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Clusterisation
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The traccc project – Parallelising Tracking

• Some GPU Terminology:

• Graphics Processing Unit

• Optimised for SIMD: Single Instruction, Multiple Data

• The whole GPU is called a grid, which is made up out of 
blocks.

• Each instance is called a thread, keyword: "multithreading"

• Blocks contain threads

• Optimised to be a multiple of 32

• User specifiable

• Inter-block communication is slow

• Intra-block communication is fast

• e.g. Change activation values to binary "Activated"/"Not 
activated"

• Cell data in traccc is stored sparsely
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Sparsely stored data



Example from Simulation in traccc – Figures
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Before Clusterisation
After Clusterisation
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Sparse CCL
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Modularly 
parallelised

Less memory 
access required

Two steps, create 
lookup table for 
cluster merging

[1]



Hoshen-Kopelman

• Extended version:
• Inaccuracies with missing long stripes

• Include diagonals
• Clusterisation accuracy jumps from 

≈85 to ≈98.5%

Every cell belongs to the same 
cluster as all its nearest neighbours

For each cell:
Check above and left only, no diagonals.

[2]
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FCONN: 
Parallelised 
Hoshen-
Kopelman
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FCONN: 
Parallelised 
Hoshen-
Kopelman

Step 1
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FCONN: 
Parallelised 
Hoshen-
Kopelman

Step 2
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FCONN: 
Parallelised 
Hoshen-
Kopelman

Step 3
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FCONN Inaccuracy 
or Extra Accuracy?

• Sparse particle hits: Worse

• Dense particle hits: Might be better?
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Results – 
Accuracy

• Smaller benchmarking dataset

• Comparison of methods

• Accuracy performed against the 
number of threads per block
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Results – 
Accuracy

• Extended datasets with 
varying µ

• Comparison of Sparse CCL 
with FCONN only
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Results – Time 
performance

• Smaller benchmarking dataset

• Comparison of methods

14



Results – Time 
performance

• Extended datasets with varying µ

• Comparison of Sparse CCL with FCONN only
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Result Fitting – Cells

GPU implementation: O(nlog(n))

CPU implementation: O(n)

Why?
Clusterisation an inherently 
iterative problem?

 
• CPU hardware (cache focused) 

outperforms GPU hardware (data 
processing focused)
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Summary and Future extensions

• Clusterisation is a GPU bottleneck

• FCONN improves time performance compared to Sparse CCL for all probed µ

• Factor 3.22 ± 0.29 vs CPU for µ = 200

• Factor 4.37 ± 0.44 vs GPU for µ = 200

• FCONN retains high accuracy throughout

• Stays constant as a function of µ

• However: GPU concedes a factor of log(n) in runtime with respect to number of 
cells. Is it possible to reduce the asymptotic time performance on GPU?

• Possible improvements

• Takeaways
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Summary and Future extensions

• Clusterisation is a GPU bottleneck

• Possible improvements
• FCONN

• Reduce the number of lookups in global memory
• GPU: Fast processing, slow lookup: Focus on processing

• CPU: Slow processing, fast lookup: Focus on caches

• More in depth analysis with NVIDIA profiling tool to see where time inefficiencies arise

• General
• Study the theoretical limit: Why are the GPU implementations asymptotically slower than the same implementations on 

CPU? Is it because of the memory management or is it more inherent and will exist in other methods too?

• Study a potential interplay of CPU and GPU:
• Modules with smaller number of activated cells: GPU

• Modules with larger number of activated cells: CPU

• Takeaways

18



Summary and Future extensions

• Clusterisation is a GPU bottleneck

• Possible improvements

• Takeaways

• GPU methods valuable for track reconstruction

• FCONN is an improvement in the µ ranges that are experimentally relevant

• Viability of GPU programming methods proven: Future development essential
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Troubles with parallelisation

• Inconsistent number of cells per module
• Cannot effectively launch 2D threads
• Need lookup table for module by cell

• Global Memory access -> Spatial and time inefficiency

• Cells cannot interact efficiently
• Purpose of effective parallelism is SIMD

• "Single Instruction, Multiple Data"

• Checking for neighbours for every cell is inconsistent
• Overwriting neighbours is dangerous

• Solve by just checking half the neighbours and iterating
• Only overwrite "yourself" -> No cross-writing issues
• Slow, many threads idling
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Iterative Hoshen-
Kopelman

• Choose neighbour above/left with diagonals

• Consistent neighbour selection rule, e.g. first, last, 
lowest label etc.

• Example below is with lowest neighbour label selection rule

• Always write from that neighbour
• Iterate until no more changes between states
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Fitting – Modules
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