Latest LHCb UPC Results Cesar Luiz da Silva for the LHCb Collaboration Los Alamos National Lab

Office of Science

The LHC beauty detector Runs 1 & 2

- $e, \mu, \pi, K, p, \gamma$, particle identification in 1<p<100 GeV/c
- Unique forward instrumentation for heavy ion physics

HeRSCheL detector: high-rapidity shower counters for LHCb

Herschel Detector Discrimination

- The Figure of Merit (left) is a χ^2 quantity that includes hits from all twenty counters and accounts for correlations among counters based on activity above the noise
 - By subtracting the background, an exclusive sample of signal events is obtained
- The p_T^2 distribution of dimuons (right) with and without the requirement on the $\log(\chi^2)$

Trigger Conditions for UPC events

- long track (tracks with hits in all tracking detectors) [1,20]
- SPD hits (ECAL raw hits) < 2000
- Event selected by software
- NO pre-scale

Data sets

2015 PbPb 5 TeV	4 μb ⁻¹	۲
2018 PbPb 5 TeV	214 µb ⁻¹	
2023 PbPb 5 TeV	~210 µb ⁻¹	

LHCb has detector coverage and particle identification for an entire UPC program

• Photoproduction of vector mesons

- scalar and tensor mesons from pomeron+pomeron and $\gamma\gamma$ interactions
- Glueball and tetraquark searches

• Non-resonant spectrum

• BSM : τ g-2 with hadron decays and lepton p_T<<5 GeV/c

6

Rapidity coverage

$J/\psi,\psi$ (2S) Photo-production cross-section in CEP

- $\sigma_{pp \to p\psi p}(W)$ has contributions from photon coming from both forward and backward going proton in CMS
- Goal: Extract ψ photoproduction cross section $\sigma_{\gamma p \to \psi p}(W)$ from measured $\sigma_{pp \to p\psi p}(W)$ $W^2 \equiv 2k\sqrt{s}$ 8

$J/\psi, \psi$ (2S) Photo-production cross-section in CEP

Bottomonia photo-production cross-section in CEP

Discrepancy for $\sigma_{\chi c2}$ can come from inelastic contamination. New measurement using HeRSCheL on target.

arXiv:hep-ph/0909.4748

Double J/ ψ production

J.Phys.G41 (2014)115002

$$\begin{aligned}
\sigma^{J/\psi J/\psi} &= 58 \pm 10(\text{stat}) \pm 6(\text{syst}) \text{ pb,} \\
\sigma^{J/\psi \psi(2S)} &= 63^{+27}_{-18}(\text{stat}) \pm 10(\text{syst}) \text{ pb,} \\
\sigma^{\psi(2S)\psi(2S)} &< 237 \text{ pb,} \\
\sigma^{\chi_{c0}\chi_{c0}} &< 69 \text{ nb,} \\
\sigma^{\chi_{c1}\chi_{c1}} &< 45 \text{ pb,} \\
\sigma^{\chi_{c2}\chi_{c2}} &< 141 \text{ pb,} \\
\end{array}$$

$$\frac{\sigma(J/\psi\,\psi(2S))}{\sigma(J/\psi\,J/\psi\,)} = 1.1^{+0.5}_{-0.4},$$

Photo-production in PbPb UPC

JHEP06(2023)146

Comparison with theoretical models

Comparison with previous results

Results coming up

- Near future
 - Tetraquark production in CEP J/ ψ + ϕ events
 - $\gamma + \gamma$, photoproduction, double pomeron interaction
 - Mass spectrum of K⁺K⁻ pairs in UPC
 - Photoproduction, double pomeron interaction, $\gamma + \gamma$
 - Needs theoretical input to identify scalar and tensor meson nonets and glueballs
- Further future
 - ϕ photoproduction in UPC
 - Covers gluon density at lower Q^2 and x than J/ψ

The LHCb Upgrade I

Detector performance in 2023 PbPb run

Future Upgrades : New HeRSCheL

Replace radiation damaged scintillators.

Add another station

Future Upgrades : Magnet Station

- Instrument the internal magnet walls with a scintillator-based soft particle tracker
- tracking $p_T > 50 \text{ MeV/c}$
 - Essential to complete the UPC program
 - high-statistics low-mass vector, scalar and tensor mesons
 - Exotic hadrons with multiple decay products
 - Low-mass dielectrons and photon conversions
- Looking for US institutions to join a DOE proposal, installation starting during LS3

Take away

- LHCb is ideal for UPC studies. The sky is the limit, thanks to
 - Software-based trigger
 - Excellent particle identification
 - Low-p_T tracking
- Results limited to quarkonia photoproduction so far, but other measurements are very close to be released
- LHCb is a new detector now and ready for Run3
- Future upgrades dedicated to UPC
- LHCb heavy ion is a good example of a high data/people ratio
 - Heartbreaking opportunities missing because of the lack of people to do analysis
 - Upgrade 1b and II are very good opportunities to be part of the LHCb HI program and make UPC physics as one of the most relevant in particle physics