(QCD control|a0,a1,a2,a3)
× Ls+b(signal candidates|µ,MH ,%H ,%Z,rQCD,a0,a1,a2,a3),

where the ai are the parameters of the Chebychev polynomial used to parametrize the fake-tau back-

ground and $ represents all nuisance parameters of the model: %H ,%Z,rQCD,a0,a1,a2,a3.
Figure 14 shows the fit to the signal candidates for a MH = 120 GeV Higgs in the lh=channel with

(a) and without (b) the signal contribution. It can be seen that the background shapes and normalizations

are trying to accommodate the excess nearM!! = 120 GeV, but the control samples are constraining the

variation. Table ?? shows the significance calculated from the profile likelihood ratio for the ll-channel,

the lh-channel, and the combined fit for various Higgs masses.
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An example
Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

105

where the ai are the parameters used to parameterize the fake-tau background and ! represents all nui-680

sance parameters of the model: "H ,mZ,"Z,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near m## = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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L(data|µ̂, b̂, ν̂) L(data|µ = 0, ˆ̂b, ˆ̂ν)
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Figure 13: Figure (a) shows that the shapes are similar for these backgrounds and that the shape is stable

in the final stages of the cut flow. The tau-tau invariant mass for tt̄ andW+jets backgrounds after all cuts
for the ll-channel (b)and lh-channel (c) with a fourth order polynomial fit to the spectrum. The solid and

dashed curves show the result of the simultaneous fit to the control sample and signal candidates with

and without the signal contribution, respectively.

likelihood ratio, # ,

# (µ = 0) =
L(data|µ = 0, ˆ̂b(µ = 0), ˆ̂$(µ = 0))

L(data|µ̂, b̂, $̂)
, (12)

where µ represents signal strength in units of the standard model expectation and $ represents the nui-

sance parameters needed to describe the shape. Asymptotically, the distribution of profile likelihood

ratio approaches a "2 distribution with the number of degrees of freedom given by the number of param-

eters of interest. The motivation for µ is that it enforces the relationship of the standard model branching

ratios when combining the individual channels and maintains the distribution of # as a "2 with one de-

gree of freedom. This improves the power compared to a method which lets the signal in each channel

vary independently. Accordingly, results represented in the µ −MH plane should be derived from a "
2

distribution with two degrees of freedom, in which case there is no impact from the “look-elsewhere

effect”. In contrast, if the look-elsewhere effect must be considered if the test mass MH is not explic-

itly fixed; however, the effect is rather small for this channel given the 9 GeV mass resolution and the

∼ 50 GeV mass range of interest.
The likelihood function corresponding to the simultaneous fit is simply a product of the likelihoods

from the individual measurements:

L(data|µ,MH ,$) = Ltrack(track multiplicity|rQCD) (13)

× LZ(Z+ jets control|%Z)
× LQCD(QCD control|a0,a1,a2,a3)
× Ls+b(signal candidates|µ,MH ,%H ,%Z,rQCD,a0,a1,a2,a3),

where the ai are the parameters of the Chebychev polynomial used to parametrize the fake-tau back-

ground and $ represents all nuisance parameters of the model: %H ,%Z,rQCD,a0,a1,a2,a3.
Figure 14 shows the fit to the signal candidates for a MH = 120 GeV Higgs in the lh=channel with

(a) and without (b) the signal contribution. It can be seen that the background shapes and normalizations

are trying to accommodate the excess nearM!! = 120 GeV, but the control samples are constraining the

variation. Table ?? shows the significance calculated from the profile likelihood ratio for the ll-channel,

the lh-channel, and the combined fit for various Higgs masses.
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Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

one can see the function is independent of true values of 
‣ though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the 
distribution of the profile likelihood ratio has an asymptotic form

Thus, we can calculate the p-value for the background-only 
hypothesis by calculating 
or equivalently:

106

ν

−2 log λ(µ = 0)

Z =
�
−2 log λ(µ = 0)

−2 log λ(µ = 0) ∼ χ2
1
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Hypothesis Testing

Profile Likelihood Ratio
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Now on a real PROOF cluster with 30 machines
‣ real world example throws millions of toys experiments, does full fit on 50 

parameters for each toy.
‣ also supports producing simple shells scripts for use with GRID or batch queues

Now importance sampling is also implemented, 
‣ following presentation at Banff with particle physics & statistics experts
‣ allows for 1000x speed increase!  
‣ Still being tested in detail
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Experimentalist Justification
So far this looks a bit like magic.  How can you claim that you 
incorporated your systematic just by fitting the best value of your 
uncertain parameters and making a ratio?
It won’t unless the the parametrization is sufficiently flexible.
So check by varying the settings of your simulation, and see if the 
profile likelihood ratio is still distributed as a chi-square
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log Likelihood Ratio
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Here it is pretty stable, but 
it’s not perfect (and this is 
a log plot, so it hides some 
pretty big discrepancies)

For the distribution to be 
independent of the nuisance 
parameters your 
parametrization must be 
sufficiently flexible.
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Ingredients to Frequentist methods
RooStats supports several statistical methods used in high energy physics

‣ Choose a test statistic
● simple likelihood ratio (LEP)
● ratio of profiled likelihoods (Tevatron) 
● profile likelihood ratio (LHC)

‣ Define your ensemble (sampling strategy)
● toy MC randomizing nuisance parameters according to 

• aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
● toy MC with nuisance parameters fixed (Neyman Construction)
● assuming asymptotic distribution (Wilks and Wald)

109

λ(µ) = Ls+b(µ, ˆ̂ν)/Ls+b(µ̂, ν̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂ν)/Lb(µ = 0, ˆ̂ν�)

π(ν)
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Lecture 3
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Confidence Intervals (Limits)
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Simple vs. Compound Hypotheses

The Neyman-Pearson lemma is the answer for simple hypothesis 
testing
‣ a hypothesis is simple if it has no free parameters and is 

totally fixed               vs.

What about cases when there are free parameters?
‣ eg. the mass of the Higgs boson             vs. 

A test is called similar if it has size    for all values of the 
parameters
A test is called Uniformly Most Powerful if it maximizes the 
power for all values of the parameter

Uniformly Most Powerful tests don’t exist in general
112

f(x|H0) f(x|H1)

f(x|H1, mH)f(x|H0)

α
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Similar Test Examples
In some cases Uniformly Most Powerful tests do exist:
‣ some examples just to clarify the concept:
‣ H0 is simple: a Gaussian with a fixed
‣ H1 is composite: a Gaussian with 

● consider H- and H--  
● same size, different power, but both max power

H0

H0H--

H-

µ < µ0, σ = σ0

µ = µ0, σ = σ0
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Similar Test Examples
In some cases Uniformly Most Powerful tests exists:
‣ some examples just to clarify the concept:
‣ H0 is simple: a Gaussian with a fixed
‣ H1 is composite: a Gaussian with 

● consider H+ and H++

● same size, different power, but both max power

114

H0

H0 H+

H++

µ = µ0, σ = σ0

µ > µ0, σ = σ0
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Similar Test Examples
Slight variation, a Uniformly Most Powerful test doesn’t exit:
‣ some examples just to clarify the concept:
‣ H0 is simple: a Gaussian with a fixed
‣ H1 is composite: a Gaussian with 

● Either H+ has good power and H- has bad power
● or vice versa

115

H0

H0 H+

H+

µ = µ0, σ = σ0

µ = µ0, σ �= σ0

H-

H-
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Composite Hypothesis & the Likelihood Function
When a hypothesis is composite typically there is a pdf that can 
be parametrized
‣ for a fixed   it defines a pdf for the random variable   
‣ for a given measurement of    one can consider                as a 

function of    called the Likelihood function
‣ Note, this is not Bayesian, because it still only uses                 

P(data | theory) and
● the Likelihood function is not a pdf!

Sometimes   has many components, generally divided into:
‣ parameters of interest: eg. masses, cross-sections, etc.
‣ nuisance parameters: eg. parameters that affect the shape 

but are not of direct interest (eg. energy scale)
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f(�x|θ)
θ x

x f(�x|θ)
θ

θ
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A simple example:
A Poisson distribution describes a discrete event count n for a real-
valued mean µ.

The likelihood of µ given n is the same
equation evaluated as a function of µ
‣ Now it’s a continuous function
‣ But it is not a pdf!

Common to plot the -2 ln L
‣ helps avoid thinking of it as a PDF
‣ connection to χ2 distribution
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Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

!"(µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2ln! = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

!"#$%&'(%)*'+,'-)$."/.0'''''''''''''

1*,'2,'345.,'67'789':;88<=

L(µ) = Pois(n|µ)

Pois(n|µ) = µn e−µ

n!
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Confidence Interval
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Confidence Interval

What is a “Confidence Interval?
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time

‣ remember, the contour is a function of 
the data, which is random.  So it moves 
around from experiment to experiment
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Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time

‣ remember, the contour is a function of 
the data, which is random.  So it moves 
around from experiment to experiment
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‣Bayesian “credible interval” does 
mean probability parameter is 
in interval.  The procedure is 
very intuitive:
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Neyman Construction example
For each value of   consider 
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x

θ

θ0

θ1

θ2

f(x|θ)

θ f(x|θ)
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Neyman Construction example

Let’s focus on a particular point 
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x

f(x|θ0)
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Neyman Construction example
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x

f(x|θ0)

Let’s focus on a particular point 
‣ we want a test of size 
‣ equivalent to a                   confidence interval on 
‣ so we find an acceptance region with        probability

f(x|θo)
α

1− α

100(1− α)% θ

1− α
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Neyman Construction example
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Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ here’s an example of a lower limit

f(x|θo)

1− α

x

f(x|θ0)

1− α α
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Neyman Construction example
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x

f(x|θ0)

α/2

1− α

Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ and an example of a central limit

f(x|θo)
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x

f(x|θ0)

f(x|θ0)
f(x|θbest(x))

= kα

Neyman Construction example

124

Let’s focus on a particular point 
‣ choice of this region is called an ordering rule
‣ In Feldman-Cousins approach, ordering rule is the 
likelihood ratio.  Find contour of L.R. that gives size 

f(x|θo)

1− α

α



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Neyman Construction example
Now make acceptance region for every value of
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x

θ

θ0

θ1

θ2

f(x|θ)
θ
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Neyman Construction example

This makes a confidence belt for θ
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x

θ

θ0

θ1

θ2

f(x|θ)
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Neyman Construction example
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x

θ

θ0

This makes a confidence belt for θ
the regions of data in the confidence belt can be 
considered as consistent with that value of θ
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Neyman Construction example
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x0

θ−

θ+

x

θ

Now we make a measurement
the points   where the belt intersects    a part of the 
confidence interval in   for this measurement    
eg. 

x0

θ x0

θ

[θ−, θ+]
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For every point   , if it were true, the data would fall in its 
acceptance region with probability  
If the data fell in that region, the point   would be in the 
interval
So the interval            covers the true value with probability 
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x0

θ−

θ+

x

θ

θ

θ
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1− α

1− α[θ−, θ+]

Neyman Construction example
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A Point about the Neyman Construction
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x0

θ−

θ+

x

θ

This is not Bayesian... it doesn’t mean the probability 
that the true value of   is in the interval is        !θ 1− α

θtrue
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Inverting Hypothesis Tests
There is a precise dictionary that explains how to move from from 
hypothesis testing to parameter estimation.
‣ Type I error: probability interval does not cover true value of the 

parameters (eg. it is now a function of the parameters)
‣ Power is probability interval does not cover a false value of the 

parameters (eg. it is now a function of the parameters)
● We don’t know the true value, consider each point      as if it were true

What about null and alternate hypotheses?
‣ when testing a point    it is considered the null 
‣ all other points considered “alternate” 

So what about the Neyman-Pearson lemma & Likelihood ratio?
‣ as mentioned earlier, there are no guarantees like before 
‣ a common generalization that has good power is:
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θ0

f(x|θ0)
f(x|θbest(x))

f(x|H0)
f(x|H1)

θ0



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

The Dictionary
There is a formal 1-to-1 mapping between hypothesis tests and 
confidence intervals:
‣ some refer to the Neyman Construction as an “inverted 

hypothesis test”

132

Classical Hypothesis Testing (cont.)

“Test for θ=θ0” ↔ “Is θ0 in confidence interval for θ”

Bob Cousins, CMS, 2008 44

“There is thus no need to derive optimum properties 

separately for tests and for intervals; there is a one-to-one 

correspondence between the problems as in the dictionary in 

Table 20.1” – Stuart99, p. 175.
Using the likelihood ratio hypothesis test, this correspondence is the basis 

of intervals in G. Feldman, R Cousins, Phys Rev D57 3873 (1998).
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Discovery in pictures
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N events

P(
 N

 |
 s

+
b
 )

b-only s+b
b-only p-valueobs

more discrepant

Discovery: test b-only (null: s=0 vs. alt: s>0)
• note, one-sided alternative.  larger N is “more discrepant” 

aka “CLb”
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N events

P(
 N

 |
 s

+
b
 )

b-only s0+b
Critical region defined by 5σ

Power of test against s0

Sensitivity for discovery in pictures
When one specifies 5σ one specifies a critical value for the data before 
“rejecting the null”.  
Leaves open a question of sensitivity, which is quantified as “power” of the test 
against a specific alternative

‣ In Frequentist setup, one chooses a “test statistic” to maximize power
● Neyman-Pearson lemma: likelihood ratio most powerful test for one-sided alternative
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N events

P(
 N

 |
 s

+
b
 )

sup+b
2.5%

sdown+b

2.5%
b-only

Measurements in pictures
Measurement typically denoted σ = X± Y.  
‣ X is usually the “best fit” or maximum likelihood estimate
‣ ±Y usually means [X-Y, X+Y] is a 68% confidence interval

Intervals are formally “inverted hypothesis tests”: (null: s=s0 vs. alt: s≠ s0)
‣ One hypothesis test for each value of s0 against a two-sided alternative

‣ No “uniformly most powerful test” for a two-sided alternative
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obs, (sbest+b)

   more discrepant
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Upper limits in pictures
What do you think is meant by “95% upper limit” ?

