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Introduction

Einstein’s theory of gravity has been tested in many ways and passed all the tests with
flying colors:

Light deflection
Perihel advance of mercury & many other binary systems

o
o
@ Shapiro time delay
o
o

Gravitational waves
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Introduction

Einstein’s theory of gravity has been tested in many ways and passed all the tests with
flying colors:

@ Light deflection

@ Perihel advance of mercury & many other binary systems
@ Shapiro time delay
o
o

Gravitational waves

All these observations essentially test vacuum solutions of Einstein’s equations,

R, =0.

Can we also test these equations with matter ?

R — %gu,,Fz’ = Gu = 81GT,,
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Introduction

The Friedmann-Lemaitre solution of cosmology is a non-vacuum solution
of Einstein’s equation:

ds? = —df? + &(t)yax'ax’  z+1=ap/a(t)
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The Friedmann-Lemaitre solution of cosmology is a non-vacuum solution
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ds? = —df? + &(t)yax'ax’  z+1=ap/a(t)
- 2
3 K ., K _ 8rG A
(5) ~&="+2=%(re0)

a 4G A
a~ 3 (”+3P’4WG)

Have we 'tested’ these equations with cosmological observations?
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a 4G A
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Have we 'tested’ these equations with cosmological observations?
What have we truly measured:

L
F&) = Tz
a(z) = (1+z)XK</OZ%>, XK(x):L\/*/RRX), 2 =1
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Introduction
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Compilation by Huterer & Shafer '17.
Binned from 870 SNe la (black) and 3 BAO points (from BOSS DR12, red).
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Compilation by Huterer & Shafer '17.
Binned from 870 SNe la (black) and 3 BAO points (from BOSS DR12, red).

NO'!
We have 'postulated’ the existence of dark matter and dark energy to fit this data.
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Introduction
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Introduction

In this talk | shall show that with the help of clustering observations, i.e. using the fact
that the Universe is not perfectly homogeneous and isotropic, we can actually test
Einstein’s equations to some extent. ..

We shall do this using the statistics of the galaxy distribution, more precisely we work
with the 2-point correlation function £(p, g) which determines the probability above (or
below) the mean of having a galaxy in spacetime position q if there is one in position p.
Assuming statistical homogeneity and isotropy, this function only depends on the
distance, |q — p| and its Fourier transform is the power spectrum,

(8(k)3(K')) = (2)*6p(k — K')P(K) .
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Introduction

The CMB

CMB sky as seen by Planck

6000 7
T(n) = Z arm ng(n) 5000 [
<a5maz/m’> = 00 Oy C, . 4o00f
Dy =¢(¢+1)Ce/(27) R
%‘S 2000 |
The Planck Collaboration: ool
Planck results 2018 4
[1807.06209] 600
- 300 F

Iy 0
< =300 F
600

L L !
1500 2000 2500

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology April 5, 2023 8/32



Introduction

M. Blanton and the SDSS collaboration.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)

T — T T T T
Reconstructed :
« CMASS DR9
——best—fit model
X°=61.1 / 59

w0
o
(<]
Q,
=
?
<
~
_
<.
& el
s + §8
o
g =
- a
:o
=
A
wl =8
@ 27

-1.5

logijgk /h Mpc~?

Ruth Durrer (Université de Genéve, DPT & CAP)

Testing GR in Cosmology

from Anderson et al. ’12
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Galaxy surveys ~

matter density fluctuations,
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distortions.
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Introduction

But...
@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.

We see density fluctuations which are further away from us, further in the past.

We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.
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given galaxy arriving at our position have been emitted.

@ For small galaxy catalogs, these effects are not very important, but when we go
out to z ~ 1 or more, they become relevant. Already for SDSS BOSS which goes
outto z~ 0.7, DES z < 0.8, or DESI z < 1.5.
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But...

@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

@ The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

@ Not only the number of galaxies but also the volume is distorted.

@ The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ For small galaxy catalogs, these effects are not very important, but when we go
out to z ~ 1 or more, they become relevant. Already for SDSS BOSS which goes
outto z~ 0.7, DES 2 < 0.8, or DESI z < 1.5.

