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Introduction

Diffractive γp (or γA) interactions: a unique class of phenomena which
remain sensitive to saturation in the hard regime:

Q2, P 2
⊥, M2 ... � Q2

s(x)

Inclusive vs diffractive structure functions at small x:

F2(x,Q2) sensitive to saturation when Q2 . Q2
s(x) (higher twist), but

this sensitivity disappears when Q2 � Q2
s(x) (leading twist)

the leading-twist contribution to FD2 (xP, Q2) at high Q2 � Q2
s(xP) is

still controlled by saturation (“aligned jet”)

Why ? Elastic scattering is controlled by the black disk limit

for small enough x/large enough A, such that Q2
s(x,A)� Λ2,

saturation is the pQCD mechanism for unitarisation

“High–Q2 is the realm of the collinear factorisation” ... Indeed !
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Introduction (2)

For DIS diffraction, collinear factorisation emerges via pQCD calculations
within the Color Dipole Picture and the CGC effective theory

TMD factorisation for diffraction has been first identified in this way

E.I., A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20

Y. Hatta, B. Xiao, and F. Yuan, arXiv:2205.08060, PRD

Explicit results for quark & gluon diffractive TMD, determined by saturation

Initial conditions for DGLAP from first principles: JIMWLK included

Not an alternative to fitting diffractive PDFs, but a way to understand them

This talk: overview & applications to coherent dijet production in AA UPCs

E.I., A.H. Mueller, D. Triantafyllopoulos, and S.-Y. Wei, 2304.12401, EPJC
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Hard dijet production in γ∗A at high energy

Small Bjorken x, hard process: P⊥ ≡ 1
2 |k1 − k2| � Qs and/or Q2 � Q2

s

Inclusive vs. exclusive/diffractive dijets (elastic vs. inelastic scattering)

Symmetric (ϑ1ϑ2 ∼ 1/4) vs. aligned-jet (ϑ1ϑ2 � 1) configurations

this controls the dipole size, hence the typical relative momentum:

P⊥ ∼ 1/r ∼ Q̄ with Q̄2 ≡ ϑ1ϑ2Q
2

Colour dipole picture vs. Target picture: frame & gauge choice

qq̄ pair: either a part of the γ∗ wavefunction, or a part of the target
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Inclusive dijets: aligned jet

Total cross-section (F2): dominated by the asymmetric configurations

ϑ1ϑ2 � 1 ⇒ large dipoles... but such that 1/Q� r � 1/Qs

the scattering is still weak: Q2 � P 2
⊥ ∼ ϑ1ϑ2Q

2 � Q2
s

Tqq̄(r, x) '




r2Q2

s(A, x), for rQs � 1 (color transparency)

1, for rQs & 1 (black disk/saturation)

Target picture: a measurement of the sea quark distribution

the DGLAP splitting g → qq̄ is typically symmetric: x ∼ 1/2
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Inclusive dijets: symmetric qq̄ pairs

Symmetric configurations: less frequent, but can be harder

ϑ1ϑ2 ∼ 1/4 ⇒ small dipoles, weak scattering: P 2
⊥ ∼ Q2 � Q2

s

nearly back-to-back jets: K⊥ ≡ |k1 + k2| � P⊥

The dijet imbalance K⊥ can be sensitive to multiple scattering

Target picture: photon-gluon fusion ⇒ probing the gluon distribution

TMD factorisation: Weizsäcker-Williams gluon TMD (saturation)

Gluon saturation (target picture) dual to multiple scattering (dipole picture)
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Exclusive dijets: aligned jet

Total cross-section (FD2 ): asymmetric configurations (again): ϑ1ϑ2 � 1

however, now there are much larger: r ∼ 1/Qs =⇒ strong scattering

the final jets are semi-hard: P 2
⊥ ∼ ϑ1ϑ2Q

2 ∼ Q2
s

σel ∝ |Tqq̄(r)|2 is strongly suppressed when T � 1 (i.e. r � 1/Qs)

