Ratio of J / Ψ and $\Psi(2 s)$ exclusive photoproduction cross-sections as a tool to detect non-linear QCD evolution

Martin Hentschinski
Universidad de las Americas Puebla
Ex-Hacienda Santa Catarina Martir S/N San Andrés Cholula
72820 Puebla, Mexico
martin.hentschinski@gmail.com

Work in collaboration with Marco Alcazar Peredo 2308.15430 [hep-ph]

Related:
I. Bautista, Fernandez Tellez, MH, PRD 94 (2016) 5, 054002, arXiv:1607.05203
A. Arroyo Garcia, MH, K.Kutak, PLB 795 (2019) 569-575, arXiv:1904.04394

MH, E. Padron Molina, Phys.Rev.D 103 (2021) 7, 074008 arXiv:2011.02640
UPC 2023, December 10-15, 2023, Playa del Carmen, Mexico

photo induced exclusive photo-production of $\mathrm{J} / \Psi \mathrm{s}$ and $\Psi(2 s)$

- hard scale: charm maSS (small, but perturbative)
- reach up to $x \geq .5 \cdot 10^{-6}$
- perturbative crosscheck: $\Upsilon(b-m a s s)$
I. Bautista, Fernandez Tellez, MH, 1607.05203
A. Arroyo Garcia, MH, K.Kutak, 1904.04394
- measured at LHC (LHCb, ALICE, CMS) \& HERA (H1, ZEUS)
\rightarrow covers orders of magnitudes in low x

Goal: confront linear vs. non-linear QCD evolution

This work:

Observation:

For photoproduction on a proton

- very similar energy dependence predicted by linear (NLO BFKL) and non-linear QCD (BK) evolution for total photoproduction cross-section of J / Ψ and $\Psi(2 s)$
- Within uncertainties: can't distinguish BFKL and BK

Shown: linear NLO BFKL (HSS) [MH, Salas, Sabio Vera; 1209.1353; 1301.5283] and non-linear BK (KS) [Kutak, Sapeta; 1205.5035]

Observation:
 - very similar energy dependence for total cross-section
 - Different predictions for the ratio $\sigma(J / \Psi) / \sigma(\Psi(2 s))$

MH, Padron Molina, arXiv:2011.02640

- non-linear KS gluon (BK evolution): growing ratio
- Linear HSS gluon (NLO BFKL evolution): approximately constant ratio
- also: unstable fixed scale HSS gives decaying ratio: related to enhanced IR contribution for the $\Psi(2 s)$

Coincidence or a characteristic feature of non-linear QCD dynamics?

Implications

If the raise of the ratio could be associated with non-linear QCD evolution,
\rightarrow indicator for the presence of such effects without the need to fit etc.

Potential problems:

- Difference between rising vs constant too small to be distinguished within errors (essentially the case for current HERA data)
- It could be an artifact of the particular solution to the BK and NLO BFKL solutions

This study:

Instead of (correct) dipole amplitudes subject to QCD evolution, use dipole models \rightarrow can turn on/off (simulated) non-linear QCD effects

Study the ratio, using dipole models

GBW model: $\quad \sigma_{q \bar{q}}^{\mathrm{GBW}}(x, r)=\sigma_{0}^{\mathrm{GBW}}\left[1-\exp \left(-\frac{r^{2} Q_{s}^{2}(x)}{4}\right)\right]$
[Golec-Biernat, Wusthoff, hep-ph/9807513]
BGK model: $\quad \sigma_{q \bar{q}}^{\mathrm{BGK}}(x, r)=\sigma_{0}^{\mathrm{BGK}}\left[1-\exp \left(-\frac{r^{2} \pi^{2} \alpha_{s}\left(\mu_{r}^{2}\right) x g\left(x, \mu_{r}^{2}\right)}{3 \sigma_{0}^{\mathrm{BGK}}}\right)\right]$
[Bartels, Golec-Biernat, Kowalski; hep-ph/0203258]
Exponentiates linear dipole cross-section (leading order collinear factorization)

$$
\sigma_{q \bar{q}}^{\text {collinear }}(x, r)=\frac{\pi^{2}}{3} r^{2} \alpha_{s}\left(\mu^{2}\right) x g\left(x, \mu^{2}\right)
$$

L. Frankfurt, A. Radyushkin, and M. Strikman; hep-ph/9610274

Recent fit of both models to HERA data: [Golec-Biernat, Sapeta; 1711.11360]

Can we expect to see non-linear effects?

