Quantum mechanics in coherent photoproduction: the limits of coherence, and multiple vector mesons

Spencer R. Klein, LBNL

Presented at UPC2023, Dec. 10-15, Playa del Carmen, Mexico

- Good-Walker paradigm
- Where GW fails
- An alternative to GW
- Beyond the Pomeron:
 - Coherence with Reggeons?
- Multiple Vector Meson emission

"Ohhhhhhh . . . Look at that, Schuster . . . Dogs are so cute when they try to comprehend quantum mechanics."

BUT DOGS CAN OBSERVE THE WORLD, WHICH MEANS THAT ACCORDING TO QUANTUM MECHANICS THEY MUST HAVE SOULS.

PROTIP: YOU CAN SAFELY IGNORE ANY SENTENCE THAT INCLUDES THE PHRASE "ACCORDING TO QUANTUM MECHANICS"

xkcd.com

Coherent and Incoherent Photoproduction: a quantum view

- The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively
 - Configuration = position of nucleons, gluonic hot spots etc.
- Coherent: Nucleus remains in ground state, so sum the amplitudes, then square -> average over different configurations
- Incoherent = Total coherent; total: square, then sum crosssections for different configurations

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections (}\Omega\text{)}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes (}\Omega\text{)}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}$$

Good and Walker, Phys. Rev. D 120, 1857 (1960); Miettinen and Pumplin, Phys. Rev. D 18, 1696 (1978)

Transverse interaction profiles

- The coherent cross-section gives us access to the transverse spatial distribution of individual targets within the nucleus

 ^dσ_{coh}/_{dt} = ¹/_{16π} |⟨A(K, Ω)⟩|²
 Average amplitudes (Ω)

 t = p_T²+p_z² ~ p_T²
- p_T and b are conjugate. d_{\u0375}/dp_T encodes information about the transverse locations of the interactions
- The two-dimensional Fourier transform of d_o/dt gives F(b), the transverse distribution of targets

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

*flips sign after each diffractive minimum

- Without shadowing, this is the shape of the nucleus
- Multiple serious caveats range of integration/ windowing finding diffractive minima, subtracting out photon p_T etc.

Incoherent production and event-by-event fluctuations

The incoherent cross-section accesses event-by-event fluctuations in the nuclear configuration, including the positions of individual nucleons, gluonic hot spots, etc.

$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right)$$

- Deviations from the mean.
- The connection between t and impact parameter is weaker than for coherent production, but this can be used to test models.

Coherent photoproduction where Good-Walker predicts it should not occur

- Coherent: peak with $p_T \sim < hbar/R_A$
- AA -> A*A* V
 - Coherent photoproduction with nuclear excitation
- Most older STAR UPC analyses REQUIRE mutual Coulomb excitation in trigger
- ALICE also sees coherent photoproduction in events containing neutrons
- Explained by diagram with independent photon emission
 - Factorization!
 - But also possible with single photons, especially at larger p_T
- Good-Walker does not have an exception for mostly separable reactions

SK, Phys. Rev. C **107**, 055203 (2023) STAR, Phys. Rev C **77**, 034910 (2008)

Coherent photoproduction in peripheral collisions

- Coherent J/\u03c6 photoproduction in peripheral hadronic collisions
 - Peak at p_T < ~ hbar/R_A
- J/y photoproduction and hadronic interactions have similar time scales
- Seen by ALICE and STAR
- How large is the target region?
 - All nucleons?
 - Just spectators?

See talks by N. Brize (ALICE) & K. Shen (STAR) L. Massacrier for ALICE, arXiv:1902.03637 W. Zha et al., PRC97, 044910 (2018)

Other possible sub-reactions

- Bremsstrahlung from the ion
 - 1/k photon energy spectrum
 - Logarithmically divergent
- Pair production

- 200,000 barns for Pb-Pb at the LHC
- Lepton p_T peaked at ~ few m_e
- Leptons are at large rapidity
- Most of these pairs are invisible

- There are many ways to have additional, unseen particles
- Small kinematic changes, but breaks exclusivity of reactions
 - Good-Walker requires exclusive reactions!