Target picture: the unintegrated quark distribution of the Pomeron

the quark diffractive TMD at xP . 10−2 from the dipole picture

controlled by gluon saturation
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Exclusive dijets: symmetric qq̄ pairs

Hard & symmetric (ϑ1ϑ2 ∼ 1/4) exclusive dijets are strongly suppressed

elastic scattering σel ∝ |Tqq̄(r)|2 & colour transparency

dσγ
∗A→qq̄A

el

dϑ1dϑ2d2P
∝ αem

P 2
⊥︸︷︷︸

γ∗→qq̄

Q4
s

P 4
⊥︸︷︷︸

T 2
qq̄

Q4
s '

[
αs
Nc

xG(x, P 2
⊥)

S⊥

]2

Rare events (“higher twist”), insensitive to saturation

Target picture: proportional to the square of the gluon distribution

gluon distribution probed on the hard scale P 2
⊥

Can one have hard diffractive dijets at leading twist ? (∼ 1/P 4
⊥)
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Diffractive 2+1 jets

Two hard jets, P⊥ � Qs, and one semi-hard: k3⊥ ∼ Qs � P⊥

the semi-hard jet allows for strong scattering

colour configuration with large transverse size R ∼ 1/Qs

O(αs), but leading-twist: r2 × r2 → 1/P 4
⊥

Target picture: photon-gluon fusion ... but a gluon from the Pomeron

the gluon diffractive TMD at xP . 10−2 from the dipole picture

controlled by gluon saturation
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The gluon-gluon dipole

Colorless exchange (2 gluons+): Pomeron =⇒ rapidity gap YP

xPP
−
N : target longitudinal momentum taken by the Pomeron

YP = ln 1
xP

: rapidity phase-space for the evolution of the Pomeron

After emitting the gluon, the small qq̄ pair (r ∼ 1
P⊥

) becomes a color octet

R ∼ 1

Qs
� r ∼ 1

P⊥

Gluon-gluon dipole with size R

Strong scattering: Tgg(R, YP) ∼ 1

Q2
s(A, YP)

∣∣
gg

=
Nc
CF

Q2
s(A, YP)

∣∣
qq̄

The gluon jet also controls the dijet imbalance: K⊥ ≡ |k1 + k2| ' k3⊥
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Soft gluon and TMD factorisation

The third jet is relatively soft: k+
3 = ϑ3q

+ with ϑ3 ∼ Q2
s

Q2 � 1

gluon formation time must be small enough to scatter:
k+

3

k2
3⊥

. q+

Q2

The soft gluon can alternatively be seen as a part of the Pomeron

The Pomeron xP splits into a gluon-gluon pair: xxP and (1− x)xP

The t-channel gluon (x,K⊥) is absorbed by the hard qq̄ pair
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TMD factorisation for diffractive 2+1 jets

dσ
γ∗T,LA→qq̄gA
2+1

dϑ1dϑ2d2Pd2KdYP
= HT,L(ϑ1, ϑ2, Q

2, P 2
⊥)

dxGP(x, xP,K2
⊥)

d2K

Hard factor encoding the kinematics of the qq̄ pair

Gluon diffractive TMD: the unintegrated gluon distribution of the Pomeron

Valid at xP . 10−2, but generic values of x and arbitrary high Q2 and P 2
⊥
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The hard factor

The formation of the hard qq̄ pair (γ∗ → qq̄) & the gluon emission

HT = αemαs

(∑
e2
f

)
ϑ1ϑ2(ϑ2

1 + ϑ2
2)

1

P 4
⊥

when Q2 � P 2
⊥

The same as for inclusive dijets in the correlation limit

the only difference: the origin of the t-channel gluon

The expected “leading-twist” behaviour ∼ 1/P 4
⊥
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The Pomeron UGD

dxGP(x, xP,K2
⊥)

d2K
=

S⊥(N2
c − 1)

4π3
Φg(x, xP,K

2
⊥)︸ ︷︷ ︸

occupation number

A Bessel-Fourier transform of the gg dipole amplitude Tgg(R, YP)

