

Performance of the SpecMAT active target in a strong magnetic field

Oleksii Poleshchuk

HIE-ISOLDE workshop

London, 24-26 May 2023

Outline

Motivation to build SpecMAT and its overview

Characterisation of the SpecMAT active target

A (d,3He) reaction for SpecMAT

SpecMAT

Motivation and Overview

Physics motivation

Characterisation of the SpecMAT active target

Characterisation of the array with 30 detectors,

Measurement vs G4

Linear source (Experimental condition)

Characterisation of the array with 45 detectors, G4

SpecMAT field cage

Measured α -particle track in Ar95%CF₄5% @ 0.4mbar

Measured α -particle spectra in Ar95%CF₄5% @ 0.4mbar

A 4-alpha source was used for the characterisation: ¹⁴⁸Gd, ²³⁹Pu, ²⁴¹Am, ²⁴⁴Cm

Griaract	CHSallon.	Ou, it	i, / \ \	OIII
Dete configu		Pressur	e of ArCF mbar	4(10%),
3 sectors in 2.5T	+ scint.			
3 sectors in 0T	+ scint.	100 / 250 / 350		
Pressure , mbar	¹⁴⁸ Gd 3182 keV	²³⁹ Pu 5155 keV	²⁴¹ Am 5488 keV	²⁴⁴ Cm 5805 keV
		Range, mm		
100	190	369.7	404.496	438.848
250	76.84	147.9	161.797	175.537
350	54.73	105.63	115.568	125.38

SpecMAT installed in ISS

Measured α -particle track in B=2.5T

Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar)

Measured α -particle track in B=2.5T

Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar)

Measured α -particle track in B=2.5T

Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar)

Measured α -particle track in B=2.5T

Physics perspectives

Simulation of a ⁷⁰Zn(d, ³He)⁶⁹Cu reaction

Physics case

Shell structure of odd Cu isotopes via nucleon transfer reactions on Zn:

- ⁷⁰Zn(d,³He)⁶⁹Cu
- ⁷²Zn(d,³He)⁷¹Cu
- ⁷⁴Zn(d,³He)⁷³Cu
- ⁷⁶Zn(d,³He)⁷⁵Cu

Z=50

Protons in ⁷¹Cu*

Z, number of protons

⁷⁰Zn(d, ³He)⁶⁹Cu reaction simulation erc in G4 for SpecMAT

+ B-field =

Table 5.1: Estimated total cross section of the low-lying states in ⁶⁹Cu.

State	Energy (MeV)	Estimated σ_{tot} (mb)
$-3/2^{-}$	g.s. 0	1.506
$(1/2^{-})$	1.11	0.14
$5/2^{-}$	1.23	0.083
$7/2^{-}$	1.71	0.349
$7/2^{-}$	1.87	0.074
$7/2^{-}$	3.35	(0.387)
$7/2^{-}$	3.7	0.066
$7/2^{-}$	3.94	0.046

10⁻⁴ 10⁻⁵ 120 160 100 140

- DWBA g.s. 3/2-- DWBA 1.11 MeV 1/2-

DWBA 1 71 MeV 7/2

DWBA 1.87 MeV 7/2-

DWBA 3 70 MeV 7/2

 ${\varphi_{\text{CM}}}^{\text{69}}\text{Cu CM (deg)}$ Cross section data from [P. Morfouace

https://doi.org/10.1103/PhysRevC.93.064308], DWBA by J.C. Yang

 Morfouace 1.11 MeV (1/2-Morfouace 1.23 MeV 5/2-

Morfouace 3.70 MeV 7/2-

Morfouace 1 71 MeV 7/2-

Morfouace 1.87 MeV 7/2-Morfouace 3.35 MeV 7/2-

 $d\sigma/d\Omega_{CM}$ (mb/sr)

4T no MICROMEGAS binning Track parameters from G4

0T with MICROMEGAS binning Track parameters (θ, L) from fitting

4T no MICROMEGAS binning Track parameters from G4

0T with MICROMEGAS binning Track parameters (θ, L) from fitting

4T no MICROMEGAS binning Track parameters from G4

OT with MICROMEGAS binning

4T no MICROMEGAS binning

Analysis based on full-track length Excitation spectra

Proposing a new analysis method

4T no MICROMEGAS binning

Excitation spectra obtained with the new analysis method

Summary

- ✓ The SpecMAT active target was designed, built and characterised.
- ✓ The detector was characterised in 0T and in 2.5T.
- ✓ An experimentally verified set of simulations was developed.
- ✓ A new fitting algorithm for spiral tracks was developed
- ✓ A novel analysis method of the spiral tracks was proposed.
- ✓ Online commissioning is planned for July 2023 with ²²Ne@7.5-10 MeV/u

Thank you for your attention!