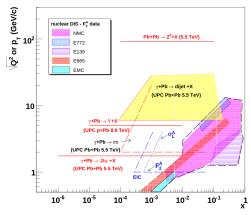
Energy dependence of J/ψ production in ultra-peripheral collisions at the LHC

Michael Winn

Department of Nuclear Physics IRFU/CEA, university Paris-Saclay

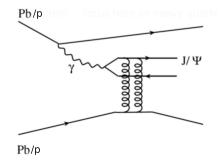

Playa del Carmen, 11.12.2023

Outline

- Motivation & experimental set-ups
- \blacktriangleright $\gamma\text{-proton}$ methods and measurements
- \blacktriangleright γ -Pb methods and measurements
- Conclusions and outlook

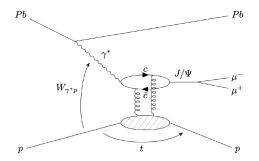
Motivation

Baltz et al. Phys.Rept.458:1-171,2008.

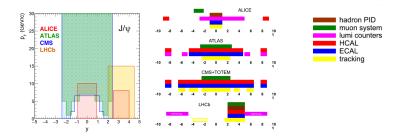

UPC at the LHC:

 \rightarrow use hadron collider as photon-hadron collider

Iow-x/high-W:


 \rightarrow kinematics beyond the reach of past & future lepton-hadron colliders

Motivation: coherent quarkonium production in UPC


- ultra-peripheral collisions: instrumentation and rate limitations, restriction to photo-production
- quarkonium coherent photoproduction: most prominent accessible observables with hard scale provided by heavy quark mass
 - \rightarrow amenable to perturbative QCD calculations

From UPC to $\gamma\text{-hadron cross section}$

- incoming hadron energy known, hadron-hadron luminosity measured
- photon fluxes: QED calculation & nuclear form factors
- quantify γ -hadron process: determine W and Mandelstam-t \rightarrow first t-dependent γ Pb J/ ψ measurements in talk by David Grund $\rightarrow W^2 = 2 \cdot E_p M_{jpsi} exp^{\pm y_{jpsi}}$, $t \approx -p_{T,J/\psi}^2$
- a priori unknown photon emitter: two contributions ±y → topic of this talk

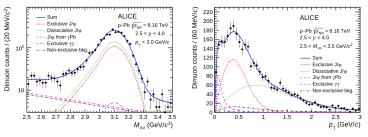
Experimental set-ups

Acceptance of pp inclusive charmonium measurements by T. Dahms link.

- ▶ bulk of coherent/incoherent J/ψ photoproduction: $p_{T,jpsi} \ll m_{jpsi}$ → complementary acceptance of LHC experiments
- different forward instrumentation, luminosities, triggers and resolution
- ALICE, CMS and LHCb:
 - \rightarrow important contributions to quarkonium measurements in UPC
 - \rightarrow partial redundancy to check for consistency

γ -proton collisions

γ -proton collisions: extract W-dependence using *pp* & HERA

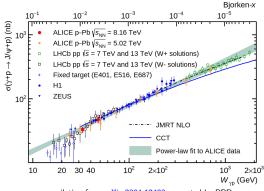

▶ measure at midrapidity, where it does not matter (not done) → limited to 1 W-point per centre-of-mass energy

► LHCb: deconvolute assuming power-law dependence for low-W component based on HERA measurements: $\sigma_{\gamma p \to \psi p} = a(W/90 \text{GeV})^{\delta}$ \rightarrow LHCb dimuon forward rapidity in pp at $\sqrt{s}_{pp} = 7,13$ TeV \rightarrow profit from large luminosity at still relatively low pile-up μ about 1 W-range for J/ ψ up to almost 2 TeV

$$\sigma_{pp \to p\psi p} = r(W^+)k_+ \frac{dn}{dk_+} \sigma_{\gamma p \to \psi p}(W_+) + r(W^-)k_- \frac{dn}{dk_-} \sigma_{\gamma p \to \psi p}(W_-)$$

 $k_{\pm} = M_{\psi}/2e^{\pm y} r$: survial factor (taken from calculation), $\frac{d_n}{dk}$: photon flux, see JHEP 10 (2018) 167 J/ ψ 13 TeV: LHCb-PAPER-2018-011, JHEP 10 (2018) 167; Υ 7,8 TeV: JHEP 1509 (2015) 084, LHCb-PAPER-2015-011; J/ ψ/ψ (2S) 7 TeV: J. Phys. G41 (2014) 055002, LHCb-PAPER-2013-059; J/ ψ/ψ (2S) 7 TeV: J. Phys. G40 (2013) 045001, LHCb-PAPER-2012-044

