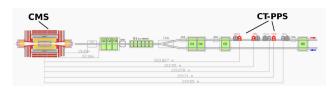
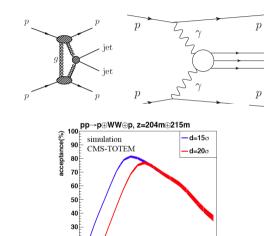
Photon photon physics at the LHC


Christophe Royon University of Kansas, Lawrence, USA UPC workshop

December 10-15 2023, Playa del Carmen, Mexico

Contents

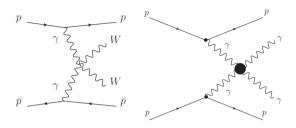
- Proton tagging at the LHC
- $\gamma\gamma\gamma\gamma$, $\gamma\gamma\gamma Z$, $\gamma\gamma WW$, $\gamma\gamma ZZ$ anomalous coupling studies
- Search for Axion-like particles
- Possible observation of WW exclusive production


What is the CMS-TOTEM Precision Proton Spectrometer (CT-PPS)?

- Joint CMS and TOTEM project: https://cds.cern.ch/record/1753795
- LHC magnets bend scattered protons out of the beam envelope
- Detect scattered protons a few mm from the beam on both sides of CMS: 2016-2018, $\sim 115~{\rm fb^{-1}}$ of data collected
- Similar detectors: ATLAS Forward Proton (AFP)

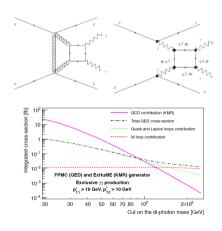
Detecting intact protons in ATLAS/CMS-TOTEM at the LHC

1000

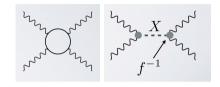

1500

2000 M. (GeV)

- Tag and measure protons at ±210 m: AFP (ATLAS Forward Proton), CT-PPS (CMS TOTEM - Precision Proton Spectrometer)
- All diffractive cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Complementarity between low and high mass diffraction (high and low cross sections): special runs at low luminosity (no pile up) and standard luminosity runs with pile up


10 500

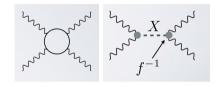
Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma$ quartic anomalous coupling


- ullet Study of the process: pp o ppWW, pp o ppZZ, $pp o pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1 \, TeV) = 5.9$ fb
- Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma$; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Rich $\gamma\gamma$ physics at LHC: see papers by C. Baldenegro, S. Fichet, M. Saimpert, G. Von Gersdorff, E. Chapon, O. Kepka, CR... Phys.Rev. D89 (2014) 114004 ; JHEP 1502 (2015) 165; Phys. Rev. Lett. 116 (2016) no 23, 231801; JHEP 1706 (2017) 142; JHEP 1806 (2018) 131

$\gamma\gamma$ exclusive production: SM contribution

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses (> 200 GeV), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

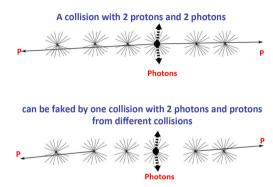


Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

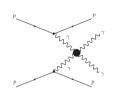
• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charged particles $\zeta_1=\alpha_{em}^2Q^4m^{-4}Nc_{1,s}$ where the coupling depends only on Q^4m^{-4} (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

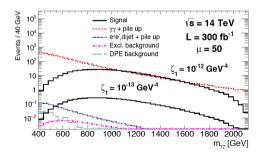
Motivations to look for quartic $\gamma\gamma$ anomalous couplings



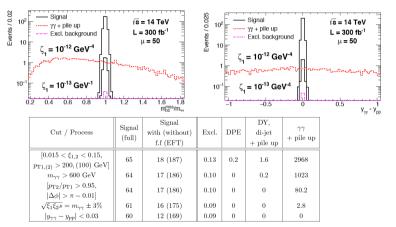
Two effective operators at low energies

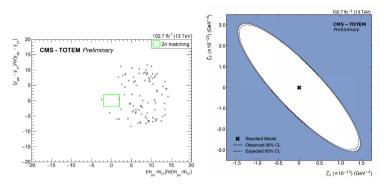
$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$


• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

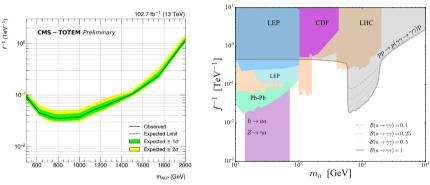

One aside: what is pile up at LHC?

