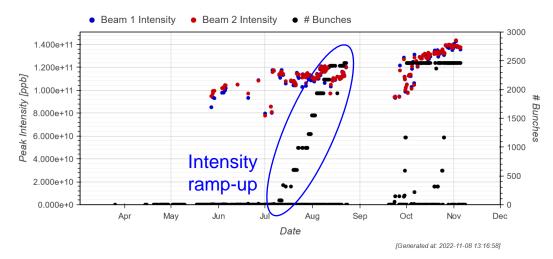
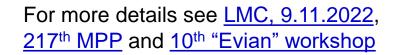


Proposal for 2023 Intensity Ramp-Up

C. Wiesner, M. Solfaroli Camillocci, C. Hernalsteens, J. Uythoven, J. Wenninger, D. Wollmann

234th MPP, March 24th, 2023


Outline


- Intensity ramp-up in 2022
- Proposal for 2023 intensity ramp-up
- Update for ramp-up scenarios after stops of nominal operation
- Conclusions

Introduction and intensity ramp-up 2022

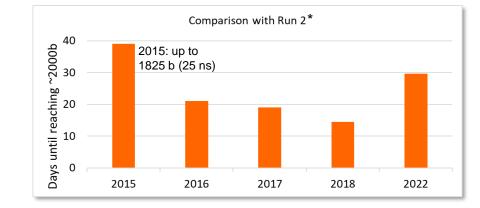
- Intensity ramp-up based on step-wise increase of injected and stored beam energy after YETS/LS to:
 - establish operational cycle
 - identify and mitigate issues in machine-protection-relevant systems that are remaining after individual system tests and hardware commissioning
 - identify issues related to stored beam intensity and other beam related parameters and establish mitigation measures
- Ramp-up 2022:
 - Steps of 3/12 75 300 600 900 1200 1800 2400 bunches performed, whereas 2700b step was dropped
 - Bunch intensity kept at ~1.15x10¹¹ ppb during intensity ramp-up. Then, gradually pushed to ~1.4x10¹¹ ppb
 - For each step, monitored behavior during at least 3 fills and 20h stable beams, and validated correct functioning of machine-protection systems via <u>checklist</u>

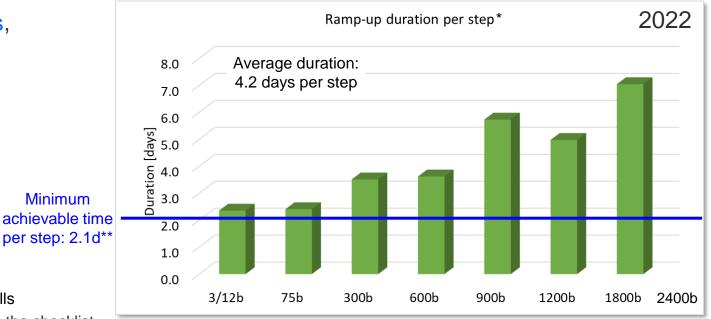
Observations during 2022 intensity ramp-up

- No beam-induced damage occurred during intensity rampup and the following highintensity operation
- Important number of issues that (would have) degraded the protection functionality were found and followed up
- Issues distributed over all intensity steps

Step / period	# of issues	Issues observed (examples)	Checklist (EDMS)
Scrubbing beyond 500 bunches	9	 Intermittent issues with BQM and FBCT that prevented IQC from confirming that an injection took place Issue with AG cleaning due to problem in SIS-ADT link Unexpected high beam losses at TCLIA 	<u>#2748476</u>
From 3/12b to 75b	5	 Issue with creation of PM event causing XPOC to latch BLMLHC FESA server exiting due to low memory 	<u>#2756305</u>
From 75b to 300b	8	 Redundancy lost between one BLM card in the tunnel to the surface at point 1 BLMLHC FESA server exiting due to low memory 	<u>#2756853</u>
From 300b to 600b	7	 LVDT reading of TCTPV.4R1.B2 drifting and reaching the dump limit Update of BETS TCDQ thresholds Change of BLM thresholds (IR7) 	<u>#2761348</u>
From 600b to 900b	8	 Miscalibration of BSRA B2 by factor 4 Change of BLM thresholds (IR5) 	<u>#2766212</u>
From 900b to 1200b	9	 Large LVDT offsets observed at several collimators Intermittently missing BBQ data in PM event Change of BLM thresholds (IR7/IR5) 	<u>#2768054</u>
From 1200b to 1800b	8	 Dumps on TCLIA temperature probe leading to threshold adaption Sporadic missing of BLM data in XPOC and PM Change of BLM thresholds (IR7) 	<u>#2768971</u>
From 1800b to 2400b	8	 Sporadic missing of BLM data in XPOC and PM Change of BLM thresholds (IR1/2/5) 	<u>#2771221</u>