$\gamma\text{-}\mathsf{proton}$ collisions: extract W-dependence using pPb



arXiv:2304.12403, accepted by PRD

- pPb collider: Pb in 95% of the cases photon emitter
- ▶ typical t of γ -p and γ -Pb very different due to different digluon p_T → 'subtract' γ -Pb
 - ightarrow ALICE measurements for J/ ψ at $\sqrt{s}_{NN}=$ 5, 8.16 TeV
 - \rightarrow cover broad W-range from 20 up to 700 GeV

J/ ψ 8.16 TeV (fwd rapidity): arXiv:2304.12403(accepted by PRD), J/ ψ 5 TeV with both tracks barrel and barrel muon+ forward muon pair: EPJC (2019) 79: 402 J/ ψ 5 TeV (fwd rapidity): PRL 113 (2014) 232504, CMS Υ at 5 TeV: EPJC 79 (2019) 277; Erratum: EPJC 82 (2022) 343

Results on exclusive production

compilation from arXiv:2304.12403, accepted by PRD

- good agreement between experiments within uncertainties
- need precise high-W from pPb: confirm LHCb high-energy solution
- ► strong sensitivity to constrain gluons at low-x → first steps towards PDF-fit-inclusion

e.g. sensitivity proton Flett et al.PRD 102 (2020) 114021, NLO calc. for Pb Eskola et al. PRC 106 (2022)

 however exclusive process: generalized parton distributions, not PDFs
 develop theory uncertainty for 'PDF'-extraction Dutrieux et al. PRD 107 (2023) Michael Winn (Irfu/CEA), UPC 2023, 11.12.2023

Motivation for dissociative production: measure fluctuations

incoming $(|i\rangle)$ and outgoing state $(|f\rangle)$ different

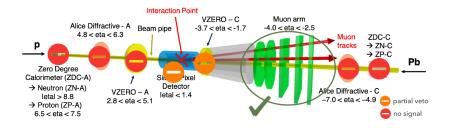
$$\begin{split} \textit{use} &: \sum_{f \neq i} |\langle f|A|i \rangle|^2 = \sum_{f} \langle i|A^*|f \rangle \langle f|A|i \rangle - \langle i|A|i \rangle \langle i|A^*|i \rangle \\ &= \langle i|A^*A|i \rangle - |\langle i|A|i \rangle|^2 \\ &\text{average over } i: \end{split}$$

$$rac{d\sigma^{\gamma^*p o p^* J/\psi}}{dt} = rac{1}{16\pi} \left(\langle |\mathcal{A}^{\gamma^*p o pJ/\psi}|^2
angle - |\langle \mathcal{A}^{\gamma^*p o pJ/\psi}
angle|^2
ight)$$

p: proton (also valid for nuclei), p^* proton excited, J/ ψ could be any vector, recent review in H. Mäntisaary Rep. Prog. Phys. 83 (2020), 'Good-Walker' formalism, also in Frankfurt, Strikman, Treleani, WeissPRL 101 (2008) 202003.

- \rightarrow dissociative ('incoherent '): variance $< x^2 > < x >^2$, not average $< x >^2$
 - γp : dissociative production \rightarrow fluctuations of the proton
 - HERA data does not reach full kinematics accessible at the LHC due to higher energies
 - → measure at the LHC! Michael Winn (Irfu/CEA), UPC 2023, 11.12.2023

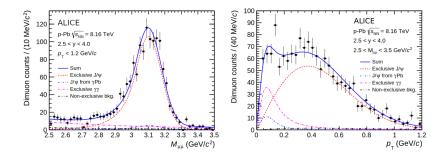
Analysis strategy for dissociative production


standard selection and methods for muon analyses in ALICE and UPC

specifically here:

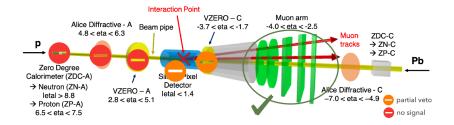
- \rightarrow exclusive selection to fix exclusive contribution shape
- \rightarrow more open selection including dissociative and exclusive to do fit
- \rightarrow 2-D loglikelihood fit of mass and p_{T} to extract signals

▶ analysis of $\gamma\gamma \rightarrow \mu^+\mu^-$ as test of QED part & photon fluxes as bonus, ingredient for time-like-compton scattering feasibility