- The LHC machine collides packets of protons
- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events


Search for quartic $\gamma\gamma$ anomalous couplings

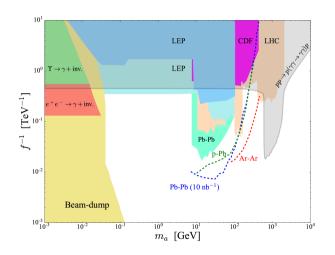

- Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...
- Anomalous coupling events appear at high di-photon masses
- S. Fichet, G. von Gersdorff, B. Lenzi, C.R., M. Saimpert ,JHEP 1502 (2015) 165

Search for quartic $\gamma\gamma$ anomalous couplings


- No background after cuts for 300 fb⁻¹: sensitivity up to a few 10⁻¹⁵, better by 2 orders of magnitude with respect to "standard" methods
- Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)


First search for high mass exclusive $\gamma\gamma$ production

- Search for exclusive diphoton production: back-to-back, high diphoton mass ($m_{\gamma\gamma} > 350$ GeV), matching in rapidity and mass between diphoton and proton information
- First limits on quartic photon anomalous couplings: $|\zeta_1| < 2.9 \ 10^{-13} \ \text{GeV}^{-4}$, $|\zeta_2| < 6. \ 10^{-13} \ \text{GeV}^{-4}$ with about 10 fb⁻¹, accepted by PRL (2110.05916)
- Limit updates with 102.7 fb⁻¹: $|\zeta_1| < 7.3 \ 10^{-14} \ \text{GeV}^{-4}$, $|\zeta_2| < 1.5 \ 10^{-13} \ \text{GeV}^{-4}$


First search for high mass production of axion-like particles

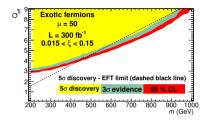
- First limits on ALPs at high mass (CMS-PAS-EXO-21-007)
- Sensitivities projected with 300 fb⁻¹ (C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1806 (2018) 13)

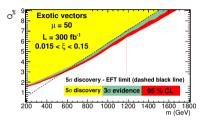
Search for axion like particles: complementarity with heavy ion runs

- Production of ALPs via photon exchanges in heavy ion runs:
 Complementarity to pp running
- Sensitivity to low mass ALPs: low luminosity but cross section increased by Z⁴, C. Baldenegro, S. Hassani, C.R., L. Schoeffel, Phys. Lett. B795 (2019) 339; D. d'Enterria et al., PRL 111 (2013) 080405

Full $\gamma\gamma\gamma\gamma$ amplitude calculation

- Effective field theory valid if $S \ll 4m^2$, S smaller than the threshold production of real particles
- Since the maximum proton missing mass is \sim 2 TeV at the 14 TeV LHC, the effective theory needs to be corrected for masses of particles below \sim 1 TeV \rightarrow use of form factor which creates an uncertainty on the results (depends on the exact value of form factors)
- Solution: compute the full momentum dependence of the 4 photon amplitudes: computed for fermions and bosons
- Full amplitude calculation for generic heavy charged fermion/vector contribution
- \bullet Existence of new heavy charged particles enhances the $\gamma\gamma\gamma\gamma$ couplings in a model independant way
- ullet Enhancement parametrised with particle mass and effective charge $Q_{eff}=QN^{1/4}$ where N is the multiplicity

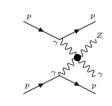

Full $\gamma\gamma\gamma\gamma$ amplitude calculation

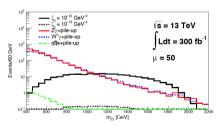

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
	130.8	36.9 (373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{ GeV}$	128.3	34.9 (371.6)	0.20	0	0.2	1023
$[p_{\rm T2}/p_{\rm T1} > 0.95, \ \Delta\phi > \pi - 0.01]$	128.3	34.9 (371.4)	0.19	0	0	80.2
$\sqrt{\xi_1 \xi_2 s} = m_{\gamma \gamma} \pm 3\%$	122.0	32.9 (350.2)	0.18	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	119.1	31.8 (338.5)	0.18	0	0	0

- No background after cuts for 300 fb⁻¹ without needing timing detector information
- For signal: 119.1 events for $Q_{eff} = 4$, m = 340 GeV
- Results for full calculation lay between the effective field result with/without form factor as expected since effective calculation not valid in the region of $S \sim m^2$

