

Brief history of the SPEDE spectrometer

Project time line

Brief history of the SPEDE spectrometer

Project time line

Brief history of the SPEDE spectrometer

Project time line

The SPEDE concept

The SPEDE spectrometer

- Conversion electron spectrometer
- Used in conjunction with the MINIBALL germanium array and CD detector
- Allows simultaneous γ -ray and conversion electron spectroscopy using radioactive beam
- Target chamber designed for the SPEDE spectrometer

P. Papadakis et al. Eur. Phys. J. A (2018) 54: 42

The SPEDE spectrometer

The SPEDE silicon detector

- 24 pixels
- Silicon design is decided based on the simulations
- Thickness 500 μ m
- AMPTEK A250F/NF used as preamplifiers
- Silicon is cooled down with ethanol near
 -5 °C temperature
- A typical bias voltage is +90 V

P. Papadakis et al. Eur. Phys. J. A (2018) 54: 42

The SPEDE silicon detector

- 24 pixels
- Silicon design is decided based on the simulations
- Thickness 500 μ m
- AMPTEK A250F/NF used as preamplifiers
- Silicon is cooled down with ethanol near
 -5 °C temperature
- A typical bias voltage is +90 V

P. Papadakis et al. Eur. Phys. J. A (2018) 54: 42

Electronics

- Preamp power, Mesytec MNV-4
- Gain-offset (GO) unit
- Differential to single ended (DOS) cards
- FEBEX: DAQ cards
- Bias voltage supply (+90V),
 Mesytec MHV-4, for the detector
- HV supply, ISEG SHR, for a target ladder

Suppressing delta electrons

- It is essential to suppress low-energy delta electrons
- 5000 V high voltage is applied to the target ladder
- The absorber foil (12 μ m mylar coated with 0.5 μ m aluminium) prevents low-energy electrons and scattered particles from hitting the detector

Suppressing delta electrons

- It is essential to suppress low-energy delta electrons
- 5000 V high voltage is applied to the target ladder
- The absorber foil (12 μ m mylar coated with 0.5 μ m aluminium) prevents low-energy electrons and scattered particles from hitting the detector

Suppressing delta electrons

- It is essential to suppress low-energy delta electrons
- 5000 V high voltage is applied to the target ladder
- The absorber foil (12 μ m mylar coated with 0.5 μ m aluminium) prevents low-energy electrons and scattered particles from hitting the detector

SPEDE Installation summer 2022

- Installation started May 2022
- Setting up electronics/devices
 (HV, Preamps, DOS-Cards, Julabo)
- Alignment of the target chamber
- Prepare the MINIBALL array
- New DAQ @MINIBALL

SPEDE Installation summer 2022

- FWHM @ 482 keV : ~8 keV (MCA)
- FWHM @ 482 keV : ~10 keV (DAQ)
- Due to preamp signal shape, the resolution depends on the DAQ
- Efficiency @ 482 keV : ~4%
- There is a clear need for a ¹³³Ba electron source for efficiency below 400 keV!

Why conversion electron spectroscopy?

- Allows to be sensitive to E0 transitions which mainly proceed via internal conversion
- The mixing of E0, M1 and E2 transitions in the $I \rightarrow I$ interband transitions
- The Coulex experiment makes it possible to populate the non-yrast structure with different mechanisms-> Cleaner electron spectrum for non-yrast structures than via fusion evaporation reactions
- The structural information of the nucleus can be obtained with the transitions strengths $\rho(E0)$

Shape mixing

- To obtain transition strength, one needs to know a lifetime of state and intensity of *E*0 transition

$$- |\rho(E0)|^2 = \frac{1}{\tau(E0)\Omega(Z,E)}$$

- A large $\rho(E0)$ transition strength value would indicate large mixing between different states
- Two-level mixing:

$$- \rho(E0)^2 = \frac{3}{4\pi}a^2b^2(\beta_1^2 - \beta_2^2)^2$$

- a, b are the mixing amplitudes
- β is the deformation parameter

Shape coexistence in the Hg region

L. P. Gaffney, et al., PRC 89 024307 (2014)

Shape coexistence in the Hg region

Example:

Combined γ -ray and conversion electron spectroscopy of ¹⁸⁶Pb

L. P. Gaffney, et al., PRC 89 024307 (2014)

J. Ojala et al., Nature Com. Phys 5 (2022)

- Beam:182Hg beam,
- Target:120Sn
- The first radioactive ion beam experiment with SPEDE!!
- Objective: Reduce errors of diagonal matrix elements of 2⁺ states to level where negative, zero and positive quadrupole moments can be distinguish
- SPEDE can be used to assess the intensity of E0
 2⁺ → 2⁺ transition

Subset of overall data
Analysis by Adrian Montes Plaza
(Liverpool/JYFL)

Subset of overall data
Analysis by Adrian Montes Plaza
(Liverpool/JYFL)

SUMMARY

- SPEDE was used for the first time at HIE-ISOLDE
- Further analysis for ¹⁸²Hg is needed
- The upcoming experiment ¹⁸⁴Hg and ¹⁸⁵Hg with new DAQ firmware!

SUOMEN AKATEMIA