Is it like the picture below?
‣ ie. increase s, until the probability to have data “more discrepant” is < 5%
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5%

obs
ok excluded

more discrepant

aka “CLs+b”
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Upper limits in pictures
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N events

P(
 N

 |
 s

+
b
 )

b-only s95+b

5%

obs
ok excluded

more discrepant

Upper-limits are trying to exclude large signal rates.  
‣ form a 95% “confidence interval” on s of form [0,s95]

Intervals are formally “inverted hypothesis tests”: (null: s=s0 vs. alt: s<s0)
‣ One hypothesis test for each value of s0 against a one-sided alternative

Power of test depends on specific values of null s0 and alternate s’
‣ but “uniformly most powerful” since it is a one-sided alternative
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The sensitivity problem
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N events

P(
 N

 |
 s

+
b
 )

b-only

5%

s95+b

The physicist’s worry about limits in general is that if there is a strong 
downward fluctuation, one might exclude arbitrarily small values of s
‣ with a procedure that produces proper frequentist 95% confidence 

intervals, one should expect to exclude the true value of s 5% of the time, 
no matter how small s is!

‣ This is not a problem with the procedure, but an undesirable consequence of the Type I / Type 
II error-rate setup
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Power in the context of limits
Remember, when creating confidence intervals the null is s=s0

‣ and power is defined under a specific alternative (eg. s=0)
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N events

P(
 N

 |
 s

+
b
 )

b-only s95+b

"CLs+b"

"CLb"

CLs

To address the sensitivity problem, CLs was introduced
‣ common (misused) nomenclature: CLs = CLs+b/CLb

‣ idea: only exclude if CLs<5%  (if CLb is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%

● Note: CLs is NOT a probability

140

“The CLs ... methods combine size and power in a very ad hoc way and are 
unlikely to have satisfactory statistical properties.” -- D. Cox & N. Reid



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

The Power Constraint
An alternative to CLs that protects against setting limits when one has no 
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.
‣ A clean separation of size and power.  (a new, arbitrary threshold for sensitivity)

‣ Feldman-Cousins foreshadowed the recommendation sensitivity defined as 
50% power against b-only

‣ David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]
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N events
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5%

Power of test against s=0

http://arxiv.org/abs/1006.4334v1
http://arxiv.org/abs/1006.4334v1
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FIG. 15. Comparision of the confidence region for an example of the toy model in which
sin2(2θ) = 0 and the sensitivity of the experiment, as defined in the text.
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Taken from 
Feldman-Cousins 
paper
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Taken from 
Feldman-Cousins 
paper

“ Both measures are useful quantities that should be reported in order to extract the most science from catalogs”

http://arxiv.org/abs/1006.4334v1
http://arxiv.org/abs/1006.4334v1
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“Power-Constrained” CLs+b limits
Even for s=0, there is a 5% chance of a strong downward fluctuation that would 
exclude the background-only hypothesis
‣ we don’t want to exclude signals for which we have no sensitivity
‣ idea: don’t quote limit below some threshold defined by an N-σ downward 

fluctuation of b-only pseudo-experiments (Choose -1σ by convention)
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-1σ background 
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Observed limit is 
“too lucky” for 
comfort, impose 
“power constraint”

-2σ band must go 
to 0 by simple 
logical argument, 
so remove it
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“Power-Constrained” CLs+b limits
Even for s=0, there is a 5% chance of a strong downward fluctuation that would 
exclude the background-only hypothesis
‣ we don’t want to exclude signals for which we have no sensitivity
‣ idea: don’t quote limit below some threshold defined by an N-σ downward 

fluctuation of b-only pseudo-experiments (Choose -1σ by convention)

143

b-only expectation

-1σ background 
fluctuation

Observed limit is 
“too lucky” for 
comfort, impose 
“power constraint”

-2σ band must go 
to 0 by simple 
logical argument, 
so remove it



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Coverage Comparison with CLs
The CLs procedure purposefully over-covers (“conservative”)
‣ and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until 
the constraint is applied, at which point the coverage is 100%
‣ limits are not ‘aggressive’ in the sense that they under-cover
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Discrete Problems

145

In discrete problems (eg. number counting analysis with counts 
described by a Poisson) one sees:
‣ discontinuities in the coverage (as a function of parameter)
‣ over-coverage (in some regions)
‣ Important for experiments with few events.  There is a lot of 

discussion about this, not focusing on it here
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Flip-Flopping

146
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Flip-flopping coverage
The flip-flopping procedure will under-cover

‣ can be avoided with a ‘unified method’ or if we always provide both p-value for b-only and 
1-sided upper-limit

In practice, we care about coverage on physical parameters (eg. a cross-section, not the 
number of events).  This leads to a subtle semi-philosophical point

‣ So the relevant ‘ensemble’ of experiments may be different. With 100x more data one 
might quickly leave the regions effected by flip-flopping
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“As is emphasized in Neal [4], upper and lower one-sided confidence limits should replace 
confidence intervals, and a full plot of the log-likelihood function is better still.” - D. Cox, N. Reid
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Fig. 3. Plot of confidence belts implicitly used for 90% C.L. confidence intervals (vertical
intervals between the belts) quoted by flip-flopping recipe. They are not valid confidence
belts, since they can cover the true value at a frequency less than the stated confidence level.
For 3.36 < µ < 6.28, the coverage (probability contained in the horizontal acceptance interval)
is 85%; the complete plot of coverage is in Fig. 4. (This is the same as Fig. 4 in F-C [3], except
that the flip-flop significance point is 5σ instead of 3σ, and hence the region of undercoverage
is translated by 2σ.)

tuning of analysis procedures based on the data can lead to incorrect coverage. In fact,
Ciampolillo [17] has pointed out that he earlier understood the pitfalls of this recipe we
called flip-flopping, and and found a (different) unified set of confidence intervals (based
on an ordering statistic differing from the one on Kendall and Stuart). Ciampolillo’s
intervals were re-discovered by Mandelkern and Schultz [18]. Their belt for 68.27%
intervals is reproduced in Fig. 5. This ordering for a unified approach has not gained

13
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Fig. 4. Frequentist coverage, as a function of the unknown true value µ, of the confidence
belt in Fig. 3 that is implicitly used for 90% C.L. confidence intervals quoted by flip-flopping
recipe. There is a wide region around the flip-flop threshold (5σ in this example, described in
the text) in which the failure to cover is 3/2 the nominal value (15% instead of 10%, in this
example). Figure courtesy of Tommaso Dorigo.

wide use.

The more general important conceptual point about confidence belts, evident in the
confidence belt figures, is that moving part of a belt vertically has “long-range” con-
sequences horizontally, and moving part of the confidence belt horizontally has “long-
range” consequences vertically. For those of us who played around with many alternative
methods for constructing these belts in the 1990’s, we found that fixing a “problem” in
one place could easily create one somewhere else. In my opinion, the FC belt gets the
tradeoffs about as right as one can get, although there are still perhaps issues at large
negative x.

In the 12+ years since the F-C paper, all kinds of opinions have been expressed about
this flip-flopping argument: whether or not the above recipe is a valid caricature;
whether it can be circumvented by always quoting an upper limit; or by “knowing
in advance” (!) that one will not make a discovery and therefore will quote an upper
limit; etc. Some statisticians I have communicated with believe that one-sided limits

14

Tommaso Dorigo
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Now let’s study Feldman-Cousins
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A different way to picture Feldman-Cousins
Most people think of plot on left when thinking of Feldman-Cousins

‣ bars are regions “ordered by”                            with 
But this picture doesn’t generalize well to many measured quantities.

‣ Instead, just use R as the test statistic... and R is λ(µ)
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FIGURES
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FIG. 1. A generic confidence belt construction and its use. For each value of µ, one draws
a horizontal acceptance interval [x1, x2] such that P (x ∈ [x1, x2] |µ) = α. Upon performing an

experiment to measure x and obtaining the value x0, one draws the dashed vertical line through
x0. The confidence interval [µ1, µ2] is the union of all values of µ for which the corresponding
acceptance interval is intercepted by the vertical line.

20

µ

-log λ(µ)

max(0, n − b), and is given in the third column of Table I. We then compute P (n|µbest),
which is given in the fourth column. The fifth column contains the ratio,

R = P (n|µ)/P (n|µbest), (4.1)

and is the quantity on which our ordering principle is based. R is a ratio of two likelihoods:
the likelihood of obtaining n given the actual mean µ, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are added to the acceptance region
for a given µ in decreasing order of R, until the sum of P (n|µ) meets or exceeds the desired
C.L. This ordering, for values of n necessary to obtain total probability of 90%, is shown
in the column labeled “rank”. Thus, the acceptance region for µ = 0.5 (analogous to a
horizontal line segment in Figure 1), is the interval n = [0, 6]. Due to the discreteness of n,
the acceptance region contains more summed probability than 90%; this is unavoidable no
matter what the ordering principle, and leads to confidence intervals which are conservative.

For comparison, in the column of Table I labeled “U.L.”, we place check marks at the
values of n which are in the acceptance region of standard 90% C.L. upper limits for this
example; and in the column labeled “central”, we place check marks at the values of n which
are in the acceptance region of standard 90% C.L central confidence intervals.

The construction proceeds by finding the acceptance region for all values of µ, for the
given value of b. With a computer, we perform the construction on a grid of discrete values
of µ, in the interval [0, 50] in steps of 0.005. This suffices for the precision desired (0.01) in
endpoints of confidence intervals. We find that a mild pathology arises as a result of the
fact that the observable n is discrete. When the vertical dashed line is drawn at some n0 (in
analogy with in Fig. 1), it can happen that the set of intersected horizontal line segments is
not simply connected. When this occurs we naturally take the confidence interval to have
µ1 corresponding to the bottom-most segment intersected, and to have µ2 corresponding to
the top-most segment intersected.

We then repeat the construction for a selection of fixed values of b. We find an additional
mild pathology, again caused by the discreteness in n: when we compare the results for
different values of b for fixed n0, the upper endpoint µ2 is not always a decreasing function
of b, as would be expected. When this happens, we force the function to be non-increasing,
by lengthening selected confidence intervals as necessary. We have investigated this behavior,
and compensated for it, over a fine grid of b in the range [0, 25] in increments of 0.001 (with
some additional searching to even finer precision).

Our compensation for the two pathologies mentioned in the previous paragraphs adds
slightly to our intervals’ conservatism, which however remains dominated by the unavoidable
effects due to the discreteness in n.

The confidence belts resulting from our construction are shown in Fig. 7, which may
be compared with Figs. 5 and 6. At large n, Fig. 7 is similar to Fig. 6; the background
is effectively subtracted without constraint, and our ordering principle produces two-sided
intervals which are approximately central intervals. At small n, the confidence intervals from
Fig. 7 automatically become upper limits on µ; i.e., the lower endpoint µ1 is 0 for n ≤ 4
in this case. Thus, flip-flopping between Figs. 5 and 6 is replaced by one coherent set of
confidence intervals, (and no interval is the empty set).

Tables II-IX give our confidence intervals [µ1, µ2] for the signal mean µ for the most
commonly used confidence levels, namely 68.27% (sometimes called 1-σ intervals by analogy

8

with Gaussian intervals), 90%, 95%, and 99%. Values in italics indicate results which must
be taken with particular caution, since the probability of obtaining the number of events
observed or fewer is less than 1%, even if µ = 0. (See Sec. IVC below.)

Figure 8 shows, for n = 0 through n = 10, the value of µ2 as a function of b, for
90% C.L. The small horizontal sections in the curves are the result of the mild pathology
mentioned above, in which the original curves make a small dip, which we have eliminated.
Dashed portions in the lower right indicate results which must be taken with particular
caution, corresponding to the italicized values in the tables. Dotted portions on the upper
left indicate regions where µ1 is non-zero. These corresponding values of µ1 are shown in
Fig. 9.

Figure 8 can be compared with the Bayesian calculation in Fig. 28.8 of Ref. [2] which
uses a uniform prior for µt. A noticeable difference is that our curve for n = 0 decreases
as a function of b, while the result of the Bayesian calculation stays constant (at 2.3). The
decreasing limit in our case reflects the fact that P (n0|µ) decreases as b increases. We find
that objections to this behavior are typically based on a misplaced Bayesian interpretation
of classical intervals, namely the attempt to interpret them as statements about P (µt|n0).

B. Gaussian with Boundary at Origin

It is straightforward to apply our ordering principle to the other troublesome example
of Sec. III, the case of a Gaussian resolution function (Eq. 3.1) for µ, when µ is physically
bounded to non-negative values. In analogy with the Poisson case, for a particular x,
we let µbest be the physically allowed value of µ for which P (x|µ) is maximum. Then
µbest = max(0, x), and

P (x|µbest) =

{

1/
√

2π, x ≥ 0
exp(−x2/2)/

√
2π, x < 0.