Another issue with Good-Walker

- Nuclear excitation is endothermic: energy transfer to the nucleus
- Nucleon emission requires E_T = 5-7 MeV for lead/gold
 - ◆ If the reaction proceeds by single particle excitation (as expected), $p_{struck-nucleon} > \sqrt{2} mE_T > ~ 100 MeV/c$
 - Most of the coherent region. Incoherent cross-sections should change when crossing this threshold
- Lowest excitation energy for lead: 2.6 MeV
 - If a single nucleon is struck, p_T > 70 MeV
- Lowest excitation energy for gold: 77 MeV
 - If a single nucleon is struck, p_T > 12 MeV
- Incoherent interactions are impossible at lower energy/p_T transfer
- In contrast, in GW, high-energy incoherent photoproduction depend on low-x partonic structure of the target, which should be very similar for lead and gold.
 - This difference should be testable.

An alternate, semi-classical approach

- Sum reactions where the target is indistinguishable
- $\sigma_{\text{coherent}} = |\Sigma_i A_i k \exp(ikb)|^2$
 - Usually assume A_i are identical
 - For kb < hbar exp(ikb) ~ 1, and the amplitudes add coherently
 dσ/dt |_{t=0} ~ N²
 - For kb > hbar exp(ikb) the exponential has a random phase

+ dσ/dt |_{t=0} ~ N

- This naturally predicts a transition between coherent and incoherent regimes as k rises
 - Could add multiple interactions (ala Glauber) to include shadowing
 - Could include nucleon excitation regime by summing over partons rather than nucleons
- Does not follow the target after the interaction
 - Insensitive to nuclear breakup
- Can accommodate gradual loss of coherence

Tests of semi-classical vs. Good-Walker

- Coherent photoproduction with nuclear excitation
- Coherent photoproduction in peripheral heavy-ion collisions
- Coherent photoproduction in Reggeon exchange
 - Reactions involving exchange of quantum numbers
 - $\gamma + A \rightarrow a_2^+(1320) + (A-1)$
 - Changes a proton into a neutron
 - Is this coherent over all protons in a target?
- Compare d_σ/dt for incoherent photoproduction in lead and gold
 - Including photoproduction accompanied by photons from nuclear excitation.
 - Possible at Jefferson Lab by adding a germanium detector to an existing spectrometer
 - For lighter (than the J/ψ) mesons

SK, 2014 CERN UPC workshop: https://indico.cern.ch/event/216417/contributions/1515429/

a₂⁺(1320) photoproduction in pA UPCs

- Charged Reggeon exchange γp-> a₂(1230)⁺n
 - Parameters based on fixed-target data
 - Limited data

$$\sigma_{\gamma p \to a_2^+(1320)n}(W) \approx 5.42(W^2 - m_p)^{-0.82}$$

-5.80 exp(-0.070(W^2 - m_n^2)^2),
 σ peaks at few*threshold

- Favors low photon energy
- UPC signal peaks at large y
- σ=170 μb (pAu@RHIC)/560 μb (pPb@LHC)
 - Large signals
- Br($\pi^+\pi^-\pi^+$) ~ 70%
- Visible in STAR forward detector and/orLHCb & ALICE FoCal

10 W(GeV) 15

20

5

3.5

2.5

0.5

0

σ(μb)

a₂⁺(1320) and a₂⁺(1320) photoproduction on ion targets

- $\gamma p \rightarrow a_2(1230)^+ n$ probes protons in target
- γ n-> a₂(1230)⁻p probes neutrons in target
- Coherent photoproduction of both can compare proton and neutron radii of heavy nuclei in a single experiment, with small systematics

Studies of exotica

- The ability to study Reggeon exchange reactions greatly expands the range of accessible final states
 - Exotica, including c cbar and lighter particles
 - Many conventional mesons

- Meson-photon couplings probe the nature of these exotica
 - Couplings depend on nature (glueball, tetraquark, meson molecule etc.) and spin of the final state
 - Heavier (ccbar) mesons have smaller <y> than lighter states