Wave function overlap
Use boosted Gaussian
Scattering amplitude

$$
\mathfrak{F} \mathrm{m} \mathscr{A}_{\gamma p \rightarrow V_{p}}(x)=\int d^{2} r \int_{0}^{1} \frac{d z}{4 \pi}\left(\psi_{V}^{*} \psi_{T}\right)(r, z) \sigma_{q \bar{q}}(r, x) .
$$

Dipole cross-section

Explore distribution in relevant dipole sizes r

$$
\begin{aligned}
& W_{V}(r)=\frac{r \int_{0}^{1} d z\left(\Psi_{V}^{*} \Psi_{T}\right)(r, z)}{\int d r r \int_{0}^{1} d z\left(\Psi_{V}^{*} \Psi_{T}\right)(r, z)} \\
& \int_{0}^{\infty} d r W(r)=1
\end{aligned}
$$

Relevant region of the wave function overlap: 60% for $r<1 \mathrm{GeV}^{-1}$, 99% for $r<3 \mathrm{GeV}^{-1}$

Can we expect to see non-linear effects?

Relevant region of the wave function overlap:
60% for $r<1 \mathrm{GeV}^{-1}$, 99% for $r<3 \mathrm{GeV}^{-1}$

Solutions to BK-equation: geometric scaling region can be estimated as

Three regions for dipole cross-sections:

- saturated region: $\sigma_{q \bar{q}} \simeq$ const.
- Perturbative region $\sigma_{q \bar{q}} \sim r^{2}$ purely linear/ dilute $\sqrt{ }$
- Geometric scaling region: still weak $\sigma_{q \bar{q}} / \sigma_{0} \ll 1$, but effects of saturated region already present (maybe)
A. M. Stasto, Krzysztof J. Golec-Biernat, and J. Kwiecinski; hep-ph/0007192.

$$
1<\left|\ln \left(r^{2} Q_{s}^{2}(x)\right)\right| \leq \sqrt{\bar{\alpha}_{s} \chi_{0}^{\prime \prime}\left(\gamma_{0}\right)}
$$

[Mueller, Triantafyllopoulos; hep-ph/0205167],
[Munier, Peschanski; hep-ph/0310357, hep-ph/0309177]

Leading order BFKL eigenvalue $\chi_{0}(\gamma)=2 \Psi(1)-\Psi(\gamma)-\Psi(1-\gamma)$

$$
\text { Solution to } \chi_{0}\left(\gamma_{0}\right)=\gamma_{0} \chi_{0}^{\prime}\left(\gamma_{0}\right), \quad \gamma_{0} \simeq 0.627549
$$

Geometric scaling region and charmonium

Geometric scâling region (GBW saturation scale; $\mathrm{Pb}: A^{\frac{1}{3}} Q_{s}^{2}$)

$$
\mathfrak{\Im m} \mathscr{A}(x)=\int d^{2} r \int_{0}^{1} \frac{d z}{4 \pi}\left(\psi_{V}^{*} \psi_{T}\right)(r, z) \sigma_{q \bar{q}}(r, x)
$$

- Little overlap with geometric scaling region
- J / Ψ and $\Psi(2 s)$ differ for $r \geq 2 \mathrm{GeV}^{-1} \rightarrow$ ratio could be sensitive to it
- Confirms what we have seen for the production cross-sections
- Expect sensitivity for photonuclear production at cross-section level

How does the relevant dipole size change with x ?

"Unintegrated" amplitude
$\mathfrak{T m} \mathscr{A}(x)=\int d^{2} r \int_{0}^{1} \frac{d z}{4 \pi}\left(\psi_{V}^{*} \psi_{T}\right)(r, z) \sigma_{q \bar{q}}(r, x)$

$$
a_{V}(r)=\frac{2 \pi r \int_{0}^{1} \frac{d z}{4 \pi}\left(\psi_{V}^{*} \psi_{T}\right)(r, z) \sigma_{q \bar{q}}(r, x)}{\mathfrak{J m} \mathscr{A}_{V}(x)}, \quad \int_{0}^{\infty} d r a_{V}(r)=1
$$

Collinear dipole cross-section (no saturation): very moderate changes induced by DGLAP

Non-linear dipole model:changes are significant \& different for J / Ψ and $\Psi(2 s)$

Modified saturation models: explore sensitivity to triple Pomeron vertex (=size of non-nonlinearities)

Want to test/simulate:
What happens if I enhance the size of non-linearities?

