
ATLAS Phase 2 Upgrade: Cell-wise
parallelisation of the clusterisation

algorithm in traccc

Justus Rudolph (MPhys Project)

Supervised by Dr. Ben Wynne

1

Clusterisation

2

The traccc project – Parallelising Tracking

• Some GPU Terminology:

• Graphics Processing Unit

• Optimised for SIMD: Single Instruction, Multiple Data

• The whole GPU is called a grid, which is made up out of
blocks.

• Each instance is called a thread, keyword: "multithreading"

• Blocks contain threads

• Optimised to be a multiple of 32

• User specifiable

• Inter-block communication is slow

• Intra-block communication is fast

• e.g. Change activation values to binary "Activated"/"Not
activated"

• Cell data in traccc is stored sparsely

3

Sparsely stored data

Example from Simulation in traccc – Figures

Module 755 – dim 0

M
o

d
u

le
 7

5
5

 –
 d

im
 1

Module 755 – dim 0

M
o

d
u

le
 7

55
 –

 d
im

 1

Before Clusterisation
After Clusterisation

4

Sparse CCL

5

Modularly
parallelised

Less memory
access required

Two steps, create
lookup table for
cluster merging

[1]

Hoshen-Kopelman

• Extended version:
• Inaccuracies with missing long stripes

• Include diagonals
• Clusterisation accuracy jumps from

≈85 to ≈98.5%

Every cell belongs to the same
cluster as all its nearest neighbours

For each cell:
Check above and left only, no diagonals.

[2]

6

FCONN:
Parallelised
Hoshen-
Kopelman

7

FCONN:
Parallelised
Hoshen-
Kopelman

Step 1

8

FCONN:
Parallelised
Hoshen-
Kopelman

Step 2

9

FCONN:
Parallelised
Hoshen-
Kopelman

Step 3

10

FCONN Inaccuracy
or Extra Accuracy?

• Sparse particle hits: Worse

• Dense particle hits: Might be better?

11

Results –
Accuracy

• Smaller benchmarking dataset

• Comparison of methods

• Accuracy performed against the
number of threads per block

12

Results –
Accuracy

• Extended datasets with
varying µ

• Comparison of Sparse CCL
with FCONN only

13

Results – Time
performance

• Smaller benchmarking dataset

• Comparison of methods

14

Results – Time
performance

• Extended datasets with varying µ

• Comparison of Sparse CCL with FCONN only

15

Result Fitting – Cells

GPU implementation: O(nlog(n))

CPU implementation: O(n)

Why?
Clusterisation an inherently
iterative problem?

• CPU hardware (cache focused)

outperforms GPU hardware (data
processing focused)

16

Summary and Future extensions

• Clusterisation is a GPU bottleneck

• FCONN improves time performance compared to Sparse CCL for all probed µ

• Factor 3.22 ± 0.29 vs CPU for µ = 200

• Factor 4.37 ± 0.44 vs GPU for µ = 200

• FCONN retains high accuracy throughout

• Stays constant as a function of µ

• However: GPU concedes a factor of log(n) in runtime with respect to number of
cells. Is it possible to reduce the asymptotic time performance on GPU?

• Possible improvements

• Takeaways

17

Summary and Future extensions

• Clusterisation is a GPU bottleneck

• Possible improvements
• FCONN

• Reduce the number of lookups in global memory
• GPU: Fast processing, slow lookup: Focus on processing

• CPU: Slow processing, fast lookup: Focus on caches

• More in depth analysis with NVIDIA profiling tool to see where time inefficiencies arise

• General
• Study the theoretical limit: Why are the GPU implementations asymptotically slower than the same implementations on

CPU? Is it because of the memory management or is it more inherent and will exist in other methods too?

• Study a potential interplay of CPU and GPU:
• Modules with smaller number of activated cells: GPU

• Modules with larger number of activated cells: CPU

• Takeaways

18

Summary and Future extensions

• Clusterisation is a GPU bottleneck

• Possible improvements

• Takeaways

• GPU methods valuable for track reconstruction

• FCONN is an improvement in the µ ranges that are experimentally relevant

• Viability of GPU programming methods proven: Future development essential

19

References

• [1] Arthur Hennequin, Ben Couturier, Vladimir V. Gligorov, and Lionel Lacassagne. Sparse-CCL: Connected components labeling and analysis for sparse images. In 2019
Conference on Design and Architectures for Signal and Image Processing (DASIP), pages 65–70, 2019.

• [2] Hoshen, J.; Kopelman, R. (15 October 1976). "Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm". Phys. Rev. B. 14
(8): 3438–3445. Bibcode:1976PhRvB..14.3438H. doi:10.1103/PhysRevB.14.3438 – via APS.

20

http://link.aps.org/doi/10.1103/PhysRevB.14.3438
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/1976PhRvB..14.3438H
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1103%2FPhysRevB.14.3438

Troubles with parallelisation

• Inconsistent number of cells per module
• Cannot effectively launch 2D threads
• Need lookup table for module by cell

• Global Memory access -> Spatial and time inefficiency

• Cells cannot interact efficiently
• Purpose of effective parallelism is SIMD

• "Single Instruction, Multiple Data"

• Checking for neighbours for every cell is inconsistent
• Overwriting neighbours is dangerous

• Solve by just checking half the neighbours and iterating
• Only overwrite "yourself" -> No cross-writing issues
• Slow, many threads idling

21

Iterative Hoshen-
Kopelman

• Choose neighbour above/left with diagonals

• Consistent neighbour selection rule, e.g. first, last,
lowest label etc.

• Example below is with lowest neighbour label selection rule

• Always write from that neighbour
• Iterate until no more changes between states

22

Fitting – Modules

23

	Slide 1: ATLAS Phase 2 Upgrade: Cell-wise parallelisation of the clusterisation algorithm in traccc
	Slide 2: Clusterisation
	Slide 3: The traccc project – Parallelising Tracking
	Slide 4: Example from Simulation in traccc – Figures
	Slide 5: Sparse CCL
	Slide 6: Hoshen-Kopelman
	Slide 7: FCONN: Parallelised Hoshen-Kopelman
	Slide 8: FCONN: Parallelised Hoshen-Kopelman
	Slide 9: FCONN: Parallelised Hoshen-Kopelman
	Slide 10: FCONN: Parallelised Hoshen-Kopelman
	Slide 11: FCONN Inaccuracy or Extra Accuracy?
	Slide 12: Results – Accuracy
	Slide 13: Results – Accuracy
	Slide 14: Results – Time performance
	Slide 15: Results – Time performance
	Slide 16: Result Fitting – Cells
	Slide 17: Summary and Future extensions
	Slide 18: Summary and Future extensions
	Slide 19: Summary and Future extensions
	Slide 20: References
	Slide 21: Troubles with parallelisation
	Slide 22: Iterative Hoshen-Kopelman
	Slide 23: Fitting – Modules