Dissociative production: exclusive selection vetos

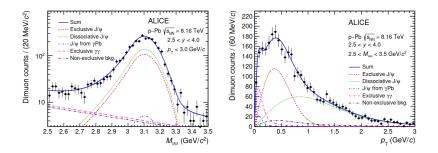
selection used to derive p_T distribution of exclusive production

also used as cross check

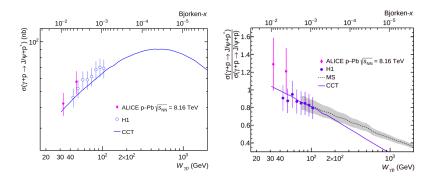

Dissociative production: exclusive selection

tight selection used for exclusive shape determination

Michael Winn (Irfu/CEA), UPC 2023, 11.12.2023


Dissociative production: Open selection

selection used for cross section determination


- verified via RapGap simulation that V0C vetoes do not introduce inefficiency for dissociative process
- largest systematic uncertainties for dissociative: V0C veto & exclusive shape

Analysis key aspect: signal extraction

- Exclusive: shape fixed with pure exclusive sample
- Dissociative J/ ψ parameterisation following H1
- γ-Pb production fixed from PbPb measurement

Results on dissociative production

arXiv:2304.12403, accepted by PRD

- measurement compatible with H1 results, similar precision for absolute cross section
- larger uncertainty on ratio anticorrelation of statistical and signal extraction uncertainties
 proof-of-principle
- in future: cover full available kinematics at the LHC! Michael Winn (Irfu/CEA), UPC 2023, 11.12.2023

$\gamma\text{-lead}$ collisions

 γ -lead: extract W-dependence directly

Direct approaches:

- \blacktriangleright measure at midrapidity, where W the same for both emitters \rightarrow ALICE measurements at 2.76 TeV and 5 TeV
- ► measure in pPb collisions, where only one lead → need to isolate w.r.t. dominating γ-p, not done so far

$\gamma\text{-lead:}$ W-dependence via impact-parameter dependent photon fluxes

$$\frac{d\sigma_{PbPb}}{dy} = n_{\gamma}(y, \{b\})\sigma_{\gamma Pb}(y) + n_{\gamma}(-y, \{b\})\sigma_{\gamma Pb}(-y)$$

- If:
 - several independent measurements with different sampled impact parameters b
 - capacity to calculate $n_{\gamma}(y, \{b\})$ precisely

ightarrow system of equations to extract $\sigma_{\gamma Pb}$ from $d\sigma/dy$

γ -lead: W-dependence

via impact-parameter dependent photon fluxes

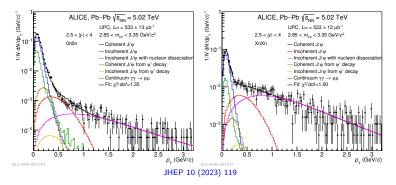
Two approaches realised:

► measure in neutron emission classes via zero degree calorimeters → proposed by Baltz et al. PRL 89 (2002) 012301 and by Guzey et al. EPJC 74 (2014) 2942

► measure in peripheral and ultraperipheral collisions → proposed by J. G. Contreras PRC 96 (2017) 015203

1st method:

modeling of photon fluxes associated to neutron emission


 \rightarrow done with $n_0^0 n$ model in ALICE, CMS with Starlight

see discussion and reference in ALICE publication for differences JHEP 10 (2023) 119, relevant difference for most forward bins

2nd method:

neglect difference (or model difference in future) in peripheral collisions take impact parameter from centrality determination in hadronic collisions

$\gamma\text{-lead:}$ W-dependence signal extraction for different classes

signal extraction at forward rapidity in 0n0n:

 \rightarrow no neutron detected in both fragmentation regions

Signal extraction at forward rapidity in XnXn: → at least 1 neutron detected on both sides

measurements need to be corrected for efficiency and migration between neutron emission classes

$\gamma\text{-lead:}$ W-dependence time-line

▶ 2013:

first midrapidity data by ALICE EPJC 73 (2012) used in Guzey et al. with ALICE fwd rapidity data using only dominant contribution PLB 718 (2013)

▶ 2016:

first extraction with peripheral and ultraperipheral collisions by J.C. Contreras with ALICE data forward rapidity data PRC 96 (2017) \rightarrow see talk by Nicolas Bizé for more precise recent final and preliminary results at 5 TeV

