Study of the ${ }^{10} \mathrm{Be}(t, p)^{12} \mathrm{Be}$ reaction with the SOLARIS
 spectrometer

Alicia Muñoz-Ramos, Y. Ayyad, B. P Kay, H. Alvarez-Pol, and the SOLARIS collaboration HIE-ISOLDE Physics Workshop, May 2023

Overview

- Structure of ${ }^{12} \mathrm{Be}$
- Why revisit with the (t, p) reaction?
- Challenges of inverse kinematics
- Solution? SOLARIS
- Preliminary results
- Future work

12Be so far

- Several low-lying bound states known from a variety of studies
- Recent measurements of (d, p), but still some ambiguity as to assigment/structure of some states
- Past (t,p)-reaction studies done at lower energies + background from

$E(\mathrm{MeV})$	$J^{\pi}{\text { (lit. })^{\mathrm{a}}}^{\prime}$
0.0	0^{+}
2.109	2^{+}
2.251	0^{+}
2.715	1^{-}
3.21	$\left(0^{-}\right)^{--}$
4.412	S_{n}
4.580	$\left(2^{-}\right)$
5.0	-
5.724	$\left(4^{+}, 3^{+}\right)$
6.02	-
6.275	-

(Top) States below threshold (below) States above threshold

Direct Reactions

~10 MeV/u (3-20 MeV/u)

Reactions used as a tool for nuclear structure and astrophysics:

- Selectively populate states, determine $E,{ }^{\eta}$
- Inelastic, single-nucleon, two-nucleon

Why repeat the (t, p) ?

Famous result of Fortune et al., done at lower energies around 5-5.7 MeV/u, angular distributions are broad with less features ... some advantages to higher energy ... plus, in theory a background-free measurement (removing target complications [though others remain])

$\Theta(\mathrm{deg})$

Challenge of inverse kinematics

When compared to normal/forward kinematics, inverse kinematics suffers from:

- Much lower energy outgoing ions, challenges for $E-\Delta E$ techniques
- Much stronger energy dependence with respect to laboratory angle
- A factors of 2-3 kinematic compression at forward c.m. angles
- ... and beams many orders of magnitude weaker

The result is typically very poor Q-value
 resolution of 100s of keV FWHM

The challenge with inverse kinematics

For examples (very few of which exist)

Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010)
Pioneering measurement of Wimmer et al. using TREX and Miniball to study the ${ }^{30} \mathrm{Mg}(\mathrm{t}, \mathrm{p})^{32} \mathrm{Mg}$ reaction

(Top) Example of the ${ }^{11} \mathrm{~B}(\mathrm{t}, \mathrm{p})$ reaction in HELIOS (below) and the ${ }^{26} \mathrm{Mg}(\mathrm{t}, \mathrm{p})$ reaction

Solution? SOLARIS

A dual-mode solenoidal spectrometer to exploit the full dynamic range of the ReA facility at FRIB

FRIB Accelerator Complex Subsystems

Golden opportunity in 2021:

- Before FRIB started, NSCL stopped
- ReA in "standalone" mode
- ${ }^{10}$ Be isotope by PSI

Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science

Michigan State University

Physics

${ }^{10 B e}(t, p) @ 9.6 \mathrm{MeV} / \mathrm{u}$

$$
E_{l a b}=E_{c m}-\frac{1}{2} m V_{c m}^{2}+\left(\frac{m V_{c m}}{T_{c y c}}\right) z
$$

"ELUM" luminosity detector
S1, ~200 mm from tgt.

Using SOLARIS

- ${ }^{10} \mathrm{Be}$ beam at 9.6 MeV/u on titanium tritide target (2-5 $\mu \mathrm{g} / \mathrm{cm}^{2}$!!)
- Helios Si-array for protons
- Recoil detection: annular Si detectors
- B field of $3 T$
- Q-value resolution ~150 keV FWHM

Preliminary results

- Limited statistics (very [effectively] thin target), but also very low background
- Confirm previous results from (t, p), below $S_{n} / S_{2 n}$ (2nd 0+ challenging to fit)
- See some strength at 3.2 MeV, recently postulated to be 0^{-}in (d, p) -- no firm conclusions yet
- Possibly confirm the long speculated 3- at 4.6 MeV is consistent with a 3-(but could be doublet)
- Clear strength at 5.0 MeV , with shape compatible with 0^{+}(3rd 0^{+} predicted to be weak and at around $\sim 5 \mathrm{MeV}$)
- The 5.724 MeV state must be 4+, some strength at 6.0 MeV and at 6.275 MeV

Conclusions

1. Powerful demonstration of ReA and SOLARIS
2. Agreement with previous results from (t, p) below S_{n}
3. Possibly confirmation of 3- at 4.6 MeV
4. Clear strength at 5.0 MeV with compatible shape with $0+$
5. Some strength at 3.2 MeV and significant strength at 6.0 MeV and 6.275 MeV

Future work

- Full DWBA (Fresco) analysis with shell-model two-nucleon amplitudes
- Future ${ }^{14} \mathrm{C}$ in ATLAS
- ${ }^{9} \mathrm{Li}(\mathrm{t}, \mathrm{p})$ run at CERN by Y. Ayyad et al.
- The study of ${ }^{11} \mathrm{Be}(\mathrm{d}, \mathrm{p})$ at CERN complements this work (Jie's talk from earlier)

SOLARIS collaboration:

B. P. Kay¹, Y. Ayyad², T. L. Tang¹, I. A. Tolstukhin¹, D. Bazin³, J. Chen¹, C. R. Hoffman¹, A. H. Wuosmaa4, H. Alvarez-Pol², S. Beceiro-Novo3, S. J. Freeman5, R. Garg³, H. Jayatissa¹, P. T. MacGregor', E. A. Maugeri', A. J. Mitchell, B. Monteagudo³, N. Rijal3, C. Santamaria³, D. Schumann', Z. Serikow³, D. K. Sharp ${ }^{5}$, J. Smith ${ }^{4}$, J. K. Stecenko4, and R. Zegers ${ }^{3}$
1. Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
2. Instituto Galego de Física de Altas Enerxías, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
3. National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
4. Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
5. Schuster Laboratory, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
6. Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
7. Department of Nuclear Physic and Accelerator Applications, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia

Funding

The authors express their appreciation to the beam delivery team and to the Paul Scherrer Institut for their provision of the ${ }^{10} \mathrm{Be}$ sample. This material is based upon work supported by NSF's National Superconducting Cyclotron Laboratory which is a major facility fully funded by the National Science Foundation under award PHY-1565546; the U.S. \backslash Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357 (Argonne) and under Award Number DESC0014552 (UConn); Spanish Ministerio de Economía y Competitividad through the Programmes "Ramón y Cajal" with the grant number RYC2019-028438-I; the UK Science and Technology Facilities Council (Grant No. ST/P004423/1); and the International Technology Center Pacific (ITC-PAC) under Contract No. FA520919PA138. SOLARIS is funded by DOE Office of Science under the FRIB Cooperative Agreement DE-SC0000661.

