Performance of the SpecMAT active target in a strong magnetic field Oleksii Poleshchuk HIE-ISOLDE workshop London, 24-26 May 2023 ### Outline Motivation to build SpecMAT and its overview Characterisation of the SpecMAT active target A (d,3He) reaction for SpecMAT ### SpecMAT # Motivation and Overview ### Physics motivation ## Characterisation of the SpecMAT active target Characterisation of the array with 30 detectors, Measurement vs G4 #### **Linear source (Experimental condition)** ### Characterisation of the array with 45 detectors, G4 ### SpecMAT field cage ### Measured α -particle track in Ar95%CF₄5% @ 0.4mbar ### Measured α -particle spectra in Ar95%CF₄5% @ 0.4mbar A 4-alpha source was used for the characterisation: ¹⁴⁸Gd, ²³⁹Pu, ²⁴¹Am, ²⁴⁴Cm | Griaract | CHSallon. | Ou, it | i, / \ \ | OIII | |--------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Dete
configu | | Pressur | e of ArCF
mbar | 4(10%), | | 3 sectors in 2.5T | + scint. | | | | | 3 sectors in 0T | + scint. | 100 / 250 / 350 | | | | Pressure
, mbar | ¹⁴⁸ Gd
3182
keV | ²³⁹ Pu
5155
keV | ²⁴¹ Am
5488
keV | ²⁴⁴ Cm
5805
keV | | | | Range, mm | | | | 100 | 190 | 369.7 | 404.496 | 438.848 | | 250 | 76.84 | 147.9 | 161.797 | 175.537 | | 350 | 54.73 | 105.63 | 115.568 | 125.38 | SpecMAT installed in ISS Measured α -particle track in B=2.5T Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar) Measured α -particle track in B=2.5T Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar) Measured α -particle track in B=2.5T Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar) Measured α -particle track in B=2.5T ### Physics perspectives Simulation of a ⁷⁰Zn(d, ³He)⁶⁹Cu reaction ### Physics case Shell structure of odd Cu isotopes via nucleon transfer reactions on Zn: - ⁷⁰Zn(d,³He)⁶⁹Cu - ⁷²Zn(d,³He)⁷¹Cu - ⁷⁴Zn(d,³He)⁷³Cu - ⁷⁶Zn(d,³He)⁷⁵Cu Z=50 Protons in ⁷¹Cu* Z, number of protons #### ⁷⁰Zn(d, ³He)⁶⁹Cu reaction simulation erc in G4 for SpecMAT + B-field = **Table 5.1:** Estimated total cross section of the low-lying states in ⁶⁹Cu. | State | Energy (MeV) | Estimated σ_{tot} (mb) | |-------------|--------------|-------------------------------| | $-3/2^{-}$ | g.s. 0 | 1.506 | | $(1/2^{-})$ | 1.11 | 0.14 | | $5/2^{-}$ | 1.23 | 0.083 | | $7/2^{-}$ | 1.71 | 0.349 | | $7/2^{-}$ | 1.87 | 0.074 | | $7/2^{-}$ | 3.35 | (0.387) | | $7/2^{-}$ | 3.7 | 0.066 | | $7/2^{-}$ | 3.94 | 0.046 | 10⁻⁴ 10⁻⁵ 120 160 100 140 - DWBA g.s. 3/2-- DWBA 1.11 MeV 1/2- DWBA 1 71 MeV 7/2 DWBA 1.87 MeV 7/2- DWBA 3 70 MeV 7/2 ${\varphi_{\text{CM}}}^{\text{69}}\text{Cu CM (deg)}$ Cross section data from [P. Morfouace https://doi.org/10.1103/PhysRevC.93.064308], DWBA by J.C. Yang Morfouace 1.11 MeV (1/2-Morfouace 1.23 MeV 5/2- Morfouace 3.70 MeV 7/2- Morfouace 1 71 MeV 7/2- Morfouace 1.87 MeV 7/2-Morfouace 3.35 MeV 7/2- $d\sigma/d\Omega_{CM}$ (mb/sr) ### 4T no MICROMEGAS binning Track parameters from G4 0T with MICROMEGAS binning Track parameters (θ, L) from fitting ### 4T no MICROMEGAS binning Track parameters from G4 0T with MICROMEGAS binning Track parameters (θ, L) from fitting ### 4T no MICROMEGAS binning Track parameters from G4 #### **OT with MICROMEGAS binning** #### 4T no MICROMEGAS binning ### Analysis based on full-track length Excitation spectra #### Proposing a new analysis method #### 4T no MICROMEGAS binning #### Excitation spectra obtained with the new analysis method ### Summary - ✓ The SpecMAT active target was designed, built and characterised. - ✓ The detector was characterised in 0T and in 2.5T. - ✓ An experimentally verified set of simulations was developed. - ✓ A new fitting algorithm for spiral tracks was developed - ✓ A novel analysis method of the spiral tracks was proposed. - ✓ Online commissioning is planned for July 2023 with ²²Ne@7.5-10 MeV/u Thank you for your attention!