History of multiple vector meson production

- Klein & Nystrand (1999) explained via factorization:
 - $\sigma = \int d^2 b P_1(b) P_2(b) \dots$
 - Data on VM + mutual Coulomb excitation show factorization works
- A series of papers by Mariola Klusek-Gawenda et al. calculated cross-sections and kinematics

$$\begin{split} \sigma \left(AA \to AA\rho^0 \rho^0 \right) \; &=\; \int \hat{\sigma} \left(\gamma \gamma \to \rho^0 \rho^0; W_{\gamma\gamma} \right) S_{abs}^2 \left(\mathbf{b} \right) N(\omega_1, \mathbf{b}_1) N(\omega_2, \mathbf{b}_2) \\ &\times\; d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d\omega_1 d\omega_2 \; , \end{split}$$

- Other papers showed used similar approaches
- σ(ρ⁰ρ⁰) ~ 20% of σ(π⁺π⁻ π⁺π⁻), so current nonobservation not problematic

SK & J. Nystrand, Phys. Rev. C 60, 014903 (1999); M. Klusek-Gawena & Szczurek, Phys. Rev. C 89, 024912 (2014); C. Azevedo et al., Eur. Phys. J. A 59, 193 (2023)

Interference in meson production

- Interference has been seen in singlemeson production.
- Destructive interference

VM are negative parity Propagator (Pomeron momentum)

- $\sigma \sim |A_1 A_2 e^{ik \cdot b}|^2$ for pp, AuAu...
 - + A_1 , A_2 are functions of photon energy
 - When $y \neq 0$ then $A_1 \neq A_2$
 - σ drop as pT -> 0
 - $\sigma \sim |A_1 + A_2 e^{ik \cdot b}|^2$ for pbarp
- Angular modulation of d σ /dt since pair p_T follows b and π^{\pm} p_T depends on VM polarization
 - Allows a quality fit to dσ/dt, with the reasonable nuclear radii & skin thicknesses

Talks by A. Riffero (ALICE) & K. Wang (STAR) SK & J. Nystrand, PRL 84, 2330 (2000); STAR PRL 102, 112301 (2009); H. Xing et al., JHEP 10, 064 (2020); STAR Sci. Adv. 9, 1 eabq3903 (2023) etc.

Notation

- p vector meson momentum
- q photon momentum
- k Pomeron momentum
- A_{1,i} and A_{2,1} A₁ and A₂ are the two ions; the sums over indices i and I run over the individual nucleons in the ion
 - This could alternately be an integral over nuclear density, with similar results
- The nucleons have impact parameters $\vec{b_i}$ and $\vec{b_l}$. These vectors are taken from the center-of-mass of the system. For the two nuclei, $\vec{b_1}$ and $\vec{b_2}$ are the vectors from the center of the nuclei to the system COM.

• So
$$\vec{b}_1 = -\vec{b}_2$$

Double mesons - nonidentical (e. g. $\rho\phi$)

Work in Progress! Either meson can come from either nucleus -> 4 diagrams

$$\begin{split} (b) &= \left| \Sigma_{i} A_{1,i}(b,\vec{p_{j}}) e^{i\vec{k_{1}}\cdot\vec{b_{i}}} \Sigma_{l} A_{1,l} e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \right. \\ &- \Sigma_{i} A_{1,i}(b,\vec{p_{j}}) e^{i\vec{k_{1}}\cdot\vec{b_{i}}} \Sigma_{l} A_{2,l} e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \\ &- \Sigma_{i} A_{2,i}(b,\vec{p_{j}}) e^{i\vec{k_{1}}\cdot\vec{b_{i}}} \Sigma_{l} A_{1,l} e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \\ &+ \Sigma_{i} A_{2,i}(b,\vec{p_{j}}) e^{i\vec{k_{1}}\cdot\vec{b_{i}}} \Sigma_{l} A_{2,l} e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \Big|^{2} \end{split}$$

P

Sum over individual nucleons; could also integrate density

- + Gives 2nd momentum scale: hbar/ R_A (in addition to hbar/b)
- Vectors b are from center of mass
- Signs come from negative parity of vector mesons
- A_{1,i}, A_{2,I} are production amplitudes on individual nucleons
 - Slightly photon-energy dependent

Forward production of light mesons

- $\sigma(\gamma A \rightarrow \rho/\phi A)$ varies slightly with photon energy
- Photon flux scales as 1/k
- At large |y| photons come predominantly from one nucleus
- The first two diagrams dominate at large +y and y respectively.
 - No interference, for one direction:

$$P(b) = \left| \Sigma_i A_{1,i}(b, \vec{p_1}) e^{i\vec{k_1} \cdot \vec{b_i}} \Sigma_l A_{1,l}(b, \vec{p_2}) e^{i\vec{k_2} \cdot \vec{b_l}} \right|^2$$