(4.2)

We then compute R in analogy to Eq. 4.1, using Eqs. 3.1 and 4.2:

R(x) =
P (x|µ)

P (x|µbest)
=

{

exp(−(x − µ)2/2), x ≥ 0
exp(xµ − µ2/2), x < 0.

(4.3)

During our Neyman construction of confidence intervals, R determines the order in which
values of x are added to the acceptance region at a particular value of µ. In practice, this
means that for a given value of µ, one finds the interval [x1, x2] such that R(x1) = R(x2)
and

∫ x2

x1

P (x|µ)dx = α. (4.4)

We solve for x1 and x2 numerically to the desired precision, for each µ in a grid with
0.001 spacing. With the acceptance regions all constructed, we then read off the confidence
intervals [µ1, µ2] for each x0 as in Fig. 1.

Table X contains the results for representative measured values and confidence levels.
Figure 10 shows the confidence belt for 90% C.L.

It is instructive to compare Fig. 10 with Fig. 3. At large x, the confidence intervals
[µ1, µ2] are the same in both plots, since that is far away from the constraining boundary.
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In many analyses, the contribution of the signal process to the mean number of events is

assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = −2 lnλ(µ)

From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good

agreement between the data and the hypothesized value of µ. Equivalently it is convenient

to use the statistic

tµ = −2 lnλ(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-

ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly

as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute

the p-value,

pµ =

� ∞

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the

pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and

other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed

tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/
√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.
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Figure 13: Figure (a) shows that the shapes are similar for these backgrounds and that the shape is stable

in the final stages of the cut flow. The tau-tau invariant mass for tt̄ andW+jets backgrounds after all cuts
for the ll-channel (b)and lh-channel (c) with a fourth order polynomial fit to the spectrum. The solid and

dashed curves show the result of the simultaneous fit to the control sample and signal candidates with

and without the signal contribution, respectively.

likelihood ratio, # ,

# (µ = 0) =
L(data|µ = 0, ˆ̂b(µ = 0), ˆ̂$(µ = 0))

L(data|µ̂, b̂, $̂)
, (12)

where µ represents signal strength in units of the standard model expectation and $ represents the nui-

sance parameters needed to describe the shape. Asymptotically, the distribution of profile likelihood

ratio approaches a "2 distribution with the number of degrees of freedom given by the number of param-

eters of interest. The motivation for µ is that it enforces the relationship of the standard model branching

ratios when combining the individual channels and maintains the distribution of # as a "2 with one de-

gree of freedom. This improves the power compared to a method which lets the signal in each channel

vary independently. Accordingly, results represented in the µ −MH plane should be derived from a "
2

distribution with two degrees of freedom, in which case there is no impact from the “look-elsewhere

effect”. In contrast, if the look-elsewhere effect must be considered if the test mass MH is not explic-

itly fixed; however, the effect is rather small for this channel given the 9 GeV mass resolution and the

∼ 50 GeV mass range of interest.
The likelihood function corresponding to the simultaneous fit is simply a product of the likelihoods

from the individual measurements:

L(data|µ,MH ,$) = Ltrack(track multiplicity|rQCD) (13)

× LZ(Z+ jets control|%Z)
× LQCD(QCD control|a0,a1,a2,a3)
× Ls+b(signal candidates|µ,MH ,%H ,%Z,rQCD,a0,a1,a2,a3),

where the ai are the parameters of the Chebychev polynomial used to parametrize the fake-tau back-

ground and $ represents all nuisance parameters of the model: %H ,%Z,rQCD,a0,a1,a2,a3.
Figure 14 shows the fit to the signal candidates for a MH = 120 GeV Higgs in the lh=channel with

(a) and without (b) the signal contribution. It can be seen that the background shapes and normalizations

are trying to accommodate the excess nearM!! = 120 GeV, but the control samples are constraining the

variation. Table ?? shows the significance calculated from the profile likelihood ratio for the ll-channel,

the lh-channel, and the combined fit for various Higgs masses.
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An example
Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0
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where the ai are the parameters used to parameterize the fake-tau background and ! represents all nui-680

sance parameters of the model: "H ,mZ,"Z,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near m## = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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In many analyses, the contribution of the signal process to the mean number of events is

assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = −2 lnλ(µ)

From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good

agreement between the data and the hypothesized value of µ. Equivalently it is convenient

to use the statistic

tµ = −2 lnλ(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-

ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly

as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute

the p-value,

pµ =

� ∞

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the

pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and

other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed

tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/
√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.

5

2.2 Test statistic t̃µ for µ ≥ 0

Often one assumes that the presence of a new signal can only increase the mean event rate
beyond what is expected from background alone. That is, the signal process necessarily has
µ ≥ 0, and to take this into account we define an alternative test statistic below called t̃µ.

Even for when considering models for which µ ≥ 0, however, we will not restrict the
effective estimator µ̂ to be positive, and if the data fluctuate low relative to the expected
background one can find µ̂ < 0. By defining µ̂ in this way we will see in Sec. 3.1 that its
sampling distribution can be approximated by a Gaussian, which in turn allows one to obtain
simple approximations for the pdfs of the test statistics considered.

For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =






L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(10)

Here ˆ̂θ(0) and ˆ̂θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =






−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 ,

−2 ln L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). An approximate
formula for the distribution of t̃µ needed to do this is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

q0 =






−2 lnλ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(12)

where λ(0) is the profile likelihood ratio for µ = 0 as defined in Eq. (7).

6
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We may contrast this to the statistic t0, i.e., Eq. (8), used to test µ = 0. In this case
one may reject the µ = 0 hypothesis for either an upward or downward fluctuation of the
data. This is appropriate if the presence of a new phenomenon could lead to an increase or
decrease in the number of events found. In an experiment looking for neutrino oscillations,
for example, the signal hypothesis may predict a greater or lower event rate than the no-
oscillation hypothesis.

When using q0, however, we consider the data to show lack of agreement with the
background-only hypothesis only if µ̂ > 0. That is, a value of µ̂ much below zero may
indeed constitute evidence against the background-only model, but this type of discrepancy
does not show that the data contain signal events, but rather points to some other systematic
error. For the present discussion, however, we assume that the systematic uncertainties are
dealt with by the nuisance parameters θ.

If the data fluctuate such that one finds fewer events than even predicted by background
processes alone, then µ̂ < 0 and one has q0 = 0. As the event yield increases above the
expected background, i.e., for increasing µ̂, one finds increasingly large values of q0, corre-
sponding to an increasing level of incompatibility between the data and the µ = 0 hypothesis.

To quantify the level of disagreement between the data and the hypothesis of µ = 0 using
the observed value of q0 we compute the p-value in the same manner as done with tµ, namely,

p0 =
� ∞

q0,obs
f(q0|0) dq0 . (13)

Here f(q0|0) denotes the pdf of the statistic q0 under assumption of the background-only
(µ = 0) hypothesis. An approximation for this and other related pdfs are given in Sec. 3.5.

2.4 Test statistic qµ for upper limits

For purposes of establishing an upper limit on the strength parameter µ, we consider two
closely related test statistics. First, we may define

qµ =

�
−2 lnλ(µ) µ̂ ≤ µ ,

0 µ̂ > µ ,
(14)

where λ(µ) is the profile likelihood ratio as defined in Eq. (7). The reason for setting qµ = 0
for µ̂ > µ is that when setting an upper limit, one would not regard data with µ̂ > µ as
representing less compatibility with µ than the data obtained, and therefore this is not taken
as part of the rejection region of the test. From the definition of the test statistic one sees that
higher values of qµ represent greater incompatibility between the data and the hypothesized
value of µ.

One should note that q0 is not simply a special case of qµ with µ = 0, but rather has a
different definition (see Eqs. (12) and (14)). That is, q0 is zero if the data fluctuate downward
(µ̂ < 0), but qµ is zero if the data fluctuate upward (µ̂ > µ). With that caveat in mind, we will
often refer in the following to qµ with the idea that this means either q0 or qµ as appropriate
to the context.

As with the case of discovery, one quantifies the level of agreement between the data and
hypothesized µ with p-value. For, e.g., an observed value qµ,obs, one has

7

pµ =

� ∞

qµ,obs
f(qµ|µ) dqµ , (15)

which can be expressed as a significance using Eq. (1). Here f(qµ|µ) is the pdf of qµ assuming

the hypothesis µ. In Sec. 3.6 we provide useful approximations for this and other related

pdfs.

2.5 Alternative test statistic q̃µ for upper limits

For the case where one considers models for which µ ≥ 0, the variable λ̃(µ) can be used

instead of λ(µ) in Eq. (14) to obtain the corresponding test statistic, which we denote q̃µ.
That is,

q̃µ =





−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
=






−2 ln
L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0

−2 ln
L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�
) in Sec. 3.7.

In numerical examples we have found that the difference between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.

Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-

alent. That is, assuming the approximations below, qµ can be expressed as a monotonic

function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using Eqs. (13) or (15) we require the sampling

distribution for the test statistic being used. In the case of discovery we are testing the

background-only hypothesis (µ = 0) and therefore we need f(q0|0), where q0 is defined by

Eq. (12). When testing a nonzero value of µ for purposes of finding an upper limit we need

the distribution f(qµ|µ) where qµ is defined by Eq. (14), or alternatively we require the pdf

of the corresponding statistic q̃µ as defined by Eq. (16). In this notation the subscript of q
refers to the hypothesis being tested, and the second argument in f(qµ|µ) gives the value of

µ assumed in the distribution of the data.

We also need the distribution f(qµ|µ�
) with µ �= µ�

to find what significance to expect and

how this is distributed if the data correspond to a strength parameter different from the one

being tested. For example, it is useful to characterize the sensitivity of a planned experiment

by quoting the median significance, assuming data distributed according to a specified signal

model, with which one would expect to exclude the background-only hypothesis. For this one

would need f(q0|µ�
), usually with µ�

= 1. From this one can find the median q0, and thus the

median discovery significance. When considering upper limits, one would usually quote the

value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit

on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).
In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large

sample limit. This allows one to obtain approximations for all of the required distributions,

which are given in Sections 3.3 through 3.6 The approximations become exact in the large
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A real life example
Each colored curve is represents a single pseudo-experiment
‣ the test statistic is changing as µ, the parameter of interest, changes
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Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist 
treatment of the main measurement, while eliminating nuisance 
parameters (deal with systematics) with an intuitive Bayesian technique.

Tracing back the origin of π(b)
‣ clearly state prior        ; identify control samples (sidebands) and use:

Note, if we do not want to use the Hybrid Bayesian-Frequentist approach 
for the nuisance parameters, then we must consider both non and noff 
when generating our toy Monte Carlo

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1
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Conditional vs. Unconditional Ensemble
In the Conditional ensemble the 
global observables / auxiliary 
measurements are always the same, 

‣ if there are very few events 
expected, the test statistic takes 
on discrete values

‣ discreteness leads to over-
coverage in some areas

In the Unconditional ensemble the 
global observables / auxiliary 
measurements fluctuate “smearing 
out” the value of the test statistic.

‣ also more fluctuations in results

More on conditioning tomorrow!
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5 2 sided vs 1 sided

Repeating the test for s = 2.3 and releasing the one sided condition qs = 0 for ŝ > s we find

a p-value 0f 6.4%. To understand where it comes from we show in Figure 4 the pdf for the

2 sided version of the test statistics, where one can see that the additional 1.4 % came from

very high values of n >> 3.
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Figure 4: Testing the signal hypothesis with s = 2.3 using a two sided test statistic (qs is not
set to zero when ŝ > s). The green line is the observation n = 0. The p-value is 6.4%. 5%

from the n ≤ 3 toy exeriments and another 1.4% from the n > 3 toy experiments.

6 ”Better than zero?” or ”New thumb rule?”

We investigate now how the upper limit varies had the true value of the efficiency deviates

from the assumed one δ = 0 by δ · ηs, i.e. δ times standard deviations. We also investigate

the dependence on the systematics itself ηs. Figure 5 show the upper limit sup (at the 95%

CL) had the true value of the efficiency deviates from its nominal assumed one by δ · ηs. We

see that for a systematics of 20% the upper limit reaches a maximum at about 0.5 standard

deviation and is about sup = 2.4. For a systematics of 10% the maximal upper limit occurs

at around 1-1.2 standard deviation and is about sup = 2.5−2.6. Smaller uncertainties on the

efficiency drive the maximal upper limit closer to the classical sup = 3.

This result is in full agreement with Ofer’s note. There he shows (Figure 6) the upper limit

required in order to ensure a full coverage (at the 95% CL) as a function of the uncertainty

5

test statistic

Gross, Nativ

µ           
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Coverage

Coverage can be different 
at each point in the 
parameter space

Example:
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Neyman Construction with Nuisance parameters
In the strict sense, one wants coverage for µ for all values of the nuisance 
parameters (here ε)
‣ The “full construction” one n

Challenge for full Neyman Construction is computational time (scan in 50-
D isn’t practical) and to avoid significant over-coverage 
‣ note: projection of nuisance parameters is a union (eg. set theory) not 

an integration (Bayesian)

161

, but some overcoverage may just be a natural

µµ
min

µ
max

(x0,e0)

ideal shape of conf. region

ε

Figure 1: The Neyman construction for a test statistic x,
an auxiliary measurement M , and a nuisance parameter
b. Vertical planes represent acceptance regions Wb for H0

given b. The condition for discovery corresponds to data
(x0, M0) that do not intersect any acceptance region.
The contours of L(x, M |H0, b) are in color.

where b̂ conditionally maximizes L(x, M |H1, b) and ˆ̂b
conditionally maximizes L(x, M |H0, b).

