Probing gluon saturation via photon-hadron interactions at high energy

Edmond lancu

IPhT, Université Paris-Saclay

with A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei

Introduction

- Diffractive γp (or γA) interactions: a unique class of phenomena which remain sensitive to saturation in the hard regime:
 - Q^2 , P_{\perp}^2 , M^2 $\ldots \, \gg \, Q_s^2(x)$
- Inclusive vs diffractive structure functions at small x:
 - $F_2(x, Q^2)$ sensitive to saturation when $Q^2 \lesssim Q_s^2(x)$ (higher twist), but this sensitivity disappears when $Q^2 \gg Q_s^2(x)$ (leading twist)
 - the leading-twist contribution to $F_2^D(x_{\mathbb{P}},Q^2)$ at high $Q^2 \gg Q_s^2(x_{\mathbb{P}})$ is still controlled by saturation ("aligned jet")
- Why ? Elastic scattering is controlled by the black disk limit
 - for small enough $x/{\rm large}$ enough A, such that $Q_s^2(x,A)\gg\Lambda^2,$ saturation is the pQCD mechanism for unitarisation
- "High– Q^2 is the realm of the collinear factorisation" ... Indeed !

Introduction (2)

- For DIS diffraction, collinear factorisation emerges via pQCD calculations within the Color Dipole Picture and the CGC effective theory
- TMD factorisation for diffraction has been first identified in this way E.I., A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20 Y. Hatta, B. Xiao, and F. Yuan, arXiv:2205.08060, PRD
- Explicit results for quark & gluon diffractive TMD, determined by saturation
- Initial conditions for DGLAP from first principles: JIMWLK included
- Not an alternative to fitting diffractive PDFs, but a way to understand them
- This talk: overview & applications to coherent dijet production in AA UPCs E.I., A.H. Mueller, D. Triantafyllopoulos, and S.-Y. Wei, 2304.12401, EPJC

Hard dijet production in γ^*A at high energy

- Small Bjorken x, hard process: $P_{\perp} \equiv \frac{1}{2} |\mathbf{k}_1 \mathbf{k}_2| \gg Q_s$ and/or $Q^2 \gg Q_s^2$
- Inclusive vs. exclusive/diffractive dijets (elastic vs. inelastic scattering)

• Symmetric $(\vartheta_1\vartheta_2 \sim 1/4)$ vs. aligned-jet $(\vartheta_1\vartheta_2 \ll 1)$ configurations

• this controls the dipole size, hence the typical relative momentum:

 $P_{\perp} \sim 1/r \sim ar{Q}$ with $ar{Q}^2 \equiv artheta_1 artheta_2 Q^2$

- Colour dipole picture vs. Target picture: frame & gauge choice
 - $q\bar{q}$ pair: either a part of the γ^* wavefunction, or a part of the target

Inclusive dijets: aligned jet

- Total cross-section (F_2) : dominated by the asymmetric configurations
 - $artheta_1 artheta_2 \ll 1 \; \Rightarrow$ large dipoles... but such that $1/Q \ll r \ll 1/Q_s$
 - the scattering is still weak: $Q^2 \gg P_\perp^2 \sim \vartheta_1 \vartheta_2 Q^2 \gg Q_s^2$

 $T_{q\bar{q}}(r,x) \simeq \begin{cases} r^2 Q_s^2(A,x), & \text{ for } rQ_s \ll 1 \text{ (color transparency)} \\ 1, & \text{ for } rQ_s \gtrsim 1 \text{ (black disk/saturation)} \end{cases}$

• Target picture: a measurement of the sea quark distribution

• the DGLAP splitting g
ightarrow q ar q is typically symmetric: $x \sim 1/2$

Inclusive dijets: symmetric $q\bar{q}$ pairs

- Symmetric configurations: less frequent, but can be harder
 - $\vartheta_1 \vartheta_2 \sim 1/4 \; \Rightarrow$ small dipoles, weak scattering: $P_{\perp}^2 \sim Q^2 \gg Q_s^2$
 - nearly back-to-back jets: $K_{\perp} \equiv |{m k}_1 + {m k}_2| \ll P_{\perp}$
- The dijet imbalance K_{\perp} can be sensitive to multiple scattering