- Same ion p_T scale for coherence is hbar/R_A
 - As with single ions

Mid-rapidity production of non-identical double mesons (e. g. $\rho\phi$)

All four diagrams contribute

$$P(b) = \left| \sum_{i} A_{1,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{1,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} \right. \\ \left. - \sum_{i} A_{1,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{2,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} \right. \\ \left. - \sum_{i} A_{2,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{1,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} \right. \\ \left. + \sum_{i} A_{2,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{2,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} \right|$$

Consider limit identical nuclei, y=0, p_{T1}=P_{T2}=0

- Production disappears.
- Some similarities to the single-ion case, but more complex patterns. Coherent enhancement for p_T<hbar/R_A, & destructive interference for p_T<hbar/

Mid-rapidity production of non-identical double mesons (e. g. $\rho\phi$)

- All four diagrams contribute
- 2 like-target terms are similar
 - Need a propagator exp[i(k₁-k₂)b] to go from one to the other by swapping targets
 - + k_1 - k_2 because the \vec{b} go in opposite directions
 - All terms have momentum scale hbar/b
- 2 opposite-target terms:
 - $-\exp[i(k_1b_1+k_2b_2)] -\exp[i(k_1b_2+k_2b_1)]$
 - = $-\exp[i((k_1-k_2)b_1)] \exp[-i((k_1-k_2)b_1)]$
 - = $-2 \cos((k_1 k_2)b_1)$
 - Coherent enhancement with k₁,k₂ large as long as k₁-k₂ is small

 $P(b) = \left| \sum_{i} A_{1,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{1,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} - \sum_{i} A_{1,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{2,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} - \sum_{i} A_{2,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{1,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} + \sum_{i} A_{2,i}(b, \vec{p_{j}}) e^{i\vec{k_{1}} \cdot \vec{b_{i}}} \sum_{l} A_{2,l} e^{i\vec{k_{2}} \cdot \vec{b_{l}}} \right|^{2}$ ets
etons

Full combination Still to come

Identical (indistinguishable) mesons

Two possibilities

- Photon 1 -> Meson 1 and Photon 2 -> Meson 2
- Photon 1 -> Meson 2 and Photon 2 -> Meson 1
 - Identical routes to the same final state

Identical (indistinguishable) mesons at forward rapidity

- Two diagrams contribute.
- $P(b) \sim |2N^2A_i^2 \exp[i(k_1+k_2)b]|^2$
 - Depends on sum of Pomeron k_T
 - $+ \Sigma_i A_{1,i}(b, \vec{p_1}) e^{i \vec{k_2} \cdot \vec{b_i}} \Sigma_l A_{1,l}(b, \vec{p_1}) e^{i \vec{k_1} \cdot \vec{b_l}} \Big|^2$ Coherent enhancement when $k_1 b < hbar$
- Longitudinal coherence also required
 - $k_{z1}+k_{z2} < hbar/R_A$

- Coherence condition tightens compared to single mesons
- If coherence conditions are satisfied, the cross-section is twice the non-identical meson case.
 - Superradiance

Here, for simplicity: Neglect longitudinal coherence

 $P(b) = \left| \Sigma_i A_{1,i}(b, \vec{p_1}) e^{i \vec{k_1} \cdot \vec{b_i}} \Sigma_l A_{1,l}(b, \vec{p_2}) e^{i \vec{k_2} \cdot \vec{b_l}}
ight|$

More than 2 forward mesons

- For M mesons, there are M! diagrams
- Production probability scales as

 $P_{M}(b) = M! N^{M*M} A_{i}^{M*M} = M! [P_{1}(b)]^{M}$

- ♦ For large M, M! increases faster than [P₁(b)]^M
- For PbPb at the LHC, $P_{\rho}(b=2R_A) \sim 0.03$
- Potentially, a vector meson laser
- Significant limitations
 - The accessible phase space drops as 1/M
 - Can only access a fraction of the energy in the photon fields
 - Pρ(b=2R_A) is pretty small, even for U beams at fcc
 - Open question superradiance/lasing requires independent emitters.
 Photons emission is independent, but with common phase
- Clear demonstration probably requires a forward detector
 - N=2 is clearly accessible, and N=3 should also be visible with effort