Φg ∝
[
M2

∫
dRRJ2(K⊥R) K2(MR)︸ ︷︷ ︸

virtuality

Tgg(R, YP)︸ ︷︷ ︸
scattering

]2
, M2 ≡ x

1− x K
2
⊥

Effective saturation momentum: Q̃2
s(x, YP) = (1− x)Q2

s(YP)

Φg(x, xP,K
2
⊥) ' (1− x)





1, K⊥. Q̃s(x)

Q̃4
s(x)

K4
⊥

, K⊥� Q̃s(x)

The bulk of the distribution lies at saturation: K⊥. Q̃s(x)
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Numerical results: gluon diffractive TMD

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)

Left: McLerran-Venugopalan model. Right: BK evolution of Tgg

multiplied by K⊥ (from the measure d2K⊥)

Pronounced maximum at K⊥ ' Q̃s

MV, Q2
s,g = 2 GeV2 BK, ∆YP = 3

0 0.5 1 1.5 2 2.5 3
0

2

4

6

·10−2

K⊥/Q̃s,g(x)

[K
⊥
/Q̃

s,
g
(x
,Y

P
)]

[Φ
P
/(

1
−

x
)] x = 0.01

x = 0.3

x = 0.6

x = 0.9

0 0.5 1 1.5 2 2.5 3

K⊥/Q̃s,g(x, YP)

x = 0.01

x = 0.3

x = 0.6

x = 0.9

BK evolution: increasing Q2
s(YP), approximate geometric scaling
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The gluon diffractive PDF

P 2
⊥ � K2

⊥: large phase-space for DGLAP evolution & final state radiation

emission of gluons with intermediate momenta K2
⊥ � `2⊥ � P 2

⊥

For fixed K⊥: large NLO corrections (Sudakov double log): αs ln2(P 2
⊥/K

2
⊥)

One can avoid that by integrating out the K⊥–distribution

xGP(x, xP, P
2
⊥) ≡

∫ P⊥

dK2
⊥Φ(x, xP,K

2
⊥) ∝ (1− x)2Q2

s,g(YP)

integral rapidly converging and effectively cut off at K⊥ ∼ Q̃s,g(x)

DGLAP evolution with lnP 2
⊥

BK evolution with YP = ln 1
xP

The CGC provides the initial
condition for DGLAP
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Numerical results: gluon diffractive PDF

xGP(x, xP, P
2
⊥) ∝ S⊥(1− x)2Q2

s,g(A, xP) ∝ (1− x)2A

(
1

xP

)λs

Hallmarks of saturation: e.g. λs ' 0.25 from NLO BK

without saturation (confinement): ∝ (1− x)3A4/3Λ2

Initial condition for BK at YP = 0: McLerran-Venugopalan model

MV MV
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flat for P⊥ > Qs, vanishing like (1− x)2
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Numerical results: gluon diffractive PDF

MV MV
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Adding DGLAP and BK evolutions: P⊥ dependence
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increase for very small x ≤ 0.01, slight decrease for x > 0.05
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Numerical results: gluon diffractive PDF

MV MV
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when x→ 1, the distribution vanishes even faster
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Diffractive dijets in Pb+Pb UPCs at the LHC

Recent measurements: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045
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Figure 8: A breakdown of the di�erent systematic uncertainties impacting this measurement in a representative
sample of bins in HT for each z� bin used to measure results. Total statistical uncertainty is shown as the black dashed
line, while total systematic uncertainty is shown as the red dashed line. The pseudorapidity gap selection (green)
and sensitivity to the prior (cyan) uncertainties are sub-dominant everywhere. The JES (magenta) and JER (blue)
uncertainties are substantial but not dominant, while the uncertainties associated with using components of a jet
calibration sequence derived for high-µ data in a low-µ environment (orange) are dominant in most bins.