- Target picture: photon-gluon fusion \Rightarrow probing the gluon distribution
 - TMD factorisation: Weizsäcker-Williams gluon TMD (saturation)
- Gluon saturation (target picture) dual to multiple scattering (dipole picture)

Exclusive dijets: aligned jet

- Total cross-section (F_2^D) : asymmetric configurations (again): $\vartheta_1 \vartheta_2 \ll 1$
 - ullet however, now there are much larger: $r\sim 1/Q_s\Longrightarrow$ strong scattering
 - \bullet the final jets are semi-hard: $P_{\perp}^2\sim \vartheta_1 \vartheta_2 Q^2\sim Q_s^2$
 - $\sigma_{\rm el} \propto |T_{q\bar{q}}(r)|^2$ is strongly suppressed when $T \ll 1$ (i.e. $r \ll 1/Q_s$)

- Target picture: the unintegrated quark distribution of the Pomeron
 - $\bullet\,$ the quark diffractive TMD at $x_{\mathbb{P}} \lesssim 10^{-2}$ from the dipole picture
 - controlled by gluon saturation

Exclusive dijets: symmetric $q\bar{q}$ pairs

- Hard & symmetric $(\vartheta_1 \vartheta_2 \sim 1/4)$ exclusive dijets are strongly suppressed
 - elastic scattering $\sigma_{
 m el} \propto |T_{qar q}(r)|^2$ & colour transparency

- Rare events ("higher twist"), insensitive to saturation
- Target picture: proportional to the square of the gluon distribution
 - $\bullet\,$ gluon distribution probed on the hard scale P_{\perp}^2
- Can one have hard diffractive dijets at leading twist ? ($\sim 1/P_{\perp}^4$)

Diffractive 2+1 jets

- Two hard jets, $P_\perp \gg Q_s$, and one semi-hard: $k_{3\perp} \sim Q_s \ll P_\perp$
 - the semi-hard jet allows for strong scattering
 - colour configuration with large transverse size $R \sim 1/Q_s$
- $\mathcal{O}(\alpha_s)$, but leading-twist: $r^2 \times r^2 \rightarrow 1/P_{\perp}^4$

• Target picture: photon-gluon fusion ... but a gluon from the Pomeron

- the gluon diffractive TMD at $x_{\mathbb{P}} \lesssim 10^{-2}$ from the dipole picture
- controlled by gluon saturation

The gluon-gluon dipole

- Colorless exchange (2 gluons+): Pomeron \implies rapidity gap $Y_{\mathbb{P}}$
 - $x_{\mathbb{P}}P_N^-$: target longitudinal momentum taken by the Pomeron
 - $Y_{\mathbb{P}} = \ln \frac{1}{x_{\mathbb{P}}}$: rapidity phase-space for the evolution of the Pomeron
- After emitting the gluon, the small $q\bar{q}$ pair $(r \sim \frac{1}{P_{\perp}})$ becomes a color octet

$$R \sim \frac{1}{Q_s} \, \gg \, r \sim \frac{1}{P_\perp}$$

- Gluon-gluon dipole with size ${\cal R}$
- Strong scattering: $T_{gg}(R, Y_{\mathbb{P}}) \sim 1$

$$\left.Q_s^2(A,Y_{\mathbb{P}})\right|_{gg} \,=\, \frac{N_c}{C_F} \left.Q_s^2(A,Y_{\mathbb{P}})\right|_{q\bar{q}}$$

• The gluon jet also controls the dijet imbalance: $K_{\perp}\equiv |m{k}_1+m{k}_2|\simeq k_{3\perp}$

