Inclusive and diffractive dijet photoproduction in Pb-Pb UPCs at the LHC

Vadim Guzey

University of Jyväskylä \& Helsinki Institute of Physics, University of Helsinki, Finland

Based on work in collaboration with M. Klasen (U. of Münster, Germany), JHEP 04 (2016) 158; EPJ C 76 (2016) 8, 467; PRC 99 (2019) 6, 065202; EPJ C 79 (2019) 5, 396;
PRD 104 (2021) 11, 114013

Outline:

- Jets in QCD and dijet photoproduction in collinear factorization and NLO pQCD
- Inclusive dijet photoproduction in Pb-Pb UPCs at the LHC and nuclear PDFs
- Diffractive dijet photoproduction in Pb-Pb UPCs at the LHC: nuclear diffractive PDFs and QCD factorization breaking

Jets in QCD

- Jets are collimated sprays of hadrons ($\pi, \mathrm{K}, \mathrm{p}, \ldots$) produced in high-energy e+e-, lepton-hadron, and hadron-hadron collisions, Salam, arXiv:1011.5131; Sapeta, arXiv:1511.09336; Laenen, arXiv:1708.00770
- Jets have been instrumental is establishing QCD and concepts af asymptotic freedom (factorization) and confinement (hadronization). - Classic example: 3-jet events in e+e- annihilation \rightarrow existence of gluons.

- Studies of jet production remain an active field of QCD studies at colliders:
- precision extraction of $\alpha s\left(\mathrm{Mz}_{z}\right)$ from HERA data on ep DIS, H1 Coll. EPJC 75 (2015) 2, 65;

ZEUS Coll., NPB 864 (2012) 1

- global QCD fits of parton distribution functions (PDFs) of the proton using ep

DIS@HERA, anti-pp@Tevatron, and pp@LHC, NNPDF4.0, EPJC 82 (2022) 4, 428; CT18, PRD 103
(2021) 1, 014013, nuclear PDFs using dijets in PA@LHC, EPPS21, EPJC 82 (2022) 5, 413, and
photon PDFs, Slominski, Abramowicz, Levy, EPJC 45 (2006) 633.

- search for small-x BFKL and saturation physics using forward dijet production at LHC, 2022 Snowmass Summer Study, arXiv:2203.08129 and at EIC, Boussarie, Mäntysaari, Salazar, Schenke, JHEP 09 (2021) 178
- Standard Model background for many new physics processes.

Jet photoproduction in QCD

- All information on jet photoproduction comes from ep scattering at HERA, Newman, Wing, Rev. Mod. Phys. 86 (2014) 3, 1037; Butterworth, Wing, Rept. Prog. Phys. 68 (2005) 2773; Klein, Yoshida, Prog. Part. Nucl. Phys. 61 (2008) 343 + prelim. data on Pb-Pb UPCs@LHC, ATLAS-CONF-2017-011, ATLAS-CONF-2022-021
- Typical leading-order (LO) Feynman graphs: direct-photon and resolved-photon contributions. The separation is not unique beyond LO, but is still useful.

direct-photon

resolved-photon
- Main interests in studying jet photoproduction:
- Cross section is sensitive to quark and gluon structure at the same order. When combined DIS cross section, provides of additional constraints on the gluon PDF, zEus, EPJC 42 (2005) 1
- Test of QCD factorization and its violation (in case of diffractive dijet photoproduction)
- Access to photon structure, constraints on the gluon PDF of the photon, which are complimentary to those from $\mathrm{F}_{2}{ }^{\gamma}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ in $\mathrm{e}+\mathrm{e}-$, Nisius, Phys. Rept. 332 (2000) 165; Slominski,
Abramowicz, Levy, EPJC 45 (2006) 633