Identical particles at mid-rapidity

P(b)

8 amplitude terms

- 4 w/ emission from same nucleus
- 4 w/ emission from opposite nuclei
- 2 distance scales
 - hbar/R_A for emission from same nucleus
 - hbar/b for emission from different nuclei
- First, consider hbar/R_A < k < hbar/b</p>
- 4 paired opposite nuclei terms:
 - Similar enhancement as non-identical particles
 - Coherent enhancement with k₁,k₂ large as long as k₁-k₂ is small

$$= \left| \Sigma_{i}A_{1,i}(b, \vec{p_{j}})e^{i\vec{k_{1}}\cdot\vec{b_{i}}}\Sigma_{l}A_{1,l}e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \right. \\ \left. - \Sigma_{i}A_{1,i}(b, \vec{p_{j}})e^{i\vec{k_{1}}\cdot\vec{b_{i}}}\Sigma_{l}A_{2,l}e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \right. \\ \left. - \Sigma_{i}A_{2,i}(b, \vec{p_{j}})e^{i\vec{k_{1}}\cdot\vec{b_{i}}}\Sigma_{l}A_{1,l}e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \right. \\ \left. + \Sigma_{i}A_{2,i}(b, \vec{p_{j}})e^{i\vec{k_{1}}\cdot\vec{b_{i}}}\Sigma_{l}A_{2,l}e^{i\vec{k_{2}}\cdot\vec{b_{l}}} \right. \\ \left. + \Sigma_{i}A_{1,i}(b, \vec{p_{j}})e^{i\vec{k_{2}}\cdot\vec{b_{i}}}\Sigma_{l}A_{1,l}e^{i\vec{k_{1}}\cdot\vec{b_{l}}} \right. \\ \left. - \Sigma_{i}A_{1,i}(b, \vec{p_{j}})e^{i\vec{k_{2}}\cdot\vec{b_{i}}}\Sigma_{l}A_{2,l}e^{i\vec{k_{1}}\cdot\vec{b_{l}}} \right. \\ \left. - \Sigma_{i}A_{2,i}(b, \vec{p_{j}})e^{i\vec{k_{2}}\cdot\vec{b_{i}}}\Sigma_{l}A_{2,l}e^{i\vec{k_{1}}\cdot\vec{b_{l}}} \right|$$

Azimuthal asymmetries

- Multiple vector mesons are linearly polarized along the same axis
 - They should display azimuthal asymmetries
 - Sort-of like due to two-source interference, but with richer phenomenology

Going further – stimulated decays

- If we can produce ρ⁰ (or other mesons) in the same state, then should be able to observe stimulated decays.
- Same state criteria for short-lived particles: coherence time> particle lifetime
 - Momentum close enough together
- Stimulated decays should be visible in one of two ways
 - For particles with different decays (e. g. J/ψ -> ee, μμ) by 'tagging' one one decay, should see an excess of the same state from the other J/ψ
 - For states like $\rho^0 \rho^0$, should see angular correlations between the $\pi^+ \pi^+$ and $\pi^- \pi^-$

Conclusions

- Coherence is an interesting and subtle topic, with important consequences.
- The Good-Walker paradigm relates coherent and incoherent photoproduction to the average nuclear configuration and configuration fluctuations respectively. In Good-Walker coherence means that the target remains in the ground state. That disagrees with some experimental observations of coherent photoproduction
- An alternate approach to coherence adding amplitudes, soσ_{coherent} = |Σ_i A_ik exp(ikb)|² – can explain data where Good-Walker fails.
- 'Adding amplitudes' allows some new coherent UPCs channels, including coherent photoproduction of charged mesons.
- UPC production of multiple vector mesons exhibits many interesting aspects of interference.
 - Superradiance for identical meson emission in the forward direction.
 - Interference when k_1 , k_2 > hbar/b, as long as k_1 - k_2 < hbar/b.

Conclusions (II)

BIG MATH NEWS: THEY FINALLY FIGURED OUT THE VALUE OF X.

Gracias!

xkcd.com