Summary of light Sn Coulex at HIE-ISOLDE

J. Cederkall, Lund university

The Sn chain

Stable isotope

Double shell closure

Unstable isotope

The Sn chain

Two neutrons

Life time of first 2+ state in even Sn isotopes

T_{1/2} = 2.8 ns

 $T_{1/2} = 7.4$ ns

 $T_{1/2} = 5.6 \text{ ns}$

B(E2) – evolution of data 2005 to 2017

Cross sections for 2⁺ and 4⁺ excitation

Sn-110: 2⁺ to 0⁺ HIE-ISOLDE and REX-ISOLDE?

γ - γ coincidences for higher excited states

Lifetime measurements, B(E2) and Q_2 The old case of ¹⁰⁴Cd

Coulomb excitation cross section depends on Z_{targ} , E_{beam} , B(E2) and spectroscopic quadrupole moment Q(2⁺)

B(E2), Q(2⁺) from Coulex can be constrained by lifetime data, or alternative target/energies

Life time of first 2+ state in even Sn isotopes

 $\sigma_{E2} = \sigma_R[\kappa_1(\theta_{\rm c.m.},\xi)B(E2)(1+\kappa_2(\theta_{\rm c.m.},\xi)Q(2_1^+))]$

Q_2 of the 2^+_1 state

T. Togashi et al., PRL 121, 062501 (2018)

Measuring the 2_1^+ state lifetime in ¹¹⁰Sn with simulation

Geant4 simulation of Miniball + CD detector

Measuring the 2_1^+ state lifetime in ¹¹⁰Sn with simulation

Particle Z vs SnE

Lifetime analysis of the 2_1^+ state in ¹¹⁰Sn

Lifetime analysis of the 2₁⁺ state in ¹¹⁰Sn

Lifetime analysis of the 2₁⁺ state in ¹¹⁰Sn

Lifetime analysis of the 2₁⁺ state in ¹¹⁰Sn

Lifetime analysis of the 2₁⁺ state in ¹¹⁰Sn

Error analysis ongoing...

BQ: 110Sn

First attempt, now new results for sets with different angular cuts...

BQ: 110Sn

Collaboration

Christoph Berger, Christian Berner, Tom Berry, Maria J. Borge, Joakim Cederkall, Daniel Cox, Hilde de Witte, Liam Gaffney, Roman Gernhauser, Tobias Habermann, Anna-Lena Hartig, Corinna Henrich, Andres Illana Sisón, Jedrek Iwanicki, Thorsten Kröll, Paweł J. Napiorkowski, Joochun Park, Georgi Rainovski, Peter Reiter, Sudipta Saha, Marcel Schilling, Michael Seidlitz, Jacob Snäll, Christian Stahl, Piet van Duppen, Nigel Warr, Fredrik Wenander, Kasia Wrzosek-Lipska et al.

TU München, Germany - University of Surrey, United Kingdom - TU Darmstadt, Germany - CERN-ISOLDE, Switzerland - KU Leuven, Belgium - UW HIL Warsaw, Poland - University of Jyväskylä, Finland - SU Sofia, Bulgaria - University of Cologne, Germany - Lund University, Sweden - CSIC Madrid, Spain

Yacine Kadi, Valter Venturi with the HIE-ISOLDE team and the ISOLDE collaboration

χ^2 /ndf on opening angle distributions of 803-keV