Dijet photoproduction in NLO pQCD

- In photoproduction, jet transverse momentum provides hard scale $\mu_{\mathrm{R}}=\mu_{\mathrm{F}}=\mathrm{E}_{\mathrm{T}}$
- In framework of collinear factorization of perturbative QCD, cross sections are known to next-to-leading order (NLO) accuracy, Aurenche at al. EPJC 17 (2000) 413; Frixione, Ridolfi, NPB 507 (1997) 315; Klasen, Kramer, Z. Phys. C 76 (1997) 67
- Dijet cross section in NLO pQCD:

$$
\begin{array}{ll}
\mathrm{d} \sigma_{e p \rightarrow e+\mathrm{jets}+X}=\sum_{a, b} \int_{0}^{1} \mathrm{~d} x_{\gamma} \int_{0}^{1} \mathrm{~d} x_{p} f_{\gamma / e} f_{b / \gamma}\left(x_{\gamma}, \mu_{F \gamma}\right) f_{a / p}\left(x_{p}, \mu_{F p}\right) \mathrm{d} \hat{\sigma}_{a b \rightarrow c d}\left(x_{\gamma}, x_{p}, \alpha_{s}\left(\mu_{R}\right), \mu_{F \gamma}, \mu_{F p}, \mu_{R}\right)
\end{array}
$$

$$
f_{\gamma / e}(y)=\frac{\alpha}{2 \pi}\left[\frac{1+(1-y)^{2}}{y} \ln \frac{Q_{\max }^{2}(1-y)}{m_{e}^{2} y^{2}}+2 m_{e}^{2} y\left(\frac{1-y}{m_{e}^{2} y^{2}}-\frac{1}{Q_{\max }^{2}}\right)\right]
$$

$\mathrm{f}_{\mathrm{b} / \gamma}=\delta\left(1-\mathrm{x}_{\gamma}\right)$ for Born and virtual corr.

- This parton-level cross section assumes massless quarks and for comparison with data, needs to be supplemented with hadronization corrections from Monte Carlo (LO + parton showers), Helenius, arXiv:1806.07246 and arXiv:1811.10931; Helenius and Rasmusen, EPJC 79 (2019) 413.
- Parton momentum fractions are determined using their hadron-level estimates based on measured jet transverse energies $E_{T 1,2}$ and rapidities $\eta_{1,2}$.

$$
\begin{aligned}
x_{\gamma}^{\mathrm{obs}} & =\frac{p_{T, 1} e^{-\eta_{1}}+p_{T, 2} e^{-\eta_{2}}}{2 y E_{e}} \\
x_{A}^{\mathrm{obs}} & =\frac{p_{T, 1} e^{\eta_{1}}+p_{T, 2} e^{\eta_{2}}}{2 E_{A}}
\end{aligned}
$$

Dijet photoproduction in UPCs@LHC

- The focus of UPC measurements@LHC has been exclusive (coherent) photoproduction of charmonia ($\mathrm{J} / \psi, \psi^{\prime}$) and light vector mesons $(\rho) \rightarrow$ new constraints on the gluon density at small x down to $x_{p} \sim 6 \times 10^{-6}$ and $x_{A} \sim 10^{-5}$.
- Nuclear and photon PDFs can also be studied in inclusive dijet photoproduction in Pb-Pb UPCs, ATLAS-CONF-2017-011, ATLAS-CONF-2022-021
- Requiring intact nuclear target \rightarrow diffractive dijet photoproduction in $\mathrm{Pb}-\mathrm{Pb}$ UPCs \rightarrow access to novel nuclear diffractive PDFs and mechanism of QCD factorization breaking, Guzey, Klasen, JHEP 04 (2016) 158
- First LO pQCD calculations of heavyflavor jets in UPCs, Strikman, Vogt, White, PRL 96 (2006) $082001 \rightarrow$ very large rates for inclusive and diffractive ($\sim 20 \%$) dijets.

(a)
direct

(a)

(b)

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC

- Cross section of dijet photoproduction using collinear factorization and NLO pQCD, which is successful for HERA data on dijet photoproduction in ep scattering, Klasen, Kramer, Z.Phys. C 72 (1996) 107, Z. Phys. C 76 (1997) 67; Klasen, Rev. Mod. Phys. 74 (2002) 1221; Klasen, Kramer, EPJC 71 (2011) 1774

(a)
direct

(b)
resolved

$$
d \sigma(A A \rightarrow A+2 \text { jets }+X)=
$$

$$
\sum_{a, b} \int d y \int d x_{\gamma} \int d x_{A} f_{\gamma / A}(y) f_{a / \gamma}\left(x_{\gamma}, \mu^{2}\right) f_{b / A}\left(x_{A}, \mu^{2}\right) d \hat{\sigma}_{a b \rightarrow \text { jets }}
$$