@ And even more for future surveys like Euclid, LSST, SKA and WFIRST.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

r(z) B z dz/ B l/z dz/
Jo HZ)  HoJo (Ol +2ZP+ (1 + 22+ +--

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

2 dz dz’

rnz)=
) o H(Z) Ho \/Qm A+2ZP+x(1+272+Qn+ -

In cosmology we infer distances by measuring redshifts and calculating them, via this

relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or
f171
da(z) = ——=xx(Hor(z)) the angular diameter distance
(1+2)

di(z) = Hy'(1+4 2)xk(Hor(2)) the luminosity distance.
At z < 1 all distances are d(z) = z/Ho + O(Z?), for z < 1, [d] = h~"Mpc
Ho = h/(2998Mpc).
At z z 1, the distance depends strongly on Qx, Qa,---
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

Z d dz'
o H(@) HO \/Qm (T+2ZP+Q(1+2)2+Qn+--

r(z) =

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

—1

H,
da(z) = g +z) ——xk(Hor(z)) the angular diameter distance

di(z) = Hy'(1+4 2)xk(Hor(2)) the luminosity distance.
At z < 1 all distances are d(z) = z/Ho + O(2?), for z < 1, [d] = h~'"Mpc
Ho = h/(2998Mpc).
At z 2 1, the distance depends strongly on Qk, Qa,---

Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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Very large scale galaxy surveys
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Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology April 5, 2023 14/32



Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)

For each galaxy in a catalog we measure

6,9,2z) =(n,2) (+ info about mass, spectral type...)

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology April 5, 2023 14/32



Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)

For each galaxy in a catalog we measure
6,9,2z) =(n,2) (+ info about mass, spectral type...)
We can count the galaxies inside a redshift bin and small solid angle,
N(n, z) = p(n,z)V(n, z)

and measure the fluctuation of this count:

A(n,z) = ——2———~,
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Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)

For each galaxy in a catalog we measure
6,9,2z) =(n,2) (+ info about mass, spectral type...)
We can count the galaxies inside a redshift bin and small solid angle,
N(n, z) = p(n,z)V(n, z)

and measure the fluctuation of this count:

A(n, 2) = N, 2) = N(Z)
N(z)
£0,z,7') = (A(n,2)A(n, 2')) n.-n' =cosf.

This quantity is directly measurable.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number

density fluctuations from scalar perturbations to 1st order as function of the observed
redshift z and direction n

A(n,z) = bD—37—tV—(2—5$)<I>+\II+% [¢+8,(V~n)}

H 2—5s @ .
+(H2+r(z)7{+55) <w+v-n+ ! dr(d>+\ll)>

2-5s (M@ [r(z)—r B
21(2) A ar |: p No(®+ W) —2(d + \U)} .

( Bonvin & RD ’11, Challinor & Lewis ’11)
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations from scalar perturbations to 1st order as function of the observed

redshift z and direction n

Anz) = —3HV—(2—53)¢+W+%[4>+M]

H  2-5s s
+(ﬁ+ T +5$)<\Il+m /drd>+\ll>

2—-5s r(z)—r
21(2) o {

( C.Bonvin & RD ’11, Challinor & Lewis ’11)
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Redshift space distortions in the BOSS survey

(from Lange et al. '21)
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand A(n, z) in spherical harmonics,

=S an(@Yinl),  C(2.2) = (@n(2)ain()

£0,z,2") = (A(n, 2)A(n, 2')) = 417 Z(2é+ 1)Ce(z, Z2")Ps(cos 0)
4

cosf=n-n’
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1, Az = 0.01
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3, Az = 0.3
(from Bonvin & RD ’11)
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The radial power spectrum
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Measuring the lensing potential with Euclid

Well separated redshift bins measure mainly the lensing-density correlation:

(A(n, 2)A(N',Z')) ~ (AX(n, 2)6(n, 2')) z> 7
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Testing GR with the lensing potential
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Testing GR with the lensing potential
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photometric survey.
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Neglecting the lensing potential biases cosmological parameters
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E, statistics

In GR photon propagation, which governs weak lensing is sensitive to the sum of the
Bardeen potentials, ® + W, while massive non-relativistic particles are accelerated by

v

Non-relativistic density fluctuations generate ¢ via the Poisson equation. In standard
GR ¢ = V¥ such that the following combination is independent of both, bias and scale:

H(z)(® + V) 0.55
="~ 2 —f(2)~[Qn .
Eyk:2) = grarr + pyy = (D)= 2n(2)]
(Zhang et al., 2007) This can be converted to (Pullen et al., 2015)