Keep linear Pomeron (BFKL/DGLAP)

On the level of the dipole model: keep linear (perturbative) term unmodified

$$
\begin{aligned}
\sigma_{q \bar{q}}^{\mathrm{GBW}}(x, r, k) & =\sigma_{0}^{\mathrm{GBW}} Q_{s}^{2}(x)\left(\frac{r^{2}}{4}\right)\left[1+\sum_{n=1}^{\infty} \frac{1}{(n+1)!}\left(-k \cdot \frac{r^{2} Q_{s}^{2}(x)}{4}\right)^{n}\right] \\
& =\frac{\sigma_{0}^{\mathrm{GBW}}}{k}\left[1-\exp \left(-k \cdot \frac{r^{2} Q_{s}^{2}(x)}{4}\right)\right] .
\end{aligned}
$$

$k \rightarrow 0$: linear limit
$k=1$: existing HERA fit
$k>1$: increase relevance of non-linear corrections
Same for BGK model

$$
Q_{s}^{2}(x)=\frac{\text { \#of gluons }}{\text { transverse area }}
$$

Ratio of $\Psi(2 s)$ and J / Ψ scattering amplitudes

Not yet the cross-section, but ratio of amplitudes

$$
\frac{\mathfrak{F} \mathrm{m} \mathscr{A}(\gamma p \rightarrow \Psi(2 s) p)}{\mathfrak{J} \mathrm{m} \mathscr{A}(\gamma p \rightarrow J / \Psi p)}
$$

For decreasing $x=M_{V}^{2} / W^{2}$

- Confirm growth of ratio if target is sufficiently non-linear (either through enhanced non-linearities or through sufficiently low x)
- Occurs for geometric scaling region
- If we enter the saturated region: constant ratio; behavior directly related to density \rightarrow non-linearities

What about collinear factorization?

.... already included with through BGK in $k \rightarrow 0$ limit
But this fixes the factorization scale \& uses wave function
Approach based on NRQCD:
Leading order cross-section: [Ryskin; Z. Phys. C 1993]

$$
\left.\frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}=\frac{\Gamma_{e e}^{V} M_{V}^{3} \pi^{3}}{48 \alpha_{e . m .}}\left[\frac{\alpha_{s}\left(\mu^{2}\right)}{\bar{Q}^{4}} x g\left(x, \mu^{2}\right)\right]^{2}
$$

NLO (not discussed here): Kari J. Eskola, Christopher A. Flett, Vadim Guzey, Topi Löytäinen, and Hannu Paukkunen; 2203.11613, 2210.16048.

- trivially constant, if $\mu=m_{c}$ (identical for both vector mesons)
- Can generate growing ratio, if $\mu_{2 s}>\mu_{1 s}$ (could be justified from vector meson wave functions);
- Also the choice $\mu_{2 s}<\mu_{1 s}$ could be made $\ldots \rightarrow$ not a prediction
- Bottom line: collinear factorization fits x-dependence at $\mu \simeq m_{c}$ initial scale + huge factorization scale uncertainty \rightarrow predictive power is lost (at least at leading order)
- Might provide valuable information on PDF input on low x, does not tell me about absence of nonlinear x evolution
- NLO: $\ln \mu_{F} P_{g g}(z) \sim 1 / z \rightarrow$ requires additional resummation (BFKL resummed coll. fact. etc.)

Ratio on cross-section level (proton)

As expected:

- growing ratio with W for "non-linear" dipole models
- Constant ratio for linearized versions \rightarrow even for ratio fails to describe normalization; expected since full models fitted to HERA data)
- Collinear factorization: anything is possible

Fit to HERA data prefers rising ratio (numerically close to slope of saturation models)

.... but essentially identical $\chi^{2} /$ d.o.f.

Cross-sections and ratio for the nucleus

since there are already data, let's see

Increase density: photonuclear production

Higher densities $(k \geq 5)$:

- Possible to see the slow down of the growth of the the ratio
- Nuclear data: $Q_{s}^{2} \rightarrow Q_{s, A}^{2}=A^{\frac{1}{3}} Q_{s}^{2}$ $\mathrm{Pb}: A^{\frac{1}{3}} \simeq 5.9$
should be able to see this

Very simple model of nuclear dipole density
(same for BGK):

$$
\sigma_{q \bar{q}}^{G B W}(x, r, k)=\frac{\sigma_{0}}{k}\left[1-\exp \left(-k \frac{Q_{s}^{2}(x) r^{2}}{4}\right)\right]
$$

- Scale black disk limit: $\sigma_{0} \rightarrow A^{\frac{2}{3}} \sigma_{0}$
- Scale saturation scale $\sim \frac{\text { \#gluons }}{\perp \text { area }}$ $Q_{s}^{2} \rightarrow Q_{s, A}^{2}=A^{\frac{1}{3}} Q_{s}^{2}$

Diffractive slope for Pb

Prediction requires diffractive slope $B_{D}(W)$ For proton: taken from HERA data

$$
\sigma^{\gamma p \rightarrow V p}\left(W^{2}\right)=\left.\frac{1}{B_{D}(W)} \frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}
$$

[Krelina, Nemchick, Pasechnik, Cepila; 1812.03001]

Procedure $\left.\frac{d \sigma}{d|t|}=d \sigma \right\rvert\, \quad$ With $\left.\quad \frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}=\frac{1}{16 \pi}\left|\mathcal{A}^{\gamma p \rightarrow V p}\left(W^{2}, t=0\right)\right|^{2}$