▶ 2023:

first publications by ALICE and CMS based on neutron emission classes

$\gamma\text{-lead:}$ W-dependence results compilation

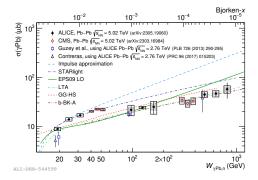


Figure from ALICE JHEP 10 (2023) 119 including CMS data arXiv:2303.16984(accepted by PRL)

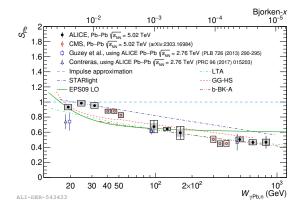
- both methods agree, compatibility between experiments
- strong nuclear suppression based on impulse approximation (IA) comparison

ightarrow consistent with findings based on inclusive heavy-quark *pPb* data

 model spread much larger than experimental uncertainties no model curve describes all measurement points

γ -lead: nuclear suppression factor

$$S = \sqrt{rac{\sigma_{\gamma Pb}}{\sigma_{\gamma Pb}^{IA}}}$$


observable to quantify nuclear effects introduced by Guzey et al. EPJC 74 (2014) 2942

- ► ALICE and CMS use calculation from Guzey et al. 5% uncertainty assumed by authors based on parameterisation/experimental inputs of $\sigma_{\gamma Pb}^{IA} = \frac{d\sigma}{dy}_{\gamma p \rightarrow J/\psi p} (t=0) \cdot \int_{|t_{min}|}^{\infty} dt |F_A(t)|^2$
- ► assuming: gluon dominance, cross section proportional to gluon-PDF² → measure of gluon PDF suppression in nucleus
- analogue to inclusive observables $R_{pPb} = \sigma_{pPb}/(208 \cdot \sigma_{pp})$
- personal remark:

preference to take experimental γ -p and not its parameterisation

 \rightarrow better separation of theory & experiment when going to fit things

$\gamma\text{-lead:}$ W-dependence of nuclear suppression factor

strong nuclear suppression: major finding of the LHC QCD programme!

no discrimination: saturation vs. collinear factorisation-based

Nuclear suppression of gluons at low-x: UPC quarkonia data vs. inclusive heavy-quark pPb

 Charm/beauty inclusive pPb data already included in nuclear PDF fits since directly sensitive to PDFs

► constraining power of LHCb forward results see e.g. in EPP21 EPJC 82 (2022) 5, 413 and nNNPDF3.0 EPJC 82 (2022) 6, 507 → uncertainties related to hadronisation difference pp vs. pPb & possible presence of coherent energy loss

► UPC coherent quarkonium production data: → uncertainties related to transfer from GPD to PDF, see Vadim Guzey's talk at HP23 for references link

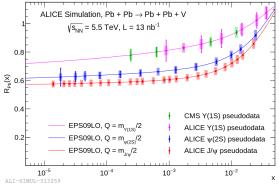
Both type of data suffer from large scale uncertainties

 \rightarrow future observables: reduce/remove part of the theory uncertainties

Summary

- LHC data allows to deconvolute experimentally W-dependence of quarkonium production: demonstrated with J/ψ
- LHC results from 3 experiments
 - ightarrow partial redundancy, different methods and overlap with HERA
 - \rightarrow emergence of an overall coherent picture
- \blacktriangleright comprehensive set of γp and γPb measurements for J/ψ
- γ -p W-data far beyond HERA:
 - ightarrow constraining gluons in the proton at low-x
- ▶ strong nuclear suppression in γ -Pb collisions: → consistent with inclusive charm and beauty pPb data
 - \rightarrow strong nuclear suppression of gluons
- collinear factorisation & saturation-based calculations compatible with data
 - \rightarrow nuclear: all data points not described by any model

Outlook


Feasible missing pieces with existing and/or Run 3 data:

- ► W-dependence of incoherent production → one data point only in γ-p and one in γ-Pb so far
- ► t-dependent measurements for different W (coherent/incoherent) \rightarrow done for γ -Pb measurement at midrapidity, see talk by D. Grund
- Measurement of cross section for different mass quarkonium states
 → first measurements available, often statistically limited

Open, but worthwhile challenges:

- ▶ inclusive $q\bar{q}$ photoproduction, K. Lynch at Orsay workshop ´23 link
- how far in t can we go in γ- and γ-Pb at the LHC with high statistics data with current and future instrumentation and better modeling?

Outlook

HL-LHC Yellow Report WG5, arXiv:1812.06772

- proven that this type of measurement used for Run 3 projection already feasible with Run 2 data
- ...and that we can go beyond
 - \rightarrow t-dependence, incoherent measurements
- the future is full of opportunities!