Now let us take s = 50 and ∆ = 5%, both of which
could be determined from Monte Carlo. In our toy ex-
ample, we collect data M0 = 100. Let α = 2.85 ·10−7,
which corresponds to 5σ. The question now is how
many events x must we observe to claim a discovery?1

The condition for discovery is that (x0, M0) do not lie
in any acceptance region Wb. In Fig. 1 a sample of
acceptance regions are displayed. One can imagine a
horizontal plane at M0 = 100 slicing through the var-
ious acceptance regions. The condition for discovery
is that x0 > xmax where xmax is the maximal x in the
intersection.

There is one subtlety which arises from the or-
dering rule in Eq. 5. The acceptance region Wb =
{(x, M) | l > lα} is bounded by a contour of the
likelihood ratio and must satisfy the constraint of size:∫

Wb
L(x, M |H0, b) = (1 − α). While it is true that

the likelihood is independent of b, the constraint on
size is dependent upon b. Similar tests are achieved
when lα is independent of b. The contours of the like-
lihood ratio are shown in Fig. 2 together with con-
tours of L(x, M |H0, b). While tests are roughly sim-
ilar for b ≈ M , similarity is violated for M # b.
This violation should be irrelevant because clearly
b # M should not be accepted. This problem can
be avoided by clipping the acceptance region around
M = b ± N∆b, where N is sufficiently large (≈ 10)
to have negligible affect on the size of the acceptance

1In practice, one would measure x0 and M0 and then ask,
“have we made a discovery?”. For the sake of explanation, we
have broken this process into two pieces.

20
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140
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M
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Figure 2: Contours of the likelihood L(x, M |H0, b) are
shown as concentric ellipses for b = 32 and b = 80.
Contours of the likelihood ratio in Eq. 5 are shown as
diagonal lines. This figure schematically illustrates that if
one chooses acceptance regions based solely on contours
of the likelihood ratio, that similarity is badly violated.
For example, data M = 80, x = 130 would be considered
part of the acceptance region for b = 32, even though it
should clearly be ruled out.

region. Fig. 1 shows the acceptance region with this
slight modification.

In the case where s = 50, ∆ = 5%, and M0 = 100,
one must observe 167 events to claim a discovery.
While no figure is provided, the range of b consis-
tent with M0 = 100 (and no constraint on x) is
b ∈ [68, 200]. In this range, the tests are similar to
a very high degree.

7. THE COUSINS-HIGHLAND
TECHNIQUE

The Cousins-Highland approach to hypothesis test-
ing is quite popular [4] because it is a simple smear-
ing on the nuisance parameter [5]. In particular, the
background-only hypothesis L(x|H0, b) is transformed
from a compound hypothesis with nuisance parameter
b to a simple hypothesis L′(x|H0) by

L′(x|H0) =
∫

b
L(x|H0, b)L(b)db, (6)

where L(b) is typically a normal distribution. The
problem with this method is largely philosophical:
L(b) is meaningless in a frequentist formalism. In a
Bayesian formalism one can obtain L(b) by consider-
ing L(M |b) and inverting it with the use of Bayes’s
theorem and the a priori likelihood for b. Typically,
L(M |b) is normal and one assumes a flat prior on b.

In the case where s = 50, L(b) is a normal distribu-
tion with mean µ = M0 = 100 and standard deviation
σ = ∆M0 = 5, one must observe 161 events to claim a
discovery. Initially, one might think that 161 is quite
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Profile Construction

The profile construction means that one does 
not need to scan each nuisance parameter (keeps 
dimensionality constant)
‣ easier computationally

This approximation does not guarantee exact 
coverage, but
‣ tests indicate impressive performance
‣ one can expand about the profile construction to 

improve coverage, with the limiting case being 
the full construction
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Gary Feldman presented an approximate Neyman 
Construction, based on the profile likelihood 
ratio as an ordering rule, but only performing the 
construction on a subspace (eg. their conditional 
maximum likelihood estimate)
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Profile Construction: professional literature
While I have been calling it the “profile construction”, it has been called 
a “hybrid resampling” technique by professional statisticians
‣ Note: ‘hybrid’ here has nothing to do with Bayesian-Frequentist Hybrid, but 

a connection to “boot-strapping”
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Figure 2.1. Confidence limits for θ/s as a function of y/s when r = 10 and
α = 0.1. Observe that the upper limit starts to increase as y decreases for
y < 0.

3. Angles

In Astronomy, “proper motion” refers to the angular velocity of an object in
the plane perpendicular to the line of sight. An object’s proper motion is given by
X = (X1,X2), where X1 and X2 are orthogonal components and are measured
independently. In certain applications astronomers are more concerned with the
direction than the magnitude of the proper motion vector. An example is the
motion of a satellite galaxy whose stellar orbits may be disrupted by the tidal
influence exerted by a larger parent system. Due to outward streaming of its
stars, a disrupting satellite will elongate spatially and exhibit a radial velocity
gradient along the direction of elongation. N-body simulations indicate that
the orientations of both the elongation and velocity gradient correlate with the
direction of the satellite’s proper motion vector (e.g., Oh, Lin and Aarseth (1995)
and Piatek and Pryor (1995)). Constraining the direction of the satellite’s proper
motion can therefore help determine whether or not a satellite is undergoing
disruption, which in turn places constraints on applicable dynamical models.

Suppose X1 and X2 are normally distributed random variables with unknown
means µ1 and µ2 and known variance σ2. Write µ1 and µ2 in polar coordinates
as µ1 = ρ cos(θ) and µ2 = ρ sin(θ), where −π < θ ≤ π. We consider confidence
intervals for θ when ρ is the nuisance parameter.

In this example, the likelihood function

L(θ, ρ|x) =
1

2πσ2
exp

{

−
1

2σ2

[

(x1 − ρ cos(θ))2 + (x2 − ρ sin(θ))2
]

}
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ON THE UNIFIED METHOD WITH

NUISANCE PARAMETERS

Bodhisattva Sen, Matthew Walker and Michael Woodroofe

The University of Michigan

Abstract: In this paper we consider the problem of constructing confidence intervals
in the presence of nuisance parameters. We discuss a generalization of the unified
method of Feldman and Cousins (1998) with nuisance parameters. We demonstrate
our method with several examples that arise frequently in High Energy Physics
and Astronomy. We also discuss the hybrid resampling method of Chuang and Lai
(1998, 2000), and implement it in some of the problems.

Key words and phrases: Confidence intervals, EM algorithm, hybrid resampling
method, mixture distribution, profile likelihood, signal and noise.

1. Introduction

Confidence regions consisting of parameter values with high relative likeli-
hood have a long tradition in Statistics and have generated a large literature,
much of which emphasizes asymptotic calculations. See Reid (2003) for a re-
cent survey article and Reid and Fraser (2003) for a relevant application. In an
influential paper, Feldman and Cousins (1998) showed how to implement con-
struction with exact coverage probabilities in problems, with moderate sample
sizes and boundary effects, like a positive normal mean or a Poisson rate that
is known to exceed a background value, that are of interest in High Energy
Physics. They called the construction the unified method because it makes a
natural transition from a one-sided confidence bound to a two-sided confidence
interval. This method has since attracted wide interest among high energy physi-
cists, see Mandelkern (2002). Only problems without nuisance parameters were
considered in Feldman and Cousins (1998). Here we retain the interest in prob-
lems with boundary effects and moderate sample sizes, but focus on problems
with nuisance parameters in addition to the parameter of primary interest.

To describe the unified method and understand the issues, suppose that
a data vector X has a probability density (or mass function, in the discrete
case) fθ,η where θ is the parameter of interest and η is a nuisance parameter.
For example, if a mass θ is measured with normally distributed error with an
unknown standard deviation, then θ is of primary interest and the standard
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1

θ

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W) − 1 = 0,

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W)

{

1

σ2 + σ2
i

(U3i − µ)

}

= 0,

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W)

{

(U3i − µ)2

2(σ2 + σ2
i )

2
−

1

2(σ2 + σ2
i )

}

= 0.

The first two equations can be solved easily to give b̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi =

1|W) and θ̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi = 0|W). The last two equations can be slightly

modified to give the following (closed form) estimates of µ and σ2:

µ̂n+1 =

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)
U3i

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)

and σ̂2
(n+1) =

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

(1+σ2
i /σ̂2

(n)
)2

(U3i − µ̂n+1)2

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)

,

where σ̂2
(n) is the n’th step estimate of σ2. These estimates (η̂n) stabilize after a

few iterations yielding the MLE’s of η with the incomplete data. An interesting
feature of this solution is that at the end of the algorithm we get estimated
probabilities that the i’th star is a signal star, namely, Pθ̂n,η̂n

(Yi = 1|W).
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SUMMARY
Resampling methods are introduced for the construction of confidence intervals for

treatment effects associated with the primary and secondary endpoints of a clinical trial
whose stopping rule is specified by a group sequential test. These methods are non-
parametric and compare favourably with the exact methods that assume the responses to
be normally distributed.

Some key words: Bootstrap; Clinical trial; Coverage probability; Edgeworth expansion; Group sequential test

1. I N T R O D U C T I O N

The past two decades have witnessed important developments in group sequential
methods for interim analysis of clinical trials. Although these methods allow for early
termination while preserving the overall significance level of the test, they introduce sub-
stantial difficulties in constructing confidence intervals for parameters of interest following
the test. Siegmund (1978) proposed an exact method, based on ordering the sample space
in a certain way, to construct exact confidence intervals for the mean of a normal popu-
lation with known variance following a repeated significance test. Tsiatis, Rosner & Mehta
(1984) extended Siegmund's method to the group sequential tests of Pocock (1977) and
O'Brien & Fleming (1979). Alternative orderings of the sample space were subsequently
introduced by Chang & O'Brien (1986), Rosner & Tsiatis (1988), Chang (1989) and
Emerson & Fleming (1990).

For samples of fixed size, an important methodology for constructing confidence inter-
vals without distributional assumptions is Efron's (1981, 1982, 1987) bootstrap method.
Section 2 studies bootstrap confidence intervals for a population mean in a group sequen-
tial setting as an alternative to the exact methods. We show that, since the stopping rule
makes the approximate pivots in nonsequential bootstrap methods highly 'non-pivotal',
the bootstrap method does not yield reliable confidence intervals in a group sequential
setting. However, by integrating the main ideas behind the exact and bootstrap methods,
we develop a resampling method for the construction, after a group sequential test, of
confidence intervals whose coverage probabilities are nearly equal to the nominal ones.
Although one may argue that approximate normality is typically assumed for the construe-
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ON THE UNIFIED METHOD WITH

NUISANCE PARAMETERS

Bodhisattva Sen, Matthew Walker and Michael Woodroofe

The University of Michigan

Abstract: In this paper we consider the problem of constructing confidence intervals
in the presence of nuisance parameters. We discuss a generalization of the unified
method of Feldman and Cousins (1998) with nuisance parameters. We demonstrate
our method with several examples that arise frequently in High Energy Physics
and Astronomy. We also discuss the hybrid resampling method of Chuang and Lai
(1998, 2000), and implement it in some of the problems.

Key words and phrases: Confidence intervals, EM algorithm, hybrid resampling
method, mixture distribution, profile likelihood, signal and noise.

1. Introduction

Confidence regions consisting of parameter values with high relative likeli-
hood have a long tradition in Statistics and have generated a large literature,
much of which emphasizes asymptotic calculations. See Reid (2003) for a re-
cent survey article and Reid and Fraser (2003) for a relevant application. In an
influential paper, Feldman and Cousins (1998) showed how to implement con-
struction with exact coverage probabilities in problems, with moderate sample
sizes and boundary effects, like a positive normal mean or a Poisson rate that
is known to exceed a background value, that are of interest in High Energy
Physics. They called the construction the unified method because it makes a
natural transition from a one-sided confidence bound to a two-sided confidence
interval. This method has since attracted wide interest among high energy physi-
cists, see Mandelkern (2002). Only problems without nuisance parameters were
considered in Feldman and Cousins (1998). Here we retain the interest in prob-
lems with boundary effects and moderate sample sizes, but focus on problems
with nuisance parameters in addition to the parameter of primary interest.

To describe the unified method and understand the issues, suppose that
a data vector X has a probability density (or mass function, in the discrete
case) fθ,η where θ is the parameter of interest and η is a nuisance parameter.
For example, if a mass θ is measured with normally distributed error with an
unknown standard deviation, then θ is of primary interest and the standard
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G. Cowan  ATLAS Limits Workshop / PCL 10 

Previous ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure. 
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What drives the choice of statistical method?
Do we insist on addressing Prob(theory | data )?

‣ if yes, then some form of Bayesian (requires priors) 
Do we want to be able to incorporate subjective information in our inference?

‣ if yes, then subjective Bayesian
Do we insist on Coverage OR the Likelihood Principle? (Can’t have both)

‣ If we insist on Coverage, then must use Frequentist
‣ If we insist on Likelihood Principle, two options:

● Likelihood-based inference (no prior, approximate coverage, MINOS)
● Bayesian (need prior, can be objective, can try for approximate coverage)

Do we want to provide the most information or go straight to inference?
‣ If we do, then we should publish probability model / likelihood function 

● Allows for all types of statistical analysis.  Avoids the comparison problem.
What do we want to conclude?