14 / 25

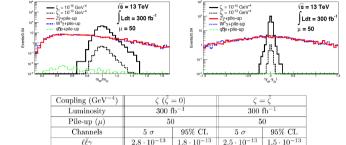
Full amplitude calculation




• 5 σ sensitivity for new charged fermions and vector bosons for 300 fb^{-1} and $\mu=50$

Mass (GeV)	300	600	900	1200	1500
$Q_{\rm eff}$ (vector)	2.2	3.4	4.9	7.2	8.9
Q_{eff} (fermion)	3.6	5.7	8.6	-	-

- Unprecedented sensitivites at hadronic colliders. We also display the result of effective field theory (without form factor) which deviates at low masses from the full calculation.
- For $Q_{Jeff} = 4$, we are sensitive to new vectors (fermions) up to 700 (370) GeV for a luminosity of 300 fb⁻¹


$\gamma\gamma\gamma Z$ quartic anomalous coupling

- Look for $Z\gamma$ anomalous production
- Z can decay leptonically or hadronically: the fact that we can control the background using the mass/rapidiy matching technique allows us to look in both channels (very small background)
- Leads to a very good sensitivity to $\gamma\gamma\gamma Z$ couplings

$\gamma\gamma\gamma Z$ quartic anomalous coupling

• C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706 (2017) 142

 $2.3 \cdot 10^{-13}$

 $1.93 \cdot 10^{-13}$

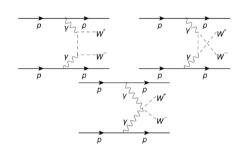
• Best expected reach at the LHC by about three orders of magnitude

 $jj\gamma$ $jj\gamma \bigoplus \ell \bar{\ell} \gamma$

 Advantage of this method: sensitivity to anomalous couplings in a model independent way: can be due to wide/narrow resonances, loops of new particles as a threshold effect

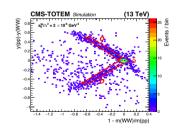
 $1.5 \cdot 10^{-13}$

 $1.2 \cdot 10^{-13}$

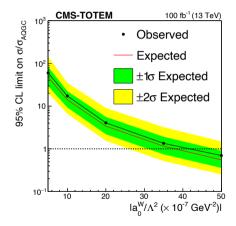

 $2 \cdot 10^{-13}$

 $1.7 \cdot 10^{-13}$

 $1.3 \cdot 10^{-13}$

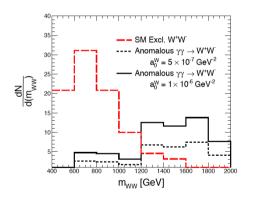

 $1 \cdot 10^{-13}$

Exclusive production of W boson pairs

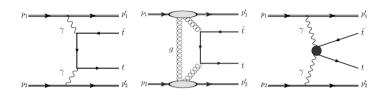


 Search with fully hadronic decays of W bosons: anomalous production of WW events dominates at high mass with a rather low cross section

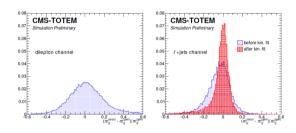
- 2 "fat" jets (radius 0.8), jet $p_T > 200$ GeV, $1126 < m_{jj} < 2500$ GeV, jets back-to-back ($|1 \phi_{jj}/\pi| < 0.01$)
- Signal region defined by the correlation between central WW system and proton information



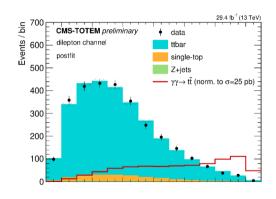
WW and ZZ exclusive productions


- Searches performed in full hadronic decays of W bosons (high cross section) with AK8 jets
- SM cross section is low
- Limits on SM cross section $\sigma_{WW} <$ 67fb, $\sigma_{ZZ} <$ 43fb for 0.04 $< \xi <$ 0.2 (CMS-PAS-EXO-21-014)
- New limits on quartic anomalous couplings (events violating unitarity removed) : $a_0^W/\Lambda^2 < 4.3 \ 10^{-6} \ {\rm GeV^{-2}},$ $a_C^W/\Lambda^2 < 1.6 \ 10^{-5} \ {\rm GeV^{-2}},$ $a_0^Z/\Lambda^2 < 0.9 \ 10^{-5} \ {\rm GeV^{-2}},$ $a_C^Z/\Lambda^2 < 4. \ 10^{-5} \ {\rm GeV^{-2}}$ with 52.9 fb⁻¹