See also <u>LMC, 9.11.2022</u>

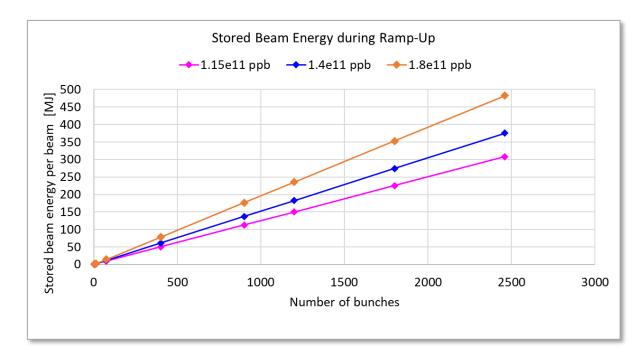



Ramp-up duration 2022: break-down

Duration

- Reached 1200 bunches in ~18 ramp-up days*
- Reached 2400 bunches in <30 ramp-up days*
- Efficient performance considering that machine came out of a Long Shutdown
- First two ramp-up steps completed in 2.4 days each, i.e. close to the minimum achievable duration of 2.1 days**
- Following steps marked by UFOs, diverse faults, commissioning left-overs, BBCW validation, ...
- Validation and approval
 - Delay between end of last fill and sending out checklist typically 1-3 hours
 - Delay between end of last fill and approval typically 8-10 hours
 - → Great thanks to all the involved system experts for their commitment and anticipation!

*Excludes time for scrubbing, commissioning left-overs, BBCW validation fills **Assuming 60% availability, 3h turn-around time, and 10h to fill and validate the checklist



What is new in 2023?

• Extended range of luminosity levelling

- To be fully performed during ramp-up fills using the operational tool
- Mixed (BCMS/8b4e) filling scheme foreseen
 - Maximum number of bunches limited to ~2400 bunches (i.e. no 2700-bunch step foreseen)
- Bunch intensity
 - Intensity of $\sim 1.4 \times 10^{11}$ ppb established in 2022
 - Plan to reach 1.8x10¹¹ ppb during 2023, corresponding to almost 500 MJ of stored energy per beam

Proposal for 2023 intensity ramp-up (1/2)

- Intensity steps:
 - Use steps of 3/12 75 400 900 1200 1800 2400* bunches
 - Compared to 3/12 75 300 600 900 1200 1800 2400 bunches in 2022
- For each step:
 - Monitor behavior during >15h in stable beams with at least 2 fills that go through the full luminosity levelling process (reaching the smallest beta*) using the operational tool
 - Validate correct functioning of machine-protection systems via <u>checklists</u>
 - TOTEM/CT-PPS, AFP, ALFA roman pots to be inserted to agreed settings before the first levelling step for all fills at each intensity step
 - No simultaneous increase in the total number of bunches and the injected train length in the same fill

Reduces *theoretically* minimum achievable ramp-up duration per step from 2.1d to 1.6d and total duration from ~15d to ~10d.**

**Assuming 60% availability, 3h turn-around time, and 10h to fill and validate the checklist

*exact number of bunches will depend on agreed filling schemes

Proposal for 2023 intensity ramp-up (2/2)