‣ is a signal present?
‣ what production rate and model parameters of the new signal are still allowed?
‣ what is the best estimate and allowed range of rate and model parameters?
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Asymptotic Properties of likelihood based tests 

& 

Likelihood-based methods
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Wilks’s theorem

Wilks’s theorem says that asymptotically the distribution of  

when θ0 is true approaches a chi-square distribution, with the 
number of degrees of freedom equal to the number of parameters 
of interest

168

x

θ

θ0

θ1

θ2

f(x|θ)

−2 log λ(θ) ∼ χ2
n

−2 log λ(θ0) =

It does not assume that 
the pdf is Gaussian!

It is true for every value of 
eg. “distribution free”

θ

−2 log f(x|θ0)
f(x|θ̂(x))
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Likelihood-based Intervals

Wilks’s theorem tells us how the profile 
likelihood ratio evaluated at θ is 
“asymptotically” distributed when θ is true
‣ asymptotically means there is sufficient 

data that the log-likelihood function is 
parabolic

‣ does NOT require the model f(x|θ) to be 
Gaussian

‣ there are some conditions that must be 
met for this to true

Note common exceptions:
‣ a parameter has no effect on the 

likelihood (eg. mH when testing s=0)  
related to look-elsewhere effect

‣ require s≥0, but this just leads to a       
δ-function at 0 + ½χ²
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Trial factors or the look 
elsewhere effect in high energy 

physics.
Eilam Gross, Ofer Vitells 

Eur.Phys.J. C70 (2010) 525-530
e-Print: arXiv:1005.1891 [physics.data-an]

http://inspirebeta.net/author/Gross%2C%20Eilam?recid=854732&ln=en
http://inspirebeta.net/author/Gross%2C%20Eilam?recid=854732&ln=en
http://inspirebeta.net/author/Vitells%2C%20Ofer?recid=854732&ln=en
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Likelihood-based Intervals

Wilks’s theorem tells us how the profile 
likelihood ratio evaluated at θ is 
“asymptotically” distributed when θ is true
‣ asymptotically means there is sufficient 

data that the log-likelihood function is 
parabolic

‣ does NOT require the model f(x|θ) to be 
Gaussian

So we don’t really need to go to the 
trouble to build its distribution by using 
Toy Monte Carlo or fancy tricks with 
Fourier Transforms

We can go immediately to the threhsold 
value of the profile likelihood ratio
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Demonstration of Central Limit Theorem
The basic reason it works is due to an asymptotic limit
‣ the central limit theorem comes into play
‣ note: convolution based on additive test statistics:.. eg. log likelihood
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And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

!"(µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2ln! = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

!"#$%&'(%)*'+,'-)$."/.0'''''''''''''

1*,'2,'345.,'67'789':;88<=

And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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Feldman-Cousins with and without constraint
Wilks’s theorem gives a short-cut for the Monte Carlo procedure used to  find 
threshold on test statistic ⇒ MINOS is asymptotic approximation of Feldman-Cousins

‣ With a physical constraint (µ>0) the confidence band changes
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In many analyses, the contribution of the signal process to the mean number of events is

assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = −2 lnλ(µ)

From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good

agreement between the data and the hypothesized value of µ. Equivalently it is convenient

to use the statistic

tµ = −2 lnλ(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-

ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly

as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute

the p-value,

pµ =

� ∞

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the

pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and

other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed

tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/
√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.

5

2.2 Test statistic t̃µ for µ ≥ 0

Often one assumes that the presence of a new signal can only increase the mean event rate
beyond what is expected from background alone. That is, the signal process necessarily has
µ ≥ 0, and to take this into account we define an alternative test statistic below called t̃µ.

Even for when considering models for which µ ≥ 0, however, we will not restrict the
effective estimator µ̂ to be positive, and if the data fluctuate low relative to the expected
background one can find µ̂ < 0. By defining µ̂ in this way we will see in Sec. 3.1 that its
sampling distribution can be approximated by a Gaussian, which in turn allows one to obtain
simple approximations for the pdfs of the test statistics considered.

For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =






L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(10)

Here ˆ̂θ(0) and ˆ̂θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =






−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 ,

−2 ln L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). An approximate
formula for the distribution of t̃µ needed to do this is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

q0 =






−2 lnλ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(12)

where λ(0) is the profile likelihood ratio for µ = 0 as defined in Eq. (7).

6
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Modified test statistic for 1-sided upper limits
For 1-sided upper-limit the threshold on the test statistic is different

‣ and with physical boundaries, it is again more complicated
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We may contrast this to the statistic t0, i.e., Eq. (8), used to test µ = 0. In this case
one may reject the µ = 0 hypothesis for either an upward or downward fluctuation of the
data. This is appropriate if the presence of a new phenomenon could lead to an increase or
decrease in the number of events found. In an experiment looking for neutrino oscillations,
for example, the signal hypothesis may predict a greater or lower event rate than the no-
oscillation hypothesis.

When using q0, however, we consider the data to show lack of agreement with the
background-only hypothesis only if µ̂ > 0. That is, a value of µ̂ much below zero may
indeed constitute evidence against the background-only model, but this type of discrepancy
does not show that the data contain signal events, but rather points to some other systematic
error. For the present discussion, however, we assume that the systematic uncertainties are
dealt with by the nuisance parameters θ.

If the data fluctuate such that one finds fewer events than even predicted by background
processes alone, then µ̂ < 0 and one has q0 = 0. As the event yield increases above the
expected background, i.e., for increasing µ̂, one finds increasingly large values of q0, corre-
sponding to an increasing level of incompatibility between the data and the µ = 0 hypothesis.

To quantify the level of disagreement between the data and the hypothesis of µ = 0 using
the observed value of q0 we compute the p-value in the same manner as done with tµ, namely,

p0 =
� ∞

q0,obs
f(q0|0) dq0 . (13)

Here f(q0|0) denotes the pdf of the statistic q0 under assumption of the background-only
(µ = 0) hypothesis. An approximation for this and other related pdfs are given in Sec. 3.5.

2.4 Test statistic qµ for upper limits

For purposes of establishing an upper limit on the strength parameter µ, we consider two
closely related test statistics. First, we may define

qµ =

�
−2 lnλ(µ) µ̂ ≤ µ ,

0 µ̂ > µ ,
(14)

where λ(µ) is the profile likelihood ratio as defined in Eq. (7). The reason for setting qµ = 0
for µ̂ > µ is that when setting an upper limit, one would not regard data with µ̂ > µ as
representing less compatibility with µ than the data obtained, and therefore this is not taken
as part of the rejection region of the test. From the definition of the test statistic one sees that
higher values of qµ represent greater incompatibility between the data and the hypothesized
value of µ.

One should note that q0 is not simply a special case of qµ with µ = 0, but rather has a
different definition (see Eqs. (12) and (14)). That is, q0 is zero if the data fluctuate downward
(µ̂ < 0), but qµ is zero if the data fluctuate upward (µ̂ > µ). With that caveat in mind, we will
often refer in the following to qµ with the idea that this means either q0 or qµ as appropriate
to the context.

As with the case of discovery, one quantifies the level of agreement between the data and
hypothesized µ with p-value. For, e.g., an observed value qµ,obs, one has

7

pµ =

� ∞

qµ,obs
f(qµ|µ) dqµ , (15)

which can be expressed as a significance using Eq. (1). Here f(qµ|µ) is the pdf of qµ assuming

the hypothesis µ. In Sec. 3.6 we provide useful approximations for this and other related

pdfs.

2.5 Alternative test statistic q̃µ for upper limits

For the case where one considers models for which µ ≥ 0, the variable λ̃(µ) can be used

instead of λ(µ) in Eq. (14) to obtain the corresponding test statistic, which we denote q̃µ.
That is,

q̃µ =





−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
=






−2 ln
L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0

−2 ln
L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�
) in Sec. 3.7.

In numerical examples we have found that the difference between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.

Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-

alent. That is, assuming the approximations below, qµ can be expressed as a monotonic

function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions
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on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).
In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large

sample limit. This allows one to obtain approximations for all of the required distributions,

which are given in Sections 3.3 through 3.6 The approximations become exact in the large
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Figure 2: Illustration of the the p-
value corresponding to the median
of qµ assuming a strength parame-
ter µ′ (see text).

procedure can be extended to the case where several search channels are combined, and in
Sec. 4.3 we describe how to give statistical error bands for the sensitivity.

4.1 The median significance from Asimov values of the test statistic

By using the Asimov data set one can easily obtain the median values of q0, qµ and q̃µ, and
these lead to simple expressions for the corresponding median significance. From Eqs. (53),
(60) and (68) one sees that the significance Z is a monotonic function of q, and therefore
the median Z is simply given by the corresponding function of the median of q, which is
approximated by its Asimov value. For discovery using q0 one wants the median discov-
ery significance assuming a strength parameter µ

′ and for upper limits one is particularly
interested in the median exclusion significance assuming µ

′ = 0, med[Zµ|0]. For these one
obtains

med[Z0|µ′] =
√
q0,A , (79)

med[Zµ|0] =
√
qµ,A . (80)

When using q̃µ for establishing upper limits, the general expression for the exclusion
significance Zµ is somewhat more complicated depending on µ

′, but is in any case found by
substituting the appropriate values of q̃µ,A and σA into Eq. (68). For the usual case where one
wants the median significance for µ assuming data distributed according to the background-
only hypothesis (µ′ = 0), Eq. (68) reduces in fact to a relation of the same form as Eq. (60),
and therefore one finds

med[Zµ|0] =
√

q̃µ,A . (81)

4.2 Combining multiple channels

In many analyses, there can be several search channels which need to be combined. For
each channel i there is a likelihood function Li(µ,θi), where θi represents the set of nuisance
parameters for the ith channel, some of which may be common between channels. Here
the strength parameter µ is assumed to be the same for all channels. If the channels are
statistically independent, as can usually be arranged, the full likelihood function is given by
the product over all of the channels,
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Let Xi be k independent, normally distributed 
random variables with means µi and 
variances . Then the random variable

is distributed according to the noncentral chi-
square distribution. It has two parameters: k 
which specifies the number of degrees of 
freedom (i.e. the number of Xi), and λ which is 
related to the mean of the random variables 
Xi by:

λ is sometime called the noncentrality 
parameter. Note that some references define 
λ in other ways, such as half of the above 
sum, or its square root.

Wald’s theorem allows one to find the distribution of -2logλ(µ) when µ 
is not true -- the result is a non-central chi-square distribution

http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
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http://en.wikipedia.org/wiki/Noncentrality_parameter
http://en.wikipedia.org/wiki/Noncentrality_parameter
http://en.wikipedia.org/wiki/Noncentrality_parameter


Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

The main results
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The “Asimov Data” is an artificial dataset 
where the “observations” are set equal to 
the expected values given the parameters 
of the model

We proved that fits to the Asimov data can 
be used to get the non-centrality parameter 
needed for Wald’s theorem

177

The results of Wilks and Wald generalize to more than one parameter of interest. If
the parameters of interest can be explicitly identified with a subset of the parameters θr =
(θ1, . . . , θr), then the distribution of −2 ln λ(θr) follows a noncentral chi-square distribution
for r-degrees of freedom with noncentrality parameter

Λr =
r

∑

i,j= 1
(θi − θ′i) Ṽ

−1
ij (θj − θ′j) , (21)

where Ṽ

−1
ij is the inverse of the submatrix one obtains from restricting the full covariance

matrix to the parameters of interest. The full covariance matrix is given from inverting
Eq. (18), and we show an efficient way to calculate it in Sec. 3.2.

3.2 The Asimov data set and the variance of µ̂

Some of the formulae given require the standard deviation σ of µ̂, which is assumed to follow
a Gaussian distribution with a mean of µ′. Below we show two ways of estimating σ, both of
which are closely related to a special, artificial data set that we call the “Asimov data set”.

We define the Asimov data set such that when one uses it to evaluate the estimators for
all parameters, one obtains the true parameter values. Consider the likelihood function for
the generic analysis given by Eq. (6). To simplify the notation in this section we define

νi = µ

′
si + bi . (22)

Further let θ0 = µ represent the strength parameter, so that here θi can stand for any of the
parameters. The ML estimators for the parameters can be found by setting the derivatives
of lnL with respect to all of the parameters equal to zero:

∂ lnL

∂θj
=

N
∑

i= 1

(

ni

νi
− 1

)

∂νi
∂θj

+
M
∑

i= 1

(

mi

ui
− 1

)

∂ui
∂θj

= 0 . (23)

This condition holds if the Asimov data, ni,A and mi,A , are equal to their expectation values:

ni,A = E[ni] = νi = µ

′
si(θ) + bi(θ) , (24)

mi,A = E[mi] = ui(θ) . (25)

Here the parameter values represent those implied by the assumed distribution of the data.
In practice, these are the values that would be estimated from the Monte Carlo model using
a very large data sample.

We can use the Asimov data set to evaluate the “Asimov likelihood” LA and the cor-
responding profile likelihood ratio λA . The use of non-integer values for the data is not a
problem as the factorial terms in the Poisson likelihood represent constants that cancel when
forming the likelihood ratio, and thus can be dropped. One finds

λA (µ) =
LA (µ,

ˆ̂
θ)

LA (µ̂, θ̂)
=

LA (µ,
ˆ̂
θ)

LA(µ′
,θ)

, (26)
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data can be represented as one or more histograms. Using the method in an unbinned analysis
is a straightforward extension.