Soft gluon and TMD factorisation

- The third jet is relatively soft: $k_3^+ = \vartheta_3 q^+$ with $\vartheta_3 \sim \frac{Q_s^2}{Q^2} \ll 1$
 - gluon formation time must be small enough to scatter: $rac{k_3^+}{k_{2+}^2}\lesssim rac{q^+}{Q^2}$
- The soft gluon can alternatively be seen as a part of the Pomeron

- The Pomeron $x_{\mathbb{P}}$ splits into a gluon-gluon pair: $xx_{\mathbb{P}}$ and $(1-x)x_{\mathbb{P}}$
- The *t*-channel gluon (x, \mathbf{K}_{\perp}) is absorbed by the hard $q\bar{q}$ pair

TMD factorisation for diffractive 2+1 jets

- Hard factor encoding the kinematics of the $q\bar{q}$ pair
- Gluon diffractive TMD: the unintegrated gluon distribution of the Pomeron
- Valid at $x_{\mathbb{P}} \lesssim 10^{-2}$, but generic values of x and arbitrary high Q^2 and P_{\perp}^2

The hard factor

• The formation of the hard $q\bar{q}$ pair $(\gamma^*
ightarrow q\bar{q})$ & the gluon emission

$$H_T = \alpha_{\rm em} \alpha_s \left(\sum e_f^2 \right) \vartheta_1 \vartheta_2 (\vartheta_1^2 + \vartheta_2^2) \frac{1}{P_\perp^4} \quad {\rm when} \ Q^2 \ll P_\perp^2$$

• The same as for inclusive dijets in the correlation limit

- the only difference: the origin of the *t*-channel gluon
- The expected "leading-twist" behaviour $\sim 1/P_{\perp}^4$

The Pomeron UGD

$$\frac{\mathrm{d}x G_{\mathbb{P}}(x, x_{\mathbb{P}}, K_{\perp}^2)}{\mathrm{d}^2 \mathbf{K}} = \frac{S_{\perp}(N_c^2 - 1)}{4\pi^3} \underbrace{\Phi_g(x, x_{\mathbb{P}}, K_{\perp}^2)}_{\text{occupation number}}$$

• A Bessel-Fourier transform of the gg dipole amplitude $T_{gg}(R, Y_{\mathbb{P}})$

$$\Phi_g \propto \left[\mathcal{M}^2 \int \mathrm{d}R \, R \, J_2(K_\perp R) \underbrace{K_2(\mathcal{M}R) \quad T_{gg}(R, Y_\mathbb{P})}_{\text{virtuality scattering}} \right]^2, \quad \mathcal{M}^2 \equiv \frac{x}{1-x} \, K_\perp^2$$

• Effective saturation momentum: $\tilde{Q}_s^2(x,Y_{\mathbb{P}}) = (1-x)Q_s^2(Y_{\mathbb{P}})$

$$\Phi_g(x, x_{\mathbb{P}}, K_{\perp}^2) \simeq (1-x) egin{cases} 1, & K_{\perp} \lesssim ilde{Q}_s(x) \ rac{ ilde{Q}_s^4(x)}{K_{\perp}^4}, & K_{\perp} \gg ilde{Q}_s(x) \end{cases}$$

• The bulk of the distribution lies at saturation: $K_{\perp} \lesssim \tilde{Q}_s(x)$

Numerical results: gluon diffractive TMD

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)

- Left: McLerran-Venugopalan model. Right: BK evolution of T_{gg}
 - multiplied by K_{\perp} (from the measure $d^2 K_{\perp}$)
- Pronounced maximum at $K_{\perp}\simeq ilde{Q}_s$

• BK evolution: increasing $Q^2_s(Y_{\mathbb{P}})$, approximate geometric scaling