- Bunch intensity
 - Start with bunch intensities established in 2022 (~1.4e11 ppb at LHC, 1.5e11 ppb from SPS)
 - Option to gradually increase the bunch intensity after having reached at least 1200 bunches depending on the machines' status
- Scrubbing:
 - Verify heating of critical elements before going to next intensity step. Intermediate scrubbing checklist after ~500 bunches, final checklist at the end of scrubbing
- During the Run
 - Issue Cruise Checklists covering ~8 weeks (e.g. between TS) to check behaviour of machine-protection systems

Ramp-up scenarios after stops of nominal operation

• For consistency, propose to replace the 600-bunch with a 400-bunch fill

Stop >48 h with massive HW + SW interventions	Stop >48 h without massive HW + SW interventions	Triplet events with non- reversible position changes**
One fill with either pilot bunches or max. 2-3 nominal bunches into SB (cycle revalidation, etc.)	One fill with 2-3 nominal bunches into SB (cycle revalidation, etc.)	One fill with 2-3 nominal bunches into SB (re-adjust orbit in IP)
One fill with ~50 bunches and about 1-2 hours of stable beams		
One fill with 400 bunches and min. 2 hours of stable beams*	One fill with 400 bunches and min. 2 hours of stable beams*	
If > 2000 bunches have been reached, one fill with about half max. number of bunches and about 5 hours of stable beams		
Back to pre-stop intensities	Back to pre-stop intensities	Back to pre-stop intensity
In total, 3-4 fills for ramp-up	In total, 2 fills for ramp-up	In total, 1 fill for ramp-up

Note: All fills need to go through the full luminosity levelling.

*known intensity step to disentangle wrong settings, de-conditioning, etc. from intensity dominated effects at full intensity

**E.g. triplet quench, warm up of triplet region, cryo stop in triplet region, ...

See LMC, 2018-03-28

Conclusions

- Intensity ramp-up 2022 accomplished in a safe and efficient manner
 - Reached 1200b in 18 ramp-up days
 - No beam-induced damage occurred

Proposal for 2023 intensity ramp-up

- Based on successful strategy used in 2022 and in Run 2
- Intensity steps of 3/12 75 400 900 1200 1800 2400 bunches
- For each step: >15h in SB with ≥2 fills that go through the full luminosity levelling, to be validated via checklist
- Start ramp-up with bunch intensity of 1.4x10¹¹ ppb

Thank you very much for your attention!

home.cern

Issues encountered during 2022 intensity ramp-up

• Examples:

- Unexpected high beam losses at TDIS*
- Unexpected high beam losses at TCLIA**
- Issue with creation of PM event causing XPOC to latch
- Sporadic missing of BLM data in XPOC and PM
- Intermittently missing BBQ data in PM event
- BLMLHC FESA server exiting due to low memory
- Need to adapt BLM thresholds
- Miscalibration of BSRA B2 by factor 4

- Intermittent issues with BQM and FBCT that prevented IQC from confirming that an injection took place
- One MKI2 main switch showing higher erratic rate
- Dumps on TCLIA temperature probe leading to threshold adaption
- LVDT reading of TCTPV.4R1.B2 drifting and reaching the dump limit
- Difficulties in using the QFB due to working point with high Q' and octupoles

*See D. Wollmann, LMC,#450, 12.10.2022 ** See C. Bracco, LBOC #142, 1.11.2022

Note that the 2022 ramp-up could profit from issues found and solved during the beam test in Oct 2021, in particular the aperture restriction in 21L3.

Issues discovered during ramp-ups (Run 2) - Selection

- Establish cycle/beam commissioning:
 - PM/XPOC: data missing or misaligned
 - BIS timing mis-aligned
 - Direct dump BLMs (IR6) connected to LBDS of wrong beam
- MP dominated:
 - · Orbit feedback: offsets due to BPM calibrations
 - UFO 16L2 events causing beam dumps & quenches
 - Abort Gap cleaning not properly functioning
 - Screen unintentionally left in dumpline

• Intensity dominated:

- TDI vacuum issues and heating
- Insufficient cooling of a collimator
- Instabilities
- Random occurrence:
 - MKD and MKB erratics
 - Un-physical BLM readings in PM
 - PM event builder stuck

For full list: see D. Wollmann, <u>Evian'19</u> and <u>checklists</u> for intensity ramp-up