To this end, Figs. 9 and 10 show measured distributions of the jet system rapidity, HT, and the dijet ��.
Also shown are the corresponding results obtained for a P����� 8 evaluation of �� processes. The data
are not unfolded for jet response and are presented as uncorrected yields. The P����� 8 cross-sections, if
scaled by the luminosity of the current measurement, are about an order of magnitude smaller than the
measured yields. To better compare the P����� 8 distributions to data, they are shown scaled to have the
same total yield as the data. The measured rapidity distribution is observed to be wider than that predicted
by P����� 8 for �� processes. Also, the data fall o� more steeply with increasing HT than the P����� 8 HT
distribution, and the measured �� distribution is noticeably wider than that in the P����� 8 MC.
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Figure 9: Distributions of yjets (left) and HT (right) for dijet and multi-jet final states in events having no nuclear
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e�ciency. They are compared to results of a P����� 8 simulation of jet production in �� processes. Since those
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Several thousands of candidate-events for coherent diffraction

no just γγ scattering: cross-section would be 10 times smaller

no exclusive dijets either: strongly suppressed at such large P⊥

Most likely: 2+1 jets ... but seing the 3rd jet is tricky in practice!
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2+1 diffractive dijets in AA UPCs

The photo-production limit Q2 → 0 of the general TMD factorisation

dσAB→qq̄gAB2+1

dη1dη2d2Pd2KdYP
= ω

dNB
dω︸ ︷︷ ︸

γ flux

H(η1, η2, P
2
⊥)︸ ︷︷ ︸

∼1/P 4
⊥

dxGAP (x, xP,K2
⊥)

d2K︸ ︷︷ ︸
Gluon DTMD

+ (A↔ B)

One nucleus is the source of photons, the other one is the hadronic target
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2+1 diffractive dijets in AA UPCs

The photo-production limit Q2 → 0 of the general TMD factorisation

Coherent diffraction: photon gap + diffractive gap

Rapidity gaps on both sides: ... but which one is which ??

how to distinguish the photon emitter from the nuclear target ?

By also observing the third jet: it lies between the hard dijet and the target
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Why is that difficult ?

Energy is not that high: exponential cutoff ωmax ' γ
2RA

' 40 GeV

Z = 82

10−3 10−2 10−1 100
ζ

10−1 100 101 102
10−2

10−1

100

101

102

ω (GeV)

ω
d
N d
ω

RA = RB = 6 fm

Transverse momenta are rather large: P⊥ ≥ 20 GeV

Rapidity gap is not that large: YP = ln 1
xP

. 4

3rd jet: K⊥ ∼ Qs,g(YP) ∼ 1÷ 2 GeV too soft for the calorimeter
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Why is that difficult ?

Energy is not that high: exponential cutoff ωmax ' γ
2RA

' 40 GeV

η1 ' η2 ≡ y

ω = P⊥ e
y

P⊥ ∼ ωmax ⇒ y . 1

xP,min =
P⊥
EN

e−y

Transverse momenta are rather large: P⊥ ≥ 20 GeV

Rapidity gap is not that large: YP = ln 1
xP

. 4

3rd jet: K⊥ ∼ Qs,g(YP) ∼ 1÷ 2 GeV too soft for the calorimeter

Measure as a hadron ? The hadron detector is limited in rapidity
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Why is that difficult ?

Energy is not that high: exponential cutoff ωmax ' γ
2RA

' 40 GeV

η1 ' η2 ≡ y

ω = P⊥ e
y

P⊥ ∼ ωmax ⇒ y . 1

xP,min =
P⊥
EN

e−y

Transverse momenta are rather large: P⊥ ≥ 20 GeV

Rapidity gap is not that large: YP = ln 1
xP

. 4

3rd jet: K⊥ ∼ Qs,g(YP) ∼ 1÷ 2 GeV too soft for the calorimeter

The third jet lags well behind the hard dijet: ∆ηjet & ln 2P⊥
K⊥
' 2÷ 3
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A favourable event situation

Largest photon energy, relatively low P⊥

Assume the photon to be a right mover: it was emitted by nucleus B

ω = 40GeV, P⊥ = 10GeV

η1,2 ' 1.4, YP ' 6

∆ηjet & ln
2P⊥
Qs

' 2.3

The hard dijets are forward (towards the photon), the 3rd one is backward
(towards the target)

3rd jet must lie within the hadronic detector: |η3| < η0 = 2.4

With this kinematics, this seems not to be a problem !