The gluon diffractive PDF

- P²_⊥ ≫ K²_⊥: large phase-space for DGLAP evolution & final state radiation
 emission of gluons with intermediate momenta K²_⊥ ≪ ℓ²_⊥ ≪ P²_⊥
- For fixed K_{\perp} : large NLO corrections (Sudakov double log): $\alpha_s \ln^2(P_{\perp}^2/K_{\perp}^2)$
- One can avoid that by integrating out the K_{\perp} -distribution

$$xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2) \equiv \int^{P_{\perp}} \mathrm{d}K_{\perp}^2 \,\Phi(x,x_{\mathbb{P}},K_{\perp}^2) \,\propto \,(1-x)^2 \,Q_{s,g}^2(Y_{\mathbb{P}})$$

• integral rapidly converging and effectively cut off at $K_\perp \sim \tilde{Q}_{s,g}(x)$

- DGLAP evolution with $\ln P_{\perp}^2$
- BK evolution with $Y_{\mathbb{P}} = \ln \frac{1}{x_{\mathbb{P}}}$
- The CGC provides the initial condition for DGLAP

Numerical results: gluon diffractive PDF

$$xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2) \propto S_{\perp}(1-x)^2 Q_{s,g}^2(A,x_{\mathbb{P}}) \propto (1-x)^2 A\left(rac{1}{x_{\mathbb{P}}}
ight)^{\lambda_s}$$

- $\bullet\,$ Hallmarks of saturation: e.g. $\lambda_s\simeq 0.25$ from NLO BK
 - without saturation (confinement): $\propto (1-x)^3 A^{4/3} \Lambda^2$

• Initial condition for BK at $Y_{\mathbb{P}} = 0$: McLerran-Venugopalan model

• flat for $P_{\perp} > Q_s$, vanishing like $(1-x)^2$

Numerical results: gluon diffractive PDF

• Adding DGLAP and BK evolutions: P_{\perp} dependence

• increase for very small $x \le 0.01$, slight decrease for x > 0.05

Numerical results: gluon diffractive PDF

• Adding DGLAP and BK evolutions: *x* dependence

• when $x \to 1$, the distribution vanishes even faster

Diffractive dijets in Pb+Pb UPCs at the LHC

Recent measurements: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045

• Several thousands of candidate-events for coherent diffraction

- $\bullet\,$ no just $\gamma\gamma$ scattering: cross-section would be 10 times smaller
- ullet no exclusive dijets either: strongly suppressed at such large P_\perp
- Most likely: 2+1 jets ... but seing the 3rd jet is tricky in practice!

2+1 diffractive dijets in AA UPCs

• The photo-production limit $Q^2
ightarrow 0$ of the general TMD factorisation

• One nucleus is the source of photons, the other one is the hadronic target

2+1 diffractive dijets in *AA* UPCs

• The photo-production limit $Q^2
ightarrow 0$ of the general TMD factorisation

- Coherent diffraction: photon gap + diffractive gap
- Rapidity gaps on both sides: ... but which one is which ??
 - how to distinguish the photon emitter from the nuclear target ?
- By also observing the third jet: it lies between the hard dijet and the target

Why is that difficult ?

• Energy is not that high: exponential cutoff $\omega_{\max} \simeq \frac{\gamma}{2R_A} \simeq 40 \text{ GeV}$

Why is that difficult ?

• Energy is not that high: exponential cutoff $\omega_{\rm max} \simeq \frac{\gamma}{2R_A} \simeq 40 \,{\rm GeV}$

- Transverse momenta are rather large: $P_{\perp} \ge 20 \, \text{GeV}$
- Rapidity gap is not that large: $Y_{\mathbb{P}} = \ln \frac{1}{x_{\mathbb{P}}} \lesssim 4$
- 3rd jet: $K_{\perp} \sim Q_{s,g}(Y_{\mathbb{P}}) \sim 1 \div 2 \text{ GeV}$ too soft for the calorimeter
- Measure as a hadron ? The hadron detector is limited in rapidity

Why is that difficult ?