C;(S(ZM Z)

Ey(¢,2) = F(Z)W

It has, however been pointed out (Moradinezhad Dizgah & RD 2016), that when

observing galaxies, we do not directly observe C° or C?° but rather C;’9 and C°.
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E, statistics

R

C/(z1,22)

ng(21 s Zg)

b(22)Cr° (21, 22) — (2 — 55(22))Cr" (21, 22)
b(z1)b(22)CL° (21, 22) + (2 — 55(21))(2 — 55(22)) Ci"™ (21, 22)
—b(22)(2 — 55(21))C° (21, 22) — b(21)(2 — 55(22)) Cr4 (22, 21)

1

For low redshifts these corrections are not very relevant, but at high redshifts they are.
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E, statistics

DES-like survey

Euclid like survey

400 600 800 1000

0.3 //——N_\M
W02 r

. —0.1
0.04, '5;
2 -0
0.03
-0.3
g MZK 2-0225 _04
o S R
< iloen 200
0.01 2-0825
0.4
0.00
200 400 600 800 1000
I3
(Figures from Ghosh & RD 2019) ol
0.0
0

200 400 600 800 1000

|
For intensity mapping s = 0.4 and the correction terms vanish (Pourtsidou 2016).
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Measuring the growth rate of perturbations

@ The growth rate of perturbations is very sensitive to the theory of gravity.

@ A cosmological constant is the only form of dark energy which exhibits absolutely
no clustering.

@ Redshift space distortions are most sensitive to the growth rate. hence to measure
it we need good redshift resolution — a spectroscopic survey.

@ Even though ’lensing convergence’ is not very relevant for standard cosmological
parameter estimation with spectroscopic surveys, it does significantly affect the
growth rate.

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology April 5, 2023 29/32



Growth rate estimation from SKA2 galaxy number counts

The growth rate is best estimated with RSD. However, in the k-power spectrum lensing
is not easily included.

Including lensing, SKA2 will be able to determine it at the few % level (2 - 3% in a
Fisher analysis).

f(z) = f(z)os(2) (neglecting lensing / in the analysis)
00 st -+ 8bins

—05 11 bins

0.45 .

I 1.0 ===
=040 as
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(Lepori, Jelic-Cizmek, Bonvin, RD 2020)
Similar results hold also for Euclid (Lepori, RD et al. 2022, Sorrenti, RD et al., in prep)
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Conclusions

@ So far cosmological LSS data mainly determined £(r), or equivalently P(k) or

B(ki, k2, k3) ---. These are easier to measure (less noisy) but:
e they require an fiducial input cosmology converting redshift and angles to length
scales,

r=+/r(z)?2+r(z')2 — 2r(z)r(z') cosf .
This complicates especially the determination of error bars in parameter estimation
e it is not evident how to correctly include lensing.
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@ Future large & precise 3d galaxy catalogs like Euclid, DESI, LSST, SKA etc. will
be able to determine directly the measured 3d correlation functions and spectra,
£(0,z,2')and Ci(z,2') and by, ¢,,0,(21, 22,23) --- from the data.

@ These 3d quantities will of course be more noisy, but they also contain more
information.

@ These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via ( ) and to the perturbations of spacetime
geometry (lensing) .
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Conclusions

@ We can therefore in principle determine both, the components of the energy
momentum tensor and the geometry which allows us to test Einstein’s equations.
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@ Especially C;%(z, 2z') and C{¥(z, Z') if suitably corrected allow for quite model
independent tests of GR via e.g. the Eg-statistics.

@ To test GR e.g. with the growth rate of perturbations it is important to include
lensing even in the analysis of spectroscopic surveys.

@ The spectra C,(z,2') and by, ¢, ¢,(21, 22, z3) depend sensitively and in several
different ways on the theory of gravity (growth factor, relation between W and ¢),
on the matter and baryon densities, and on the velocity. Their measurements
provide a new route to estimate cosmological parameters and, especially, to test
general relativity on cosmological scales.

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR in Cosmology April 5, 2023 32/32



	Introduction
	Very large scale galaxy surveys
	The angular power spectrum and the correlation function of galaxy number density fluctuations
	The transversal power spectrum
	The radial power spectrum

	Measuring the lensing potential
	 Eg statistics
	 Measuring the growth rate of perturbations
	Conclusions