UPC 2023, Playa del Carmen Gluon saturation in γA Edmond Iancu 23 / 34



A likely event at CMS

Dijet events selected by CMS have larger P⊥ ≥ 30GeV (arXiv:2205.00045)

ω = 40GeV, P⊥ = 30GeV

η1,2 ' 0.3, YP ' 4

∆ηjet & ln
2P⊥
Qs

' 3.4

observe a DGLAP jet ,

|η3| = 3.1 > η0 = 2.4: the 3rd jet is missed by the detector /

Lessons: Trigger on rare events with high photon energy ω

Use a hadronic detector with larger rapidity coverage |ηmax|

Measure jets with lower P⊥ ≤ 15GeV
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Rapidity distributions

Left: rapidity distribution of the hard dijets (η1 ' η2 ≡ y)

roughly symmetric around y = 0

rapidly decreasing when increasing P⊥
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Right: fraction of events with the 3rd jet inside the detector: |η3| < η0 = 2.4

rapidly increasing when increasing y, or decressing P⊥
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Conclusions & Open questions

Diffraction in γA (EIC, UPC): good laboratory to study gluon saturation

Collinear factorisation for hard diffraction emerges from CGC

Diffractive TMDs and PDFs can be computed from first principles

Recent progress, many open problems (conceptual & experimental)

Dijets in AA UPCs (LHC): can one measure the semi-hard, 3rd, jet ?

What about diffractive hadron production in AA UPCs (ALICE) ?

What about eA DIS at the EIC ?

What about next-to-leading order corrections ?

Possible extensions to inelastic phenomena (e.g. inclusive dijets in DIS) ?

Towards unifying the DGLAP and the BK/JIMWLK evolutions ?
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Final-state radiation

Dijet momentum imbalance dominated by final-state radiation

additional gluons with transverse momenta Qs � k⊥ � P⊥
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insensitive to the 3rd jet
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2+1 jets with a hard gluon

The third (semi-hard) jet can also be a quark: same-order

TMD factorisation: quark unintegrated distribution of the Pomeron
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The quark diffractive TMD

dxqP(x, xP,K2
⊥)

d2K
=

S⊥Nc
4π3

Φq(x, xP,K
2
⊥)︸ ︷︷ ︸

occupation number

Bessel-Fourier transform of the qq̄ dipole amplitude Tqq̄(R, YP)

Φq(x, xP,K
2
⊥) ' x





1, K⊥. Q̃s(x)

Q̃4
s(x)

K4
⊥

, K⊥� Q̃s(x)

Like for the gluon diffractive TMD, but with overall factor 1− x→ x

gluons dominate at small x, quarks are more important near x = 1

Once again, the bulk of the distribution lies at saturation: K⊥. Q̃s(x)

xqP(x, xP, P
2
⊥) ≡

∫ P⊥

dK2
⊥Ψ(x, xP,K

2
⊥) ∝ x(1− x)Q2

s(YP)
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Gluon vs. quark diffractive TMDs

MV, Q2
s,g = 2 GeV2 BK, ∆YP = 3
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Quark diffractive PDF

Initial conditions for DGLAP (MV, or MV+BK): gluon & quark

MV BK, ∆YP = 3
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Diffractive structure function: proton target

Quark DPDF (leading-twist, DGLAP) & Longitudinal γ∗L (higher twists, MV)
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Diffractive structure function: nuclear target

Larger initial saturation momentum & larger “factorisation” scale µ2
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Universality of the quark diffractive TMD

Diffractive SIDIS in the aligned jet configuration: ϑ� 1

High virtuality: Q2 � Q2
s, but semi-hard transverse momenta:

K2
⊥ ' ϑ(1− ϑ)Q2 ∼ Q2

s (to have strong scattering)

dσ
γ∗TA→qq̄A
el

d2KdYP
=

4π2αem
Q2

dxqP(x, xP,K2
⊥)

d2K

The hard factor: cross-section for virtual photon absorbtion
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