Suppose for each event in the signal sample one measures a variable x and uses these
values to construct a histogram n = (n1, . . . , nN ). The expectation value of ni can be written

E[ni] = µsi + bi , (2)

where the mean number of entries in the ith bin from signal and background are

si = st ot

∫

bin i
fs(x;θs) dx , (3)

bi = bt ot

∫

bin i
fb(x;θb) dx . (4)

Here the parameter µ determines the strength of the signal process, with µ = 0 corresponding
to the background-only hypothesis and µ = 1 being the nominal signal hypothesis. The
functions fs(x;θs) and fb(x;θb) are the probability density functions (pdfs) of the variable
x for signal and background events, and θs and θb represent parameters that characterize
the shapes of pdfs. The quantities st ot and bt ot are the total mean numbers of signal and
background events, and the integrals in (3) and (4) represent the probabilities for an event to
be found in bin i. Below we will use θ = (θs,θb, bt ot ) to denote all of the nuisance parameters.
The signal normalization st ot is not, however, an adjustable parameter but rather is fixed to
the value predicted by the nominal signal model.

In addition to the measured histogram n one often makes further subsidiary measurements
that help constrain the nuisance parameters. For example, one may select a control sample
where one expects mainly background events and from them construct a histogram of some
chosen kinematic variable. This then gives a set of values m = (m1, . . . ,mM ) for the number
of entries in each of the M bins. The expectation value of mi can be written

E[mi] = ui(θ) , (5)

where the ui are calculable quantities depending on the parameters θ. One often constructs
this measurement so as to provide information on the background normalization parameter
bt ot and also possibly on the signal and background shape parameters.

The likelihood function is the product of Poisson probabilities for all bins:

L(µ,θ) =
N
∏

j= 1

(µsj + bj)nj

nj!
e

−(µsj+ bj)
M
∏

k= 1

u

mk
k

mk!
e

−uk
. (6)

To test a hypothesized value of µ we consider the profile likelihood ratio

λ(µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (7)

Here ˆ̂
θ in the numerator denotes the value of θ that maximizes L for the specified µ, i.e.,

it is the conditional maximum-likelihood (ML) estimator of θ (and thus is a function of µ).
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where the final equality above exploits the fact that the estimators for the parameters are
equal to their hypothesized values when the likelihood is evaluated with the Asimov data set.

A standard way to find σ is by estimating the matrix of second derivatives of the log-
likelihood function (cf. Eq. (18)) to obtain the inverse covariance matrix V

−1, inverting to
find V , and then extracting the element V00 corresponding to the variance of µ̂. The second
derivative of lnL is

∂2 lnL

∂θj∂θk
=

N
∑

i= 1

[

(

ni

νi
− 1

)

∂2νi
∂θj∂θk

−
∂νi
∂θj

∂νi
∂θk

ni

ν2i

]

+
M
∑

i= 1

[

(

mi

ui
− 1

)

∂2ui
∂θj∂θk

−
∂ui
∂θj

∂ui
∂θk

mi

u

2
i

]

. (27)

From (27) one sees that the second derivative of lnL is linear in the data values ni and mi.
Thus its expectation value is found simply by evaluating with the expectation values of the
data, which is the same as the Asimov data. One can therefore obtain the inverse covariance
matrix from

V

−1
jk = −E

[

∂2 lnL

∂θj∂θk

]

= −
∂2 lnLA
∂θj∂θk

=
N
∑

i= 1

∂νi
∂θj

∂νi
∂θk

1

νi
+

M
∑

i= 1

∂ui
∂θj

∂ui
∂θk

1

ui
. (28)

In practice one could, for example, evaluate the the derivatives of lnLA numerically, use this
to find the inverse covariance matrix, and then invert and extract the variance of µ̂. One can
see directly from Eq. (28) that this variance depends on the parameter values assumed for
the Asimov data set, in particular on the assumed strength parameter µ

′, which enters via
Eq. (22).

Another method for estimating σ (denoted σA in this section to distinguish it from the
approach above based on the second derivatives of lnL) is to find find the value that is neces-
sary to recover the known properties of −λA (µ). Because the Asimov data set corresponding
to a strength µ

′ gives µ̂ = µ

′, from Eq. (17) one finds

− 2 lnλA (µ) ≈
(µ− µ

′)2

σ2
= Λ . (29)

That is, from the Asimov data set one obtains an estimate of the noncentrality parameter Λ
that characterizes the distribution f(qµ|µ′). Equivalently, one can use Eq. (29) to obtain the
variance σ2 which characterizes the distribution of µ̂, namely,

σ2A =
(µ− µ

′)2

qµ,A
, (30)

where qµ,A = −2 lnλA (µ). For the important case where one wants to find the median
exclusion significance for the hypothesis µ assuming that there is no signal, then one has
µ

′ = 0 and therefore

σ2A =
µ

2

qµ,A
, (31)
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Figure 7: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypothesis (for H→ !!), for mH = 120
GeV with an integrated luminosity of (a) 2 fb−1 and (b) 10 fb−1. A "21 distribution is superimposed.

3.2 H →W+W−

The H→W+W− search is divided into two topologies, production of a Higgs with no jets (H+0 j) and
with two additional jets (H+ 2 j), using in both cases the decay mode H→WW → e!µ! . The present
study does not yet consider the final states e!e! or µ!µ! , nor those with hadronic W decays. Future
inclusion of these channels is expected to improve the search sensitivity particularly for the high Higgs
mass region. The search is described in detail in Ref. [5].

3.2.1 H+0 j

The analysis of the H + 0 j channel uses a two dimensional maximum-likelihood fit of the transverse
mass and the transverse momentum of the WW system in two bins of the dilepton opening angle in the
transverse plane. The fit includes control samples to measure the backgrounds from tt and Z→ "" .
The QCD WW background requires particular attention. Its distributions of Higgs-candidate trans-

verse mass and pT are described with functions containing several adjustable (nuisance) parameters, and
several others whose values are determined from a full Monte Carlo simulation and thereafter treated as
fixed. The distribution of the test statistic q0 under the background-only (µ = 0) hypothesis is shown in
Fig. 8(a) for mH = 150 GeV for an integrated luminosity of 10 fb−1. The same fixed QCD WW shape
parameters are used both to generate the data and for calculating the likelihood ratio. A 12#21 distribution
is superimposed, showing the level of agreement of the asymptotic approximation.
For this channel, further investigation of the systematic uncertainties was carried out. For the fixed

shape parameters related to pT and transverse mass distributions for the QCD WW background, the val-
ues used to generate the data were varied relative to what was used when determining the likelihood ratio.
This was done in a manner that minimized the sensitivity of the resulting q0 distribution to variations in
other fixed parameters such as the QCD Q2 scale. The resulting distributions of q0 are thus no longer
expected to follow the 12#21 form, as can be seen in Fig. 8(b).
Because the chi-square approximation is not valid in this case, the p-values are calculated using the

q0 distribution obtained directly from the Monte Carlo. An exponential is fitted to the tail region in
order to extrapolate to large q0 values, and the median value of q0 under the hypothesis of signal plus
background is determined using the same variation of the background parameters. It was found that the
median p-value of the background-only hypothesis, with the median computed under assumption of the
s+b hypothesis, is very similar to the original case where the QCD shape parameters are not varied and
the 12#21 distribution is used.
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We now can describe
effect of the boundary on
the distribution of the
test statistic.

The p-value of the hypothesized µ is

pµ = 1− F (qµ|µ) = 1− Φ
(√

qµ

)

(59)

and therefore the corresponding significance is

Zµ = Φ−1(1 − pµ) =
√
qµ . (60)

As with the statistic tµ above, if the p-value is found below a specified threshold α (often
one takes α = 0.05), then the value of µ is said to be excluded at a confidence level (CL) of
1− α. The upper limit on µ is the largest µ with pµ ≤ α. Here this can be obtained simply
by setting pµ = α and solving for µ. Using Eqs. (54) and (59) one finds

µup = µ̂+ σΦ−1(1− α) . (61)

For example, α = 0.05 gives Φ−1(1−α) = 1.64. Also as noted above, σ depends in general on
the hypothesized µ. Thus in practice one may find the upper limit numerically as the value
of µ for which pµ = α.

3.7 Distribution of q̃µ (upper limits)

Using the alternative statistic q̃µ defined by Eq. (16) and assuming the Wald approximation
we find

q̃µ =



















µ2

σ2 − 2µµ̂
σ2 µ̂ < 0 ,

(µ−µ̂)2
σ2 0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(62)

The pdf f(q̃µ|µ′) is found to be

f(q̃µ|µ′) = Φ
(

µ

′ − µ

σ

)

δ(q̃µ)

+















1
2

1√
2π

1√
q̃µ

exp
[

−1
2

(

√

q̃µ − µ−µ′

σ

)2
]

0 < q̃µ ≤ µ

2
/σ2 ,

1√
2π(2µ/σ) exp

[

−1
2
( q̃µ−(µ2−2µµ′)/σ2)2

(2µ/σ)2
]

q̃µ > µ

2
/σ2 .

(63)

The special case µ = µ

′ is therefore

f(q̃µ|µ) =
1

2
δ(q̃µ) +















1
2

1√
2π

1√
q̃µ
e

−q̃µ/2 0 < q̃µ ≤ µ

2
/σ2 ,

1√
2π(2µ/σ) exp

[

−1
2
( q̃µ+ µ2/σ2)2
(2µ/σ)2

]

q̃µ > µ

2
/σ2 .

(64)

The corresponding cumulative distribution is
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Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ

′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.
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Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.
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Figure 11: Distribution of the
upper limit on µ at 95% CL, as-
suming data corresponding to the
background-only hypothesis (see
text).
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Figure 12: The median (central
blue line) and error bands (±1σ in
green, ±2σ in yellow) for the 95%
CL upper limit on the strength pa-
rameter µ (see text).

6 Implementation in RooStats

Many of the results presented above are implemented or are being implemented in the
RooStats framework [15], which is a C++ class library based on the ROOT [16] and RooFit [17]
packages. The tools in RooStats can be used to represent arbitrary probability density func-
tions that inherit from RooAbsPdf, the abstract interfaces for probability density functions
provided by RooFit.

The framework provides an interface with minimization packages such as Minuit [18].
This allows one to obtain the estimators required in the the profile likelihood ratio: µ̂,

θ̂, and ˆ̂
θ. The Asimov dataset defined in Eq. (24) can be determined for a probability

density function by specifying the ExpectedData() command argument in a call to the
generateBinned method. The Asimov data together with the standard HESSE covariance
matrix provided by Minuit makes it is possible to determine the Fisher information matrix
shown in Eq. (28), and thus obtain the related quantities such as the variance of µ̂ and the
noncentrality parameter Λ, which enter into the formulae for a number of the distributions
of the test statistics presented above.

The distributions of the various test statistics and the related formulae for p-values, sensi-
tivities and confidence intervals as given in Sections 2, 3 and 4 are being incorporated as well.
RooStats currently includes the test statistics tµ, t̃µ, q0, and q,qµ, and q̃µ as concrete imple-
mentations of the TestStatistic interface. Together with the Asimov data, this provides
the ability to calculate the alternative estimate, σA, for the variance of µ̂ shown in Eq. (30).
The noncentral chi-square distribution is being incorporated into both RooStats and ROOT’s
mathematics libraries for more general use. The various transformations of the noncentral
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N events

P(
 N
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b-only s+b
b-only p-valueobs

more discrepant

The decision to reject the null hypothesis is based on the probability for data 
you didn’t get to agree less well with the hypothesis... 

‣ doesn’t sound very convincing when you put it that way.  Other criticisms:
● test statistic is “arbitrary” (not really, it is designed to be powerful against 

an alternative)
● what is the ensemble? Related to conditioning 
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Conditioning (cont.)
• The 1956 thought expt of David R. Cox focused the issue:

– Your procedure for weighing an object consists of 
flipping a coin to decide whether to use a weighing 
machine with a 10% error or one with a 1% error; and then 
measuring the weight.

– Then “surely” the error you quote for your measurement 
should reflect which weighing machine you actually used, 
and not the average error of the “whole space” of all 
measurements!measurements!

– But classic most powerful N-P hypothesis test uses the 
whole space!

• In more complicated situations, ancillary statistics do not 
exist, and it is not at all clear how to restrict the “whole 
space” to the relevant part for frequentist coverage.

• …in methods obeying the likelihood principle, in effect one 
conditions on the exact data obtained, giving up the 
frequentist coverage criterion for the guarantee of relevance.

Bob Cousins, CMS, 2008 51
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traditional one-sided and two-sided “diagonal lines” (both described in the F-C paper).
Section 2 addresses why coverage and power are not the end of the story for frequentist
intervals, something useful to have in the back of the mind for all further considerations.
Section 3 recalls the dangers of “goodness of fit intervals” as background for an argument
that central intervals have more of a gof aspect to them than to F-C intervals. Section 4
then explains the F-C flipflopping argument. Section 5 gives a somewhat personalized
historical view of antecedents to any current uses of DHL methods. There follows more
sections on a number of topical points.

2 Cox’s 1958 example where most powerful test is not most relevant test

The Neyman-Pearson framework of hypothesis testing underlies most of the frequentist
tests in HEP. For a given Type I error probability α (rejecting the null when it is true),
one looks for tests with maximum power against alternatives, specifically by minimizing
the Type II error rate β (accepting the null when it is false, i.e., when the alternative is
true). In the original N-P theory (and apparently in Neyman’s view his whole life), these
probabilities were calculated with respect to the ensemble of all possible outcomes of the
experiment, are hence are known as “unconditional” probabilities. In a famous paper
[6], Sir David Cox gave a simple convincing example in 1958 that the most powerful
test is not always the most relevant test. A version of the argument adapted to HEP
is as follows. (Cox’s arguments is often applied to “weighing machines”, although that
phrase is not actually in Ref. [6].)