• Energy is not that high: exponential cutoff $\omega_{\rm max} \simeq \frac{\gamma}{2B_A} \simeq 40 \,{\rm GeV}$

- Transverse momenta are rather large: $P_{\perp} \ge 20 \, \text{GeV}$
- Rapidity gap is not that large: $Y_{\mathbb{P}} = \ln \frac{1}{x_{\mathbb{P}}} \lesssim 4$
- 3rd jet: $K_{\perp} \sim Q_{s,g}(Y_{\mathbb{P}}) \sim 1 \div 2 \text{ GeV}$ too soft for the calorimeter
- The third jet lags well behind the hard dijet: $\Delta \eta_{
 m jet} \gtrsim \ln rac{2P_\perp}{K_\perp} \simeq 2 \div 3$

A favourable event situation

- Largest photon energy, relatively low P_{\perp}
- Assume the photon to be a right mover: it was emitted by nucleus B

- The hard dijets are forward (towards the photon), the 3rd one is backward
- The hard dijets are forward (towards the photon), the 3rd one is backward (towards the target)
- 3rd jet must lie within the hadronic detector: $|\eta_3| < \eta_0 = 2.4$
- With this kinematics, this seems not to be a problem !

UPC 2023, Playa del Carmen

Gluon saturation in γA

A likely event at CMS

• Dijet events selected by CMS have larger $P_{\perp} \ge 30 \text{GeV} (arXiv:2205.00045)$

• $\omega = 40 \text{GeV}, P_{\perp} = 30 \text{GeV}$

•
$$\eta_{1,2}\simeq 0.3$$
, $Y_{\mathbb{P}}\simeq 4$

$$\Delta \eta_{
m jet} \gtrsim \ln rac{2P_{\perp}}{Q_s} \simeq 3.4$$

• $|\eta_3| = 3.1 > \eta_0 = 2.4$: the 3rd jet is missed by the detector Θ

- Lessons: Trigger on rare events with high photon energy ω
- Use a hadronic detector with larger rapidity coverage η_{max}
- Measure jets with lower $P_{\perp} \leq 15 \text{GeV}$

A likely event at CMS

• Dijet events selected by CMS have larger $P_{\perp} \ge 30 \text{GeV} (arXiv:2205.00045)$

- $\omega = 40 \text{GeV}, P_{\perp} = 30 \text{GeV}$
- $\eta_{1,2}\simeq 0.3$, $Y_{\mathbb{P}}\simeq 4$
 - $\Delta \eta_{\rm jet} \gtrsim \ln \frac{2P_{\perp}}{Q_s} \simeq 3.4$

 ${\scriptstyle \bullet}\,$ observe a DGLAP jet $\textcircled{\odot}$

- $|\eta_3| = 3.1 > \eta_0 = 2.4$: the 3rd jet is missed by the detector Θ
- Lessons: Trigger on rare events with high photon energy ω
- Use a hadronic detector with larger rapidity coverage η_{max}
- Measure jets with lower $P_{\perp} \leq 15 \text{GeV}$

Rapidity distributions

- Left: rapidity distribution of the hard dijets $(\eta_1 \simeq \eta_2 \equiv y)$
 - roughly symmetric around y = 0
 - $\bullet\,$ rapidly decreasing when increasing P_{\perp}

Right: fraction of events with the 3rd jet inside the detector: |η₃| < η₀ = 2.4
rapidly increasing when increasing y, or decressing P_⊥

Conclusions & Open questions

- Diffraction in γA (EIC, UPC): good laboratory to study gluon saturation
- Collinear factorisation for hard diffraction emerges from CGC
- Diffractive TMDs and PDFs can be computed from first principles
- Recent progress, many open problems (conceptual & experimental)
- Dijets in AA UPCs (LHC): can one measure the semi-hard, 3rd, jet ?
- What about diffractive hadron production in AA UPCs (ALICE) ?
- What about *eA* DIS at the EIC ?
- What about next-to-leading order corrections ?
- Possible extensions to inelastic phenomena (e.g. inclusive dijets in DIS) ?
- Towards unifying the DGLAP and the BK/JIMWLK evolutions ?