Photon flux from QED:

- high intensity ~ Z ${ }^{2}$
- high photon energy $\sim \gamma$ L

Photon PDFs (GRVHO) (resolved photon), from e+e-data

Hard parton cross section
$f_{\gamma / A}(y)=\frac{2 \alpha_{\text {e.m. }} Z^{2}}{\pi} \frac{1}{y}\left[\zeta K_{0}(\zeta) K_{1}(\zeta)-\frac{\zeta^{2}}{2}\left(K_{1}^{2}(\zeta)-K_{0}^{2}(\zeta)\right)\right]$
Nuclear PDFs
(nCTEQ15, EPPS16)

$$
\zeta=y m_{p} b_{\min } \approx y m_{p}\left(2 R_{A}\right)
$$

See talk P. Paakkinen

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC (2)

- NLO pQCD vs. ATLAS data as a function of the dijet transverse momentum $\mathrm{H}_{T}=\mathrm{E}_{\mathrm{T}}{ }^{\mathrm{jet} 1}+\mathrm{E}_{\mathrm{T}}{ }^{\mathrm{jet} 2}$ and nuclear momentum fraction $\mathrm{X}_{\mathrm{A}}=\left(\mathrm{m}_{\mathrm{jets}} / V_{\mathrm{S}_{\mathrm{NN}}}\right)$ e-yjets

- Shape and normalization of ATLAS data, ATLAS-conf-2017-011 reproduced well (data not corrected for detector response).
- We haven't compared to the more recent unfolded data, atLAs-conf-2022-021.

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC (3)

- Resolved vs. direct photon contributions:
- resolved photons dominate for $\mathrm{x}_{\mathrm{A}}>0.01$ - resolved and direct are compatible for $\mathrm{X}_{\mathrm{A}}<0.01$
- similar trend in leading order (LO) analysis in PYTHIA8 framework, Helenius, Rasmusen, EPJ C 79 (2019) 5, 413.

See talk I. Helenius

- Nuclear modifications: shape of $\quad R=\frac{d \sigma(A A \rightarrow A+2 \text { jets }+X)}{d \sigma^{I A}(A A \rightarrow A+2 \text { jets }+X)}$
repeats that of $\mathrm{R}_{\mathrm{g}}(\mathrm{x})=\mathrm{g}_{A} / \mathrm{Ag}_{\mathrm{N}}:$
$f_{b / A}^{\mathrm{IA}}=Z f_{b / p}+(A-Z) f_{b / n}$
- 10% shadowing for $x_{A}<0.01$
- 20% antishadowing at $x_{A} \sim 0.1$
- 5-10\% EMC effect for large $x_{A} \rightarrow$ can be compared to predictions for EIC, Klasen, Kovarik, PRD 97 (2018) 114013; Guzey, Klasen, PRC 102 (2020) 6, 065201.

Constraints on nPDFs from dijet photoproduction

- Potential of inclusive dijet photoproduction in Pb-Pb UPCs to constrain nPDFs can be assessed using Bayesian reweighting used for pA data, Armesto et al. JHEP 1311 (2013) 015; Paukkunen, Zurita, JHEP 1412 (2014) 100; Kusina et al., EPJC 77 (2017) 488.
- Using error nPDFs, one generates $\mathrm{N}(\mathrm{N}=10,000)$ replicas:

$$
\begin{gathered}
f_{j / A}^{k}\left(x, Q^{2}\right)=f_{j / A}^{0}\left(x, Q^{2}\right)+\frac{1}{2} \sum_{i=1}^{N}\left[f_{j / A}^{i+}\left(x, Q^{2}\right)-f_{j / A}^{i-}\left(x, Q^{2}\right)\right] \\
\vdots \\
\text { central value }
\end{gathered} R_{k i}
$$

