
Beomki Yeo

CUDA CKF Implementation in TRACCC
(tracc#352)

1

https://github.com/acts-project/traccc

Algorithm Overview

CKF algorithm (One seed case)

1. Spawn a track from a seed, which is a bound track parameter

2. Apply material interaction and Kalman update for the measurements on the surface

3. Pick measurements that satisfy (chi2 < chi2_max) and record their indices in a link
container

4. Spawn kalman-updated tracks for the good measurements

5. Propagate the tracks to the next surface

6. Repeat 2 - 5 until all tracks are exhausted

7. Build full tracks from the link container

2

GPU Implementation

● The main idea is launching the kernels for every step. A step covers a set of kernels
called between two surfaces.

○ This enables us to evaluate the proper size of link container and grid-block
dimension based on the number of spawned tracks

○ A downside of this approach is that the number of kernel launches will be
[the number of steps X the number of kernels per step]

● All algorithms run on device side except for some device-to-host transfer of a global
counter object

3

Make module map

Build tracks

Apply interaction

Count measurements

Count threads

Find tracks

step_index++

GPU Implementation
● 6 kernels in total:

○ make_module_map
■ To convert module ID to measurement container index

○ apply_interaction
■ To apply material interaction to tracks

○ count_measurements & count_threads
■ To calculate the number of measurements to iterate per GPU

thread, and reassign the block dimensions for find_tracks
○ find_tracks

■ To apply Kalman Update to measurements and record the
the index of good measurements in the link container

■ Propagate the updated tracks to the next surface
○ build_tracks

■ Build full tracks from the link container

4

5

find_tracks kernel

● If the chi2 of measurement < chi2_max, add its measurement index and an index of the
link from the previous step to the link container

● Propagate the kalman-updated tracks to the next surface
○ If a track reaches a surface with measurements, its bound track parameter will be

used for the next step
○ Otherwise, the link is added to the tip link container as well so that we can know

which links in the link container are the final measurements of the full tracks

Th1 Th2 Th3 Th4 Th5

track1 track2

● We want to make each thread iterate over N
(or less than N) measurements equally

○ count_threads provides the information
on how many threads is required for
every track

6

build_tracks kernel

Step 1 L1 L2 L3 L4

Step 2 L1 L2 L3 L4

Step 3 L1 L2 L3

Step 4 L1 L2

● Every link holds an index to the corresponding measurement and an index to
the link from the previous step

● A full track is built by starting from the tip link and connecting it to the link of
previous steps, iteratively

Building track from link container

Unit test for Sparse Tracks
Unit test was written for sparse tracks which does
not make any combinatorics:

● The number of found tracks should be
equal to the number of truth tracks

● Track fitting is applied to the found tracks
to run the pull value test

● ACTS’ default chi2_max (15) misses few
tracks, e.g. ~ 1 out of 1000 tracks. So
changed to 30

track

B
 fi

el
d

Seeds and Measurements

Track Candidate Container

Track Finding with CKF

Track Fitting with KF

Track State Container

7

8

Concerns

● The implementation is not complete yet but the PR itself is ready
○ Some features is hard to test with sparse tracks. Full implementation will come with

unit test with dense tracks and CPU version

● Implementing SYCL version might be easy if thrust functions are compatible with SYCL

● Haven’t adapted to the flat EDM of measurement, but it could be done later
○ Measurements should be sorted by module ID and delivered with a vector of

boundary indices

9

Summary

● CUDA CKF is implemented and it seems working well without serious bugs

● Still many things to work on:
○ Implemente CPU version
○ Write unit test for dense tracks
○ Check the physics performance
○ Check the speedup

