Seeding with a flagr) EDM

PPPPP

ats

https://github.com/acts-project/traccc/pull/326

Fundamentals

A Jagged vectors are complicated to handle
AaCAff LINBFAE adzyé TSNYSt F2NI GNIXyaftl Ay
A Increased host operations between kernels

A New seeding still hgagged structuren the binned spacepoint2D detray gridl

A Jaggedness eliminated in:
A Doublets
A Triplets

Fundamentals

A Seed filtering requires comparison between triplstsring lor 2 spacepoints.

An a flat EDM, need to know where all thdsiplets to compare aréocated
A If we just iterate over all triplets instead, things get really slow.

A Counting + filling approach is quite powerful
A Allows predefining vector locations for where items shouldfiiled

Flat Seeding EDM

17 /// Doublet of middle-bottom or middle-top spacepoints
18 struct device doublet {

19 /// bottom (or top) spacepoint location in internal spacepoint container

20 sp_location sp2;

21

22 using link type = device::doublet_counter_collection_types::host::size type;
23 /// Link to doublet counter where the middle spacepoint 1is stored

24 link_type counter_link;

25 };

16 /// Number of doublets for one specific middle spacepoint.
17 struct doublet counter {

18

19 /// Index of the middle spacepoint.

20 sp_location m_spM;

21

22 /// The number of compatible middle-bottom doublets

23 unsigned int m_nMidBot = O;

24 /// The number of compatible middle-top doublets

25 unsigned int m_nMidTop = O;

26 /// The position in which these middle-bottom doublets will be added
27 unsigned int m_posMidBot = 0;

28 /// The position in which these middle-top doublets will be added
29 unsigned int m_posMidTop = O;

30

21 1 - I/ c¥+riirt Anithla+y FAaiin+Far

110
111
112
113
114
115
116
117
118
119
120
121
122

count_doublets.ipp

// Add the counts if compatible bottom *AND* top candidates were found for
// the middle spacepoint in question.
if ((n_mb_cand > @) & & (n_mt_cand > 9)) {

// Increment the summary values in the header object.

vecmem: :device_atomic_ref<unsigned int> numMidBot(nMidBot);
const unsigned int posBot = numMidBot.fetch_add(n_mb_cand);
vecmem: :device_atomic_ref<unsigned int> numMidTop(nMidTop);
const unsigned ipt_posTop = numMidTop.fetch_add(n_mt_cand);

// Add the number of candidates for the "current bin".
doublet_counters.push_back({spM, n_mb_cand, n_mt_cand, posBot, posTop});

® ® ® find_doublets.ipp

106
107
108
109

if (isCompatibleBot(middle_sp, other_sp)) {
const unsigned int pos = counter.mid _bot start _idx + mid_bot idx++;
mb_doublets.at(pos) = {middle sp, other_sp};

Looking for triplets

Doublet| | Doublet| | Doublet| | Doublet| | Doublet| | Doublet| | Doublet| | Doublet Doublet| | Doublet
Doublet| | Doublet| | Doublet| | Doublet| | Doublet| | Doublet| | Doublet| | Doublet Doublet

A We now know where all the doublets which share the same misidéeepoiniare

A Thiswas already happening with the jagged EDM, but it gets a bit trickier from here on out

17
18
19
20
21
22
23
pr
25
26
27
28
29
30
31
32
33

/// Triplets of bottom, middle and top spacepoints
struct device_triplet {

}s

// top spacepoint location in internal spacepoint container
sp_location spT;

using link type = device::triplet counter _collection_types::host::size_ type;
/// Link to triplet counter where the middle and bottom spacepoints are

/// stored

link type counter_link;

/// curvature of circle estimated from triplet
scalar curvature;

/// weight of triplet

scalar weight;

/// z origin of triplet

scalar z_vertex;

31
32
33
34
35
36
37
38
39
40
41
42
43
44

16
17
18
19
20
21
pyi
23
24
25

/// Number of triplets for one specific Mid-Bottom Doublet.
struct triplet counter {

}s

/// Bottom spacepoint location in internal spacepoint container
sp_location spB;

using link_type = triplet_counter_spM_collection_types::host::size_type;
/// Link to the triplet counter per middle spacepoint
link_type spM_counter_link;

/// The number of compatible triplets for this midbot doublet
unsigned int m_nTriplets = 0;

/// The position in which these triplets will be added
unsigned int posTriplets = 0;

// struct triplet_counter

/// Number of triplets for one specific middle spacepoint.
struct triplet _counter_spM {

};

/// Middle spacepoint location in internal spacepoint container
sp_location spM;

/// The number of triplets for this middle spacepoint
unsigned int m_nTriplets = 0;
/// The position in which these triplets will be added
unsigned int posTriplets = 9;
// struct triplet_counter_spM

105
106
107
108
109
110
111
112
113
114

count_triplets.ipp

// if the number of triplets per mb is larger than 0, write the triplet
// counter into the collection
if (num_triplets per_mb > 0) {
triplet counter spM& header = spM_triplet counter.at(counter_link);
vecmem: :device_atomic_ref<unsigned int> nTriplets(header.m_nTriplets);
const unsigned int posTriplets =
nTriplets.fetch_add(num_triplets_per_mb);

mb_triplet_counter.push_back(
{spB_loc, counter_link, num_triplets_per_mb, posTriplets});

10