- Calculate the cross section for each replica:
$\frac{d \sigma^{k}}{d x_{A}}=\sum_{a, b} \int_{y_{\min }}^{y_{\max }} d y \int_{0}^{1} d x_{\gamma} f_{\gamma / A}(y) f_{a / \gamma}\left(x_{\gamma}, \mu^{2}\right) f_{b / B}^{k}\left(x_{A}, \mu^{2}\right) d \hat{\sigma}(a b \rightarrow$ jets $)$
- $\chi 2$ for each k using our calculations with central nPDFs as pseudo-data (need to assign some error eps=5-15\%)
- \rightarrow statistical weights w_{k} for replicas to reproduces the pseudo-data with tolerance T

$$
w_{k}=\frac{e^{-\frac{1}{2} \chi_{k}^{2} / T}}{\frac{1}{N_{\text {rep }}} \sum_{i}^{N_{\text {rep }}} e^{-\frac{1}{2} \chi_{i}^{2} / T}}
$$

Constraints on nPDFs from dijet photoproduction (2)

- Re-weighted PDFs and their uncertainties:

$$
\begin{aligned}
\left\langle f_{j / A}\left(x, Q^{2}\right)\right\rangle_{\text {new }} & =\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} w_{k} f_{j / A}^{k}\left(x, Q^{2}\right), \\
\delta\left\langle f_{j / A}\left(x, Q^{2}\right)\right\rangle_{\text {new }} & =\sqrt{\frac{1}{N_{\text {ree }}} \sum_{k=1}^{N_{\text {rep }}} w_{k}\left(f_{j / A}^{k}-\left\langle f_{j / A}\left(x, Q^{2}\right)\right\rangle_{\text {new }}\right)^{2}}
\end{aligned}
$$

- This quantifies the effect of the pseudo-data on nPDFs and their uncertainties.

- Assuming 5% error \rightarrow reduction of uncertainties by factor 2 at $x_{A}=0.001$.

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC

- In framework of collinear factorization \& NLO pQCD, it probes novel nuclear diffractive PDFs.
- Contribution of right-moving photon source:

$$
\begin{aligned}
& d \sigma(A A \rightarrow A+2 \mathrm{jets}+X+A)^{(+)}= \\
& \sum_{a, b} \int d t \int d x_{P} \int d z_{P} \int d y \int d x_{\gamma} f_{\gamma / A}(y) f_{a / \gamma}\left(x_{\gamma}, \mu^{2}\right) f_{b / A}^{D(4)}\left(x_{P}, z_{P}, t, \mu^{2}\right) d \hat{\sigma}_{a b \rightarrow \mathrm{jets}}
\end{aligned}
$$

- Nuclear diffractive PDF $\mathrm{f}_{\mathrm{b} / \mathrm{A}} \mathrm{D}(4)=$ conditional probability to find parton b with mom. fraction Zp with respect to the diffractive exchange (pomeron) carrying mom. fraction XP provided the nucleus remained intact with mom. transfer t.
- $\mathrm{f}_{\mathrm{b} / \mathrm{A}^{\mathrm{D}}}(4)$ is subject to nuclear modifications. The leading twist nuclear shadowing model predicts strong nuclear suppression (shadowing), Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

$$
\begin{aligned}
f_{b / A}^{D(4)}\left(x_{P}, z_{P}, t, \mu^{2}\right) & =R_{b}\left(x_{P}, z_{P}, \mu^{2}\right) A^{2} F_{A}^{2}(t) f_{b / p}^{D(4)}\left(x_{P}, z_{P}, t=0, \mu^{2}\right) \\
& \approx 0.15 A^{2} F_{A}^{2}(t) f_{b / p}^{D(4)}\left(x_{P}, z_{P}, t=0, \mu^{2}\right)
\end{aligned}
$$

- Combination of Gribov-Glauber theory with QCD factorization theorems for inclusive and diffractive DIS \rightarrow prediction for small-x nPDFs at input scale Q_{0}, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

$+$

See talks B. Schenke, M. Strikman
diffractive exchange

$$
\begin{gathered}
\left.\beta f_{j / A}^{D(3)}\left(\beta, Q^{2}, x_{\mathbb{P}}\right)=4 \pi A^{2} \beta f_{j / N}^{D(4)}\left(\beta, Q^{2}, x_{\mathbb{P}}, t_{\min }\right) \int d^{2} b\left|\int_{-\infty}^{\infty} d z e^{i x_{\mathbb{P}} m_{N} z} e^{-\frac{A}{2}(1-i \eta) \sigma_{\text {soft }}^{j}\left(x, Q^{2}\right) \int_{z}^{\infty} d z^{\prime} \rho_{A}\left(b, z^{\prime}\right)} \rho_{A}(b, z)\right|^{2}\right) \downarrow
\end{gathered}
$$