The future: Observation of exclusive WW production

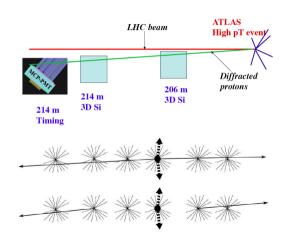

- SM contribution appears at lower WW masses compared to anomalous couplings
- Use purely leptonic channels for W decays (the dijet background is too high at low masses for hadronic channels)
- SM prediction on exclusive WW (leptonic decays) after selection: about 50 events for 300 fb⁻¹ (2 background)
- JHEP 2012 (2020) 165, C. Baldenegro,
 G. Biagi, G. Legras, C.R.

Exclusive $t\bar{t}$ production



dilep channel ($ar t t o l u b + l u ar b$)	Semilep channel ($\bar{t}t \rightarrow l\nu b + jj\bar{b}$				
Object selection					
Leptons: pT>30(20)GeV, $ \eta $ <2.1 Jets: pT>30GeV, $ \eta $ <2.4, Δ R(j,I)>0.4	Leptons: pT>30GeV, $ \eta $ <2.1(2.4) for e(μ) Jets: pT>25GeV, $ \eta $ <2.4, $\Delta R(j,l)$ >0.4				
Event selection					
≥2 leptons (OS pair), m(ll)-m(Z) >15GeV ≥2 b-jets 1 proton / side	=1 lepton ≥2 b-jets, ≥2 non b-jets 1 proton / side				

Exclusive $t\bar{t}$ production



 Kinematic fitter based on W and t mass constraints to reduce background

- Search for exclusive $t\bar{t}$ production in leptonic and semi-leptonic modes
- $\sigma^{excl.}_{t \bar{t}} <$ 0.59 pb (CMS-PAS-TOP-21-007)

Additional method to remove pile up: Measuring proton time-of-flight

- Measure the proton time-of-flight in order to determine if they originate from the same interaction as the selected photon
- Typical precision: 10 ps means 2.1 mm
- Idea: use diamond, quartz bar, ultra-fast Si Low Gain Avalanche Detectors (signal duration of ~few ns and possibility to use fast sampling to reconstruct full signal)

Exclusive $t\bar{t}$ production: the future

- Search for $\gamma \gamma t \bar{t}$ anomalous coupling in semi-leptonic decays with 300 fb⁻¹
- Use similar selection: high $t\bar{t}$ mass, matching between pp and $t\bar{t}$ information
- Use fast timing detectors to suppress further the pile up background
- C. Baldenegro, A. Bellora, S. Fichet, G. von Gersdorff, M. Pitt, CR, JHEP 08 (2022) 021

Coupling $[10^{-11} \mathrm{GeV^{-4}}]$	95% CL	5σ	95% CL (60 ps)	$5\sigma (60 \mathrm{ps})$	95% CL (20 ps)	$5\sigma (20 \mathrm{ps})$
ζ_1	1.5	2.5	1.1	1.9	0.74	1.5
ζ_2	1.4	2.4	1.0	1.7	0.70	1.4
ζ_3	1.4	2.4	1.0	1.7	0.70	1.4
ζ_4	1.5	2.5	1.0	1.8	0.73	1.4
ζ_5	1.2	2.0	0.84	1.5	0.60	1.2
ζ_6	1.3	2.2	0.92	1.6	0.66	1.3

Conclusion

- LHC can be seen as a $\gamma\gamma$ collider!
- $\gamma\gamma\gamma\gamma$, $\gamma\gamma ZZ$, $\gamma\gamma WW$, $\gamma\gamma\gamma Z$ anomalous coupling studies and SM observation
 - Exclusive process: **photon-induced processes** $pp \to p\gamma\gamma p$ (gluon exchanges suppressed at high masses)
 - Theoretical calculation in better control (QED processes with intact protons), not sensitive to the photon structure function
 - "Background-free" experiment and any observed event is signal
 - NB: Survival probablity in better control than in the QCD (gluon) case
- CT-PPS/AFP allow to probe BSM diphoton production in a model independent way
- Sensitivity to ALPs: Improvement by more than one order of magnitude
- Complementarity between pp, pA, AA runs