Suppose that one is “weighing” an elementary particle, i.e., measuring the mass m of
a particle that happens to have two decay modes i, each with 50% branching fraction.
Suppose that the mass measurement for decay mode i = 1 has mass resolution with
rms σ1 = 10 GeV, and for decay mode i = 2, it is σ2 = 1 GeV. (The modes are
distinguishable; one could be decay to neutrals and the other to charged tracks.) One
is testing the null hypothesis that predicts the mass to be 100 GeV in a one-sided test
against larger alternative masses. We set the significance level to be 0.05. I.e., from the
data, we use a recipe to calculate a 95% C.L. lower limit on m and compare to 100
GeV.

We do the experiment and get one decay sampled randomly from the two modes, with
measured mass x sampled randomly from a Gaussian with the resolution for that mode.
Using the fact that the one-tailed probability for x > 1.64σ is 0.05 for a Gaussian, the
“obvious” recipe for testing the null hypothesis (m = 100 GeV) is:

• If decay mode 1 is observed, reject the null if x > 100 GeV + 1.64 σ1 = 116.4 GeV;
• If decay mode 2 is observed, reject the null if x > 100 GeV + 1.64 σ2 = 101.64 GeV.

I.e., we use the σ which is relevant for the mode actually observed in performing the
one-sided test. One says that the tail probabilities that are calculated are conditional
probabilities, calculated conditionally on the mode that was actually observed.
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It is easy to see that this is not the same result that one obtains by using the uncondi-
tional probability for obtaining x, which is the sum of two Gaussians (one with σ1 and

one with σ2), each weighted by 0.5.

Now let us consider a specific alternative hypothesis mA = 110 GeV, and ask what is

the power (1− β) of the above conditional test. The probability β of accepting the null

(100 GeV) when the alternative (110 GeV) is true is p(x < 116.4 |m = 110) ≈ 0.75 for

mode 1 and p(x < 101.64 |m = 110) ≈ 0 for mode 2. Recalling that the probability of

each mode is 50%, β ≈ 0.38 and the power is 1− β = 0.62.

Remarkably, it is easy to show that, among tests with significance level 0.05, this is not

the most powerful test for the whole sample space, i.e., for the unconditional ensemble

which includes both decay modes. A test which is more powerful against the alternative

110 GeV is:

• If decay mode 1 is observed, reject the null if x > 100 GeV + 1.28 σ1 = 112.8 GeV;

• If decay mode 2 is observed, reject the null if x > 100 GeV + 5 σ2 = 105 GeV.

The significance level is again 0.05. The Type 1 errors are not divided equally between

the two modes, but rather occur ∼ 10% of the time in decay mode 1, and by comparison

negligibly in decay mode 2.

The probability β of accepting the null (100 GeV) when the alternative mA (110 GeV)

is true is p(x < 112.8 |m = 110) ≈ 0.4 for mode 1 and p(x < 105 |m = 110) ≈ 0 for

mode 2. Recalling that the probability of each mode is 50%, β ≈ 0.2 and the power is

0.8.

Thus, if one is to argue that the most powerful (unconditional) test should always be

used, then one must argue against the first test based on conditional probabilities. Cox

argues the opposite: “If, however, our object is to say ‘what can we learn from the data

we have’, the unconditional test is surely no good.”

This example is particularly clean because the data i (the index of the observed mode)

is a random observable which contains information about the precision of the measure-

ment but no information about the value of m. Such a quantity is called an ancillary
statistic. Among modern frequentist statisticians, it is nearly universally accepted that

one should used probabilities which are conditional on such an ancillary statistic in or-

der to ensure making inferences relevant to the observed data. In effect, one partitions

the unconditional ensemble into partitions with different values of the ancillary statis-

tic, and uses the partition relevant to the data obtained for all calculations of coverage,

optimality, etc. This comes at a cost of power in the unconditional ensemble.

This line of reasoning (and the name ancillary) owes much to Sir Ronald Fisher, with

whom Neyman had a number of career-long disagreements. On this argument, modern

statisticians side with Fisher, and I think all high energy physicists would as well, namely

quoting the uncertainty appropriate for the “measuring device” that was actually used
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Likelihood Principle

• As noted above, in both Bayesian methods and likelihood-ratio 
based methods, the probability (density) for obtaining the data at 
hand is used (via the likelihood function), but probabilities for 
obtaining other data are not used!

• In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.

• This difference is captured by the Likelihood Principle*: If two 
experiments yield likelihood functions which are proportional, then experiments yield likelihood functions which are proportional, then 
Your inferences from the two experiments should be identical.

• L.P. is built in to Bayesian inference (except e.g., when Jeffreys 
prior leads to violation).  

• L.P. is violated by p-values and confidence intervals.

• Although practical experience indicates that the L.P. may be too 
restrictive, it is useful to keep in mind.  When frequentist results 
“make no sense” or “are unphysical”, in my experience the 
underlying reason can be traced to a bad violation of the L.P.

*There are various versions of the L.P.,  strong and weak forms, etc.
Bob Cousins, CMS, 2008 46
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Likelihood-based methods settle between two conflicting desires:
‣ We want to obey the likelihood principle because it implies a lot of nice 

things and sounds pretty attractive
‣ We want nice frequentist properties (and the only way we know to 

incorporate those properties “by construction” will violate the likelihood 
principle)

Goal of Likelihood-based Methods

187

x

θ

θ0

θ1

θ2

f(x|θ)

The asymptotic results give us 
a a way to approximately cover 
while simultaneously obeying 
the likelihood principle and 
NOT using a prior
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Some personal history
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Archbishop of Canterbury Thomas 
Cranmer (born: 1489, executed: 
1556) author of the “Book of 
Common Prayer”

Two centuries later (when this Book 
had become an official prayer book of 
the Church of England) Thomas Bayes 
was a non-conformist minister 
(Presbyterian) who refused to use 
Cranmerʼs book
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Axioms of Probability

These Axioms are a mathematical starting 
point for probability and statistics 
1. probability for every element, E, is non-

negative
2. probability for the entire space of 

possibilities is 1
3. if elements Ei are disjoint, probability is 

additive

Consequences:

190

Kolmogorov 

axioms (1933)
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Different definitions of Probability
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http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1

|�→ | ↑�|2 =
1
2

Frequentist
‣ defined as limit of long term frequency
‣ probability of rolling a 3 := limit of (# rolls with 3 / # trials)

● you don’t need an infinite sample for definition to be useful
●  sometimes ensemble doesn’t exist

• eg. P(Higgs mass = 120 GeV), P(it will snow tomorrow)
‣ Intuitive if you are familiar with Monte Carlo methods
‣ compatible with orthodox interpretation of probability in Quantum 

Mechanics.  Probability to measure spin projected on x-axis if spin of beam 
is polarized along +z

Subjective Bayesian
‣ Probability is a degree of belief (personal, subjective)

● can be made quantitative based on betting odds
● most people’s subjective probabilities are not coherent and do not obey 

laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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Bayes’ Theorem
Bayes’ theorem relates the conditional and 
marginal probabilities of events A & B

# ▪" P(A) is the prior probability or marginal probability of A. It is "prior" in the sense 
that it does not take into account any information about B.

" ▪" P(A|B) is the conditional probability of A, given B. It is also called the posterior 
probability because it is derived from or depends upon the specified value of B.

" ▪" P(B|A) is the conditional probability of B given A.
" ▪" P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

192

http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Marginal_probability
http://en.wikipedia.org/wiki/Marginal_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant
http://en.wikipedia.org/wiki/Normalizing_constant
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... in pictures (from Bob Cousins)
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P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7
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P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7

Don’t forget about “Whole space”    .  I will drop it from the 
notation typically, but occasionally it is important.

Ω
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Louis’s Example
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Bob’s Example
A b-tagging algorithm gives a curve like this

One wants to decide where to cut and to optimize analysis
‣ For some point on the curve you have:

● P(btag| b-jet),               i.e., efficiency for tagging b’s 
● P(btag| not a b-jet),      i.e., efficiency for background 
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Now that you know:
‣ P(btag| b-jet),              i.e., efficiency for tagging b’s 
‣ P(btag| not a b-jet),      i.e., efficiency for background 

Question: Given a selection of jets with btags, what fraction of them are 
b-jets?  

‣ I.e., what is P(b-jet | btag) ? 

Answer: Cannot be determined from the given information! 
‣ Need to know P(b-jet): fraction of all jets that are b-jets.  
‣ Then Bayes’ Theorem inverts the conditionality: 

● P(b-jet | btag) ∝P(btag|b-jet) P(b-jet) 

Note, this use of Bayes’ theorem is fine for Frequentist

196

Bob’s example of Bayes’ theorem



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011 197

An different example of Bayes’ theorem
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An analysis is developed to search for the Higgs boson
‣ background expectation is 0.1 events

● you know P(N | no Higgs)
‣ signal expectation is 10 events

● you know P(N | Higgs )
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An different example of Bayes’ theorem
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An analysis is developed to search for the Higgs boson
‣ background expectation is 0.1 events

● you know P(N | no Higgs)
‣ signal expectation is 10 events

● you know P(N | Higgs )
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An analysis is developed to search for the Higgs boson
‣ background expectation is 0.1 events

● you know P(N | no Higgs)
‣ signal expectation is 10 events

● you know P(N | Higgs )

Question: one observes 8 events,  what is P(Higgs | N=8) ? 
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An analysis is developed to search for the Higgs boson
‣ background expectation is 0.1 events

● you know P(N | no Higgs)
‣ signal expectation is 10 events

● you know P(N | Higgs )

Question: one observes 8 events,  what is P(Higgs | N=8) ? 

Answer: Cannot be determined from the given information! 
‣ Need in addition: P(Higgs)

● no ensemble!  no frequentist notion of P(Higgs)
● prior based on degree-of-belief would work, but it is subjective.  

This is why some people object to Bayesian statistics for 
particle physics

197

An different example of Bayes’ theorem
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Change of variable x, change of parameter θ

• For pdf p(x|θ) and change of variable from x to y(x): 

p(y(x)|θ) = p(x|θ) / |dy/dx|. 

Jacobian modifies probability density, guaranties that            

P( y(x1)< y < y(x2) )  =  P(x1 < x < x2 ), i.e., that

Probabilities are invariant under change of variable x.

– Mode of probability density is not invariant (so, e.g., – Mode of probability density is not invariant (so, e.g., 

criterion of maximum probability density is ill-defined).

– Likelihood ratio is invariant under change of variable x. 

(Jacobian in denominator cancels that in numerator).

• For likelihood !(θ) and reparametrization from θ to u(θ):

!(θ)  =  !(u(θ))   (!).

– Likelihood ! (θ) is invariant under reparametrization of 

parameter θ (reinforcing fact that !"is not a pdf in θ).
Bob Cousins, CMS, 2008 15
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Probability Integral Transform

“…seems likely to be one of the most fruitful conceptions 

introduced into statistical theory in the last few years”   

− Egon Pearson (1938) 

Given continuous x ∈ (a,b), and its pdf p(x), let

y(x) = !a
x 

p(x′) dx′ .

Then y ∈ (0,1) and p(y) = 1 (uniform) for all y. (!)

So there always exists a metric in which the pdf is uniform.  So there always exists a metric in which the pdf is uniform.  

Many issues become more clear (or trivial) after this 

transformation*. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(µ) for parameter 

µ is equivalent to the choice of the metric f(µ) in which 

the pdf is uniform.  This is a deep issue, not always 

recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008 16
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Physicist Sir Harold Jeffreys had the clever 
idea that we can “objectively” create a flat 
prior uniform in a metric determined by 

Adds “minimal information” in a precise 
sense, and results in:

The Jeffreys Prior

200

It has the key feature that it is invariant under reparameterization of the 
parameter vector . In particular, for an alternate parameterization      we 
can derive

I(θ)

Unfortunately, the Jeffreys 
prior in multiple 
dimensions causes some 
problems, and in certain 
circumstances gives 
undesirable answers.

http://en.wikipedia.org/w/index.php?title=Reparameterization&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Reparameterization&action=edit&redlink=1
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Jeffreys’s Prior
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  RooWorkspace w("w");
  w.factory("Uniform::u(x[0,1])");
  w.factory("mu[100,1,200]");
  w.factory("ExtendPdf::p(u,mu)");

  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  //  w.defineSet("obs2","n");

  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

π(�θ) ∝
�

det I
�
�θ
�
. (I (θ))i,j = −E

�
∂2

∂θi ∂θj
ln f(X; θ)

���� θ
�
.

where the final equality above exploits the fact that the estimators for the parameters are
equal to their hypothesized values when the likelihood is evaluated with the Asimov data set.

A standard way to find σ is by estimating the matrix of second derivatives of the log-
likelihood function (cf. Eq. (18)) to obtain the inverse covariance matrix V −1, inverting to
find V , and then extracting the element V00 corresponding to the variance of µ̂. The second
derivative of lnL is

∂2 lnL

∂θj∂θk
=

N
∑

i=1

[

(

ni

νi
− 1

)

∂2νi
∂θj∂θk

−
∂νi
∂θj

∂νi
∂θk

ni

ν2i

]

+
M
∑

i=1

[

(

mi

ui
− 1

)

∂2ui
∂θj∂θk

−
∂ui
∂θj

∂ui
∂θk

mi

u2i

]

. (27)

From (27) one sees that the second derivative of lnL is linear in the data values ni and mi.
Thus its expectation value is found simply by evaluating with the expectation values of the
data, which is the same as the Asimov data. One can therefore obtain the inverse covariance
matrix from

V −1
jk = −E

[

∂2 lnL

∂θj∂θk

]

= −
∂2 lnLA

∂θj∂θk
=

N
∑

i=1

∂νi
∂θj

∂νi
∂θk

1

νi
+

M
∑

i=1

∂ui
∂θj

∂ui
∂θk

1

ui
. (28)

In practice one could, for example, evaluate the the derivatives of lnLA numerically, use this
to find the inverse covariance matrix, and then invert and extract the variance of µ̂. One can
see directly from Eq. (28) that this variance depends on the parameter values assumed for
the Asimov data set, in particular on the assumed strength parameter µ′, which enters via
Eq. (22).

Another method for estimating σ (denoted σA in this section to distinguish it from the
approach above based on the second derivatives of lnL) is to find find the value that is neces-
sary to recover the known properties of −λA(µ). Because the Asimov data set corresponding
to a strength µ′ gives µ̂ = µ′, from Eq. (17) one finds

− 2 lnλA(µ) ≈
(µ− µ′)2

σ2
= Λ . (29)

That is, from the Asimov data set one obtains an estimate of the noncentrality parameter Λ
that characterizes the distribution f(qµ|µ′). Equivalently, one can use Eq. (29) to obtain the
variance σ2 which characterizes the distribution of µ̂, namely,

σ2
A =

(µ− µ′)2

qµ,A
, (30)

where qµ,A = −2 lnλA(µ). For the important case where one wants to find the median
exclusion significance for the hypothesis µ assuming that there is no signal, then one has
µ′ = 0 and therefore

σ2
A =

µ2

qµ,A
, (31)

11

Jeffreys’s Prior is an “objective” prior based on formal rules
(it is related to the Fisher Information and the Cramér-Rao bound]

Eilam, Glen, Ofer, and I showed in arXiv:1007.1727 that the Asimov 
data provides a fast, convenient way to calculate the Fisher Information

Use this as basis to calculate 
Jeffreys’s prior for an arbitrary PDF! Validate on a Poisson

Analytic
RooStats numerical

http://arXiv.org/abs/arXiv:1007.1727
http://arXiv.org/abs/arXiv:1007.1727
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Jeffreys’s Prior
Validate Jeffreys’s Prior on a Gaussian µ, σ, and (µ,σ)

202

 RooWorkspace w("w");
  w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,0,10])");
  w.factory("n[10,.1,200]");
  w.factory("ExtendPdf::p(g,n)");
  w.var("n")->setConstant();

  w.var("sigma")->setConstant();
  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
  

Analytic
RooStats numerical

Analytic
RooStats numerical
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Reference Priors

Refrerence priors are 
another type of “objective” 
priors, that try to save 
Jeffreys’ basic idea.

207

http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
See Luc Demortier’s PhyStat 2005 proceedings

http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
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The Bayesian Solution
Bayesian solution generically have a prior for the parameters of 
interest as well as nuisance parameters
‣ 2010 recommendations largely echoes the PDG’s stance.

Recommendation: When performing a Bayesian analysis one should separate 
the objective likelihood function from the prior distributions to the extent possible. 

Recommendation: When performing a Bayesian analysis one should investigate 
the sensitivity of the result to the choice of priors. 

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading 
results. 

Recommendation: When performing a Bayesian analysis for a single parameter 
of interest, one should attempt to include Jeffreys's prior in the sensitivity analysis.

208
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Words of wisdom on Bayesian methods

209

a frequentist context (eg. Eq. 3). Priors for the parameters of interest can have a larger
influence on the final inference, thus, in order to compare with frequentist methods it is
important to separate these two components as much as possible.

In order to understand the sensitivity to the choice of priors, it is recommended to repeat
the analysis with several choices of priors. As Michael Goldstein said “Sensitivity Analysis is
at the heart of scientific Bayesianism.”

It is common practice in HEP to use flat priors. This follows partially from the intuitive
notion that flat priors are non-informative. One should absolutely not be fooled by this
intuitive picture, as flat priors are not invariant to reparametrizing the model, and thus are
informative. In many dimensions, uniform priors are especially dangerous, as volume effects
push probability away from the origin.

The conceptual goal of choosing a prior in an objective way that adds as little information
to the resulting inference as possible has been developed significantly by the statistical com-
munity. This was first done by Jeffreys (a physicist and statistician), and is a recommended
prior to try in one-dimensional problems (note, it can be improper). In high-dimensional
problems Jeffrey’s rule has problems. The state-of-the art “objective” priors (eg. priors cho-
sen by formal rules) are the reference priors of Bernardo and collaborators. While this is an
area for our field to investigate, no general tools are available.

It is also worth noting that a Bayesian method has frequentist properties (and vice versa).
So even though a method is Bayesian, one can still quantify its coverage or calibrate it in a
frequentist way.

To support the points raised above, here are some quotes from professional statisticians
(taken from selected PhyStat talks and selections from Bob Cousins lectures):

• “Perhaps the most important general lesson is that the facile use of what appear to be
uninformative priors is a dangerous practice in high dimensions.” – Brad Effron

• “meaningful prior specification of beliefs in probabilistic form over very large possibility
spaces is very difficult and may lead to a lot of arbitrariness in the specification.” –
Michael Goldstein

• “Sensitivity Analysis is at the heart of scientific Bayesianism.” – Michael Goldstein

• “Non-subjective Bayesian analysis is just a part – an important part, I believe of a
healthy sensitivity analysis to the prior choice...” J.M. Bernardo

• “Objective Bayesian analysis is the best frequentist tool around” – Jim Berger

Recommendation: When performing a Bayesian analysis one should separate the objective
likelihood function from the prior distributions to the extent possible.

Recommendation: When performing a Bayesian analysis one should investigate the sensi-
tivity of the result to the choice of priors.

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading results.

Recommendation: When performing a Bayesian analysis for a single parameter of interest,
one should attempt to include Jeffreys’s prior in the sensitivity analysis.

In addition to Bayesian credible intervals, one can use Bayes factors as an alternative to
p-values for hypothesis tests. Bayes factors have not been used extensively in HEP, but it is
an area worth further investigation.

5
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Methods based on the Neyman-Construction always cover.... by 
construction.

‣ this approach violates the likelihood principle
Bayesian methods obey likelihood principle, but do not 
necessarily cover
‣ that doesn’t mean Bayesians shouldn’t care about coverage

Coverage can be thought of as a calibration of our statistical 
apparatus. [explain under-/over-coverage]

Bayesian and Frequentist results answer different questions
‣ major differences between them may indicate severe coverage 
problems and/or violations of the likelihood principle

210

Jim Berger:

Bob Cousins, CosmoStats 2009 31

-Jim Berger



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Academic Training, Statistics, April 2011

Joke

211

“Bayesians address the question everyone is 
interested in, by using assumptions no-one 
believes”

“Frequentists use impeccable logic to deal 
with an issue of no interest to anyone”

-L. Lyons
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Profile Likelihood Ratio & MINUIT
Rolke, Lopez, Conrad published a method 
based on the profile likelihood ratio (NIM A551) 
before the term was used much in HEP
‣ noticed identical results with MINOS limits, 

extensive numerical tests
MINUIT long writeup explains algorithm
‣ limits based on extreme values of the 

contour
‣ algorithm does not sound much like the 

profile likelihood ratio, 

But it’s not hard to show extreme points must lie 
on profile constraint and lie on same likelihood 
contour

214

Signal Rate

P
ro

fi
le

 L
ik

e
lih

o
o

d

0 2 4 6 8 10 12 14

9
1

0
1

1
1

2
1

3
1

4

data can be represented as one or more histograms. Using the method in an unbinned analysis
is a straightforward extension.

Suppose for each event in the signal sample one measures a variable x and uses these
values to construct a histogram n = (n1, . . . , nN ). The expectation value of ni can be written

E[ni] = µsi + bi , (2)

where the mean number of entries in the ith bin from signal and background are

si = st ot

∫

bin i
fs(x;θs) dx , (3)

bi = bt ot

∫

bin i
fb(x;θb) dx . (4)

Here the parameter µ determines the strength of the signal process, with µ = 0 corresponding
to the background-only hypothesis and µ = 1 being the nominal signal hypothesis. The
functions fs(x;θs) and fb(x;θb) are the probability density functions (pdfs) of the variable
x for signal and background events, and θs and θb represent parameters that characterize
the shapes of pdfs. The quantities st ot and bt ot are the total mean numbers of signal and
background events, and the integrals in (3) and (4) represent the probabilities for an event to
be found in bin i. Below we will use θ = (θs,θb, bt ot ) to denote all of the nuisance parameters.
The signal normalization st ot is not, however, an adjustable parameter but rather is fixed to
the value predicted by the nominal signal model.

In addition to the measured histogram n one often makes further subsidiary measurements
that help constrain the nuisance parameters. For example, one may select a control sample
where one expects mainly background events and from them construct a histogram of some
chosen kinematic variable. This then gives a set of values m = (m1, . . . ,mM ) for the number
of entries in each of the M bins. The expectation value of mi can be written

E[mi] = ui(θ) , (5)

where the ui are calculable quantities depending on the parameters θ. One often constructs
this measurement so as to provide information on the background normalization parameter
bt ot and also possibly on the signal and background shape parameters.

The likelihood function is the product of Poisson probabilities for all bins:

L(µ,θ) =
N
∏

j= 1

(µsj + bj)nj

nj!
e

−(µsj+ bj)
M
∏

k= 1

u

mk
k

mk!
e

−uk
. (6)

To test a hypothesized value of µ we consider the profile likelihood ratio

λ(µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (7)

Here ˆ̂
θ in the numerator denotes the value of θ that maximizes L for the specified µ, i.e.,

it is the conditional maximum-likelihood (ML) estimator of θ (and thus is a function of µ).

4
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Taken from Wouter Verkerke, NIKHEF 

The Profile Likelihood Ratio in RooFit/RooStats

• Very easy to perform an analysis with 
the profile likelihood ratio now

• MINOS error box and profile likelihood 
give same error
for multi-dimensional likelihood

215

• An early request from RooStats to RooFit was to 
provide a profile likelihood ratio

root [0] RooAbsPdf* pdf = ...;
root [1] RooRealVar* parameter = ...;
root [2] RooAbsData* data = ...;

root [3] nll = pdf->createNLL(*data)
root [4] profile = nll->createProfile(*parameter)
root [5] frame = parameter->frame()
root [6] profile->plotOn(frame)
root [7] frame->Draw()
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Decision Theory
One of the deficiencies of the Neyman-Pearson approach is 
that one must specify the size of the test 
‣ But where does    come from?

● is it purely conventional or is there a reason?

A great deal of literature related to statistics (and economics, 
etc.) is devoted to making decisions. 
‣ need to consider Utility or Risk of different outcomes

In the context of decision and utility theory there can be a 
justification, but this is rarely done in particle physics
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Floating mass & look-elsewhere effect
In the floating mass case, it is clear that there is a degradation in 
significance due to the look-elsewhere effect (aka “trials factor”)

‣ naive estimate of factor is Range/(mass resolution)
Formally, the conditions required for Wilks’s theorem do not hold 
because floating mass parameter makes no sense in a background-only 
model.  See a Higgs example below.

The effect depends on range that the fit considers (non-local): eg. a 120 
GeV Higgs pays price for considering 1TeV
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fixed mass floating mass

For another example, see L. Demortier, p-vaues: http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf
http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf
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Decision Theory
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From Fred James lectures
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Decisions: Bayesian & Frequentist

Structure of P(x|H0) & P(x|H1) puts limits 
on allowable ranges of alpha, beta
‣ Bayesians want to minimize 

expected risk based on priors and 
risk/utility of outcomes

Frequentists don’t have priors to work 
with, so they only have risk/utility in two 
situations
‣ “minimax” approach aims to 

minimize maximum risk 
● most conservative
● paranoid for games against nature

Frequentist choice of α interpreted in 
Bayesian framework implies this ratio:
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l1(1− µ)P (X|H1) < l0µP (X|H0)
P (X|H1)
P (X|H0)

<
l0µ

l1(1− µ)OD

OA
=

l0µ

l1(1− µ)

F. James, Ch. 6
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Type III Systematics
Type III Systematics are related to variations in inference from 
uncertainty in the  overall theoretical framework
‣ Bayesian approach: assign priors over the “framework space”
‣ Sinervo suggests Frequentist can’t incorporate them because one 

cannot find an ensemble associated to the theories
● but theoretical framework can be thought of as an additional 

nuisance parameter (possibly discrete) - can be incorporated!
● only need an ensemble of some observable if one wants to 

constrain the space of the theories, not to incorporate them
● if theoretical framework influences our experimental result, then we 

don’t really know what we are doing!
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Taken from Cousins’ Phystat05 talk:
• A.W.F. Edwards (in Kalbfleisch 1970): “Let me say at once that I can 

see no reason why it should always be possible to eliminate 
nuisance parameters.  Indeed, one of the many objections to 
Bayesian inference is that is always permits this elimination.''