Pb : fit recent ALICE data (averaged over W)
[ALICE collab; 2305.06169]

Find

$$
\begin{aligned}
& B_{D}=(2.35 \pm 0.29) \mathrm{GeV}^{-2} \\
& C=(22.9 \pm 2.4) \mu b / \mathrm{GeV}^{-2}
\end{aligned}
$$

In principle different distribution possible for nucleus; exponential fits well

Cross-sections

Description for J / Ψ

Prediction for $\Psi(2 s)$

Underlying dipole cross-section

$$
\sigma_{q \bar{q}}(x, r, k)=A^{\frac{1}{3}} \sigma_{0}\left[1-\exp \left(-A^{\frac{1}{3}} \frac{Q_{s}^{2}(x) r^{2}}{4}\right)\right]
$$

Potentially more appropriate:

- impact parameter dependent dipole amplitude
- Variations of saturation scale as a function of \mathbf{b}

Simple scaling works surprisingly well
(But also a constant slope could fit data)

An attempt to include impact parameter dependence

[Kowalski, Teaney; hep-ph/0304189]

$$
\begin{aligned}
& \frac{d \sigma_{q \bar{q}}}{d^{2} \boldsymbol{b}}=\prod_{i=1}^{A} \int d^{3} r_{i} P\left(\vec{r}_{1}, \ldots, \vec{r}_{A}\right) \cdot 2 N\left(x, \boldsymbol{r}, \boldsymbol{b}, \vec{r}_{1}, \ldots, \vec{r}_{A}\right) \\
& \left.P\left(\vec{r}_{1}, \ldots, \vec{r}_{A}\right)=\prod_{i}^{A} \frac{\rho\left(\vec{r}_{i}\right)}{A} \quad \rho^{\mathrm{WS}}(\vec{r})=\frac{N}{1+\exp \left(\frac{\sqrt{\vec{r}^{2}}}{\delta}-R_{A}\right.}\right)
\end{aligned}
$$

In this model: high energy nucleus = a gas of nucleons

$$
\frac{d \sigma_{q \bar{q}}}{d^{2} \boldsymbol{b}}=2\left[1-\left(1-\frac{I}{A}\right)^{A}\right] \quad I=\int d^{2} \boldsymbol{b}^{\prime} T_{A}\left(\boldsymbol{b}+\boldsymbol{b}^{\prime}\right) N(x, r, b, 1) \simeq \frac{1}{2} T_{A}(\boldsymbol{b}) \sigma_{q \bar{q}}(x, r, 1)
$$

$$
T_{A}(\mathbf{b})=\int d z \rho(\mathbf{b}, z) \text { nuclear profile function }
$$

- Energy dependence in gas like model = proton dipole cross-section x nuclear distribution
- model leads to a growth with energy which is too strong (and fails badly for normalization)
- Boosted nucleus is not "gas"-like

Predictions for the photo-nuclear cross-section ratio

- onset of bending for scaled saturation scale $A^{\frac{1}{3}} Q_{s}^{2}$
- "Gas-like" reproduces ratio for the proton
- prediction of collinear factorization somehow arbitrary
- If both vector mesons are treated with identical factorization scales (heavy quark mass) \rightarrow constant

Conclusion:

- ratio is a valid indicator for the presence of non-linear QCD dynamics in particular the geometric scaling region
- Should be there for the proton, stronger for lead; in principle independent of fitting data
- Requirement: Presence/Absence of a node in 2s/1s wave function \rightarrow expect this to be a is model independent non-perturbative feature

Appendix

Why is the ratio constant in absence of non-linear effects?
 Easiest seen for GBW model, holds also for BGK etc.

Linearized GBW:

$$
\sigma_{q \bar{q}}^{G B W}(x, r)=\sigma_{0}\left(1-\exp \left(-\frac{r^{2} Q_{s}^{2}(x)}{4}\right) \rightarrow \sigma_{0} \frac{r^{2} Q_{s}^{2}(x)}{4}\right.
$$

Scattering amplitude $\quad \mathfrak{J} \mathrm{A} A(x)=\int d^{2} r \int_{0}^{1} \frac{d z}{4 \pi}\left(\psi_{V}^{*} \psi_{T}\right)(r, z) \sigma_{q \bar{q}}(r, x)$

Linearized:

$$
\mathfrak{F m} \mathscr{A}^{\text {lin. } .}(x) \sim Q_{s}^{2}(x) \cdot \int d r \ldots
$$

For LINEAR GBW

> Energy/x-dependence independent of wave function overlap
> \rightarrow cancels for ratio

Full dipole model: x-dependence does not cancel \rightarrow ratio with non-trivial energy dependence