N=2 term: proton diffractive PDFs from QCD analysis of HERA data

$\mathrm{N} \geq 3$ terms: model-dependent
effective cross section
Nuclear density

Spread in $\sigma_{\text {soft }} \rightarrow$ uncertainty of LTA predictions

- Main feature: connects shadowing in eA with diffraction in ep.
- Can also be generalized to incoherent (quasi-elastic diffraction).

Leading twist approach to nuclear shadowing (2)

-HERA analysis: perturbative Pomeron is made mostly of gluons \rightarrow LTA model naturally predicts large gluon nuclear shadowing.

- Nucleus/proton ratio of diffractive PDFs is a weak function of β, x_{P} and Q^{2}.

$-\rightarrow$ we approximate it by a single constant
$R_{b}=0.15-0.30<\left(R_{g}\right)^{2}=(0.6-0.7)^{2}=0.4-0.5 \rightarrow$ (

$$
\begin{gathered}
Q^{2}=4 \mathrm{GeV}^{2} \\
Q^{2}=10 \mathrm{GeV}^{2} \\
Q^{2}=100 \mathrm{GeV}^{2}
\end{gathered}
$$ connection to strong shadowing in J / ψ case,

See talk E. Iancu

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC (2)

- NLO pQCD predictions as a function of momentum fractions $x \gamma$ and z_{P}, leading jet transverse momentum $\mathrm{E}_{\mathrm{T}} \mathrm{jet}$, and photon-nucleus energy W .

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC (3)

- Analyses of diffractive dijet photoproduction in ep scattering@HERA \rightarrow QCD factorization is broken, i.e., NLO calculations overestimate data by factor of ~ 2, Klasen, Kramer, EPJ C 38 (2004) 93; PRL 93 (2004) 232002; JPhys.G 31 (2005) 1391; MPLA 23 (2008) 1885; EPJ C 70 (2010) 91; PLB 508 (2001) 259; EPJ C 49 (2007) 957; PRD 80 (2009) 074006; Guzey, Klasen, EPJ C 76 (2016) 8, 467
- The pattern of unknown: either the global suppression factor $R($ glob. $)=0.5$ or the resolved-only suppression R (res.) $=0.34$, Kaidalov, Khoze, Martin, Ryskin, EPJ C 66 (2010) 373, or the flavor-dependent combination of the two, Guzey, Klasen, EPJ C 76 (2016) 8, 467
- One can differentiate between these scenarios by studying $x \gamma$ distribution in AA UPCs, Guzey, Klasen, JHEP 04 (2016) 158

How large is the diffractive contribution?

Diffractive contribution to inclusive dijet photoproduction in Pb-Pb UPCs in ATLAS kinematics does not exceed 5\% at small XA, Guzey, Klasen, PRD 104(2021) 11, 114013

- This is the effect of restricted kinematics, $\mathrm{p}_{\mathrm{T} 1}>20 \mathrm{GeV}, \mathrm{x}_{\mathrm{A}}>0.001$ and large shadowing suppression of nuclear diffractive PDFs.
- \rightarrow the diffractive contribution and related ambiguity with the determination of the photon-emitting nucleus (invariant energy W) can be safely neglected.
- It is not the case for pp UPCs, where the diffractive contribution can reach 20-25\% at $x_{p} \sim 10^{-4}$.

Summary and Outlook

- Photoproduction of jets is a standard tool of QCD. Its theory is wellestablished in NLO pQCD and compares very well to HERA data.
- Nuclear PDFs are poorly constrained by available fixed-target and pA LHC data and, hence, there is growing interest in obtaining new constraints on them using hard photon-nucleus scattering in heavy ion UPCs a the LHC.
- Inclusive dijet photoproduction in Pb-Pb UPCs@LHC probes nPