
AV – compilers, sycl::vec, ggttgggg 07 March 2023 1

Madgraph4gpu WIP:
compilers, sycl::vec, ggttgggg

Andrea Valassi (CERN)

Madgraph on GPU development meeting, 7th March 2023

https://indico.cern.ch/event/1262942/

https://indico.cern.ch/event/1262942/


AV – compilers, sycl::vec, ggttgggg 07 March 2023 2

Compilers

• As reported two weeks, moved from CentOS7 to Alma9 and upgraded to CUDA12.0
– Using CUDA12.0 and gcc11.3 (native Alma9) as baseline, was CUDA11.7 and gcc11.2

– Took the opportunity to also check a few new compilers: gcc12.1, clang14, icpx2023

• gcc has no surprises: gcc11.3 and gcc12.1 are very similar to gcc11.2
– Note: aggressive inlining is generally worse than the default no inlining

• clang14 is a bit better than gcc without inlining?
– And it is especially x1.5 to x2 better with aggressive inlining (-flto emulation) for ggttgg

• icpx2023 (based on clang16) is very similar to clang14, or very slightly better?
– With aggressive inlining it gives the same extra speedups as clang14

– (Note: dpcpp not supported anymore? “Please use icpx –fsycl instead”...)

• A few comments
– There is clearly work to do on the C++ implementation in cudacpp

• inlining gives a speedup sometimes, but not always

• inlining gives much longer build times (I never attempted ggttggg, only ggttgg at most)

• profiling/disassembling gcc vs clang may be interesting

– The extra x1.5/x2 speedups in inlined icpx are compatible to those observed by Nathan?
• the speed of the sycl implementation comes from both the code and the compiler I imagine



AV – compilers, sycl::vec, ggttgggg 07 March 2023 3

A quick look at sycl::vec

• I understand Nathan’s SIMD implementation uses sycl::vec

– This type looks remarkably close to the compiler vector extensions (CVE) used in cudacpp

• I checked, and sycl::vec is indeed based on clang compiler vector extensions

– Using CVEs directly should give the same performance

– And more programming flexibility (e.g. for mixed double/float types in the color matrix)



AV – compilers, sycl::vec, ggttgggg 07 March 2023 4

A quick look at ggttgggg

• Again motivated by some interesting comments by Nathan two weeks ago

– I added the generation of ggttgggg (2 to 6 process) to cudacpp

• Code generation:

– standalone ggttgggg for cudacpp was successfully generated (took 10-15 minutes?)

– madevent ggttgggg could not be generated (out of memory IIRC)

• Code build (for standalone ggttgggg):

– gcc builds all crash (probably out of memory, but it seems like a bug worth reporting)

– clang builds without inlining succeed (36 hours?), tests of the code are successful

– clang builds with inlining crash (within one hour?), probably out of memory

– cuda builds just take too long (I killed them after 7 days...)

• I assume that code generation and build will be easier when we split kernels...

– Many small functions (many small files?!) rather than one 32MB source code function...