Final-state radiation

- Dijet momentum imbalance dominated by final-state radiation
 - additional gluons with transverse momenta $Q_s \ll k_\perp \ll P_\perp$

• LHC: dijet imbalance $Q_T = |\mathbf{k}_1 + \mathbf{k}_2| \sim 10 \,\text{GeV} \gg Q_s$

- consistent with final state radiation (Hatta et al, 2010.10774)
- insensitive to the 3rd jet

2+1 jets with a hard gluon

• The third (semi-hard) jet can also be a quark: same-order

• TMD factorisation: quark unintegrated distribution of the Pomeron

The quark diffractive TMD

$$\frac{\mathrm{d}xq_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^{2})}{\mathrm{d}^{2}\boldsymbol{K}} = \frac{S_{\perp}N_{c}}{4\pi^{3}} \underbrace{\Phi_{q}(x,x_{\mathbb{P}},K_{\perp}^{2})}_{\text{occupation number}}$$

• Bessel-Fourier transform of the $q\bar{q}$ dipole amplitude $T_{q\bar{q}}(R,Y_{\mathbb{P}})$

$$\Phi_q(x, x_{\mathbb{P}}, K_{\perp}^2) \simeq x \begin{cases} 1, & K_{\perp} \lesssim \tilde{Q}_s(x) \\ \\ \frac{\tilde{Q}_s^4(x)}{K_{\perp}^4}, & K_{\perp} \gg \tilde{Q}_s(x) \end{cases}$$

- Like for the gluon diffractive TMD, but with overall factor $1 x \rightarrow x$
 - gluons dominate at small x, quarks are more important near x = 1

• Once again, the bulk of the distribution lies at saturation: $K_{\perp} \lesssim ilde{Q}_s(x)$

$$xq_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2) \equiv \int^{P_{\perp}} \mathrm{d}K_{\perp}^2 \,\Psi(x,x_{\mathbb{P}},K_{\perp}^2) \,\propto\, x(1-x) \,Q_s^2(Y_{\mathbb{P}})$$

Gluon vs. quark diffractive TMDs

• First line: gluon. Second line: quark

Quark diffractive PDF

• Initial conditions for DGLAP (MV, or MV+BK): gluon & quark

• Quark DPDF with DGLAP: *x* dependence (gluon-driven at small *x*)

UPC 2023, Playa del Carmen

Diffractive structure function: proton target

• Quark DPDF (leading-twist, DGLAP) & Longitudinal γ_L^* (higher twists, MV)

Diffractive structure function: nuclear target

• Larger initial saturation momentum & larger "factorisation" scale μ_0^2

Universality of the quark diffractive TMD

- Diffractive SIDIS in the aligned jet configuration: $\vartheta \ll 1$
- High virtuality: $Q^2 \gg Q_s^2$, but semi-hard transverse momenta:

 $K^2_{\perp} \simeq \vartheta (1 - \vartheta) Q^2 \sim Q_s^2$ (to have strong scattering) $-K_{\perp} \sim Q_s, 1 - \vartheta \simeq 1$ $K_{\perp} \sim Q_s, \vartheta \ll 1$ x, K $1-x, -K_{\perp}$ $P_N^ \frac{\mathrm{d}\sigma_{\mathrm{el}}^{\gamma_T^* A \to q\bar{q}A}}{\mathrm{d}^2 \boldsymbol{K} \mathrm{d}Y_{\mathbb{P}}} = \frac{4\pi^2 \alpha_{em}}{Q^2} \frac{\mathrm{d}x q_{\mathbb{P}}(x, x_{\mathbb{P}}, K_{\perp}^2)}{\mathrm{d}^2 \boldsymbol{K}}$

• The hard factor: cross-section for virtual photon absorbtion

UPC 2023, Playa del Carmen

Gluon saturation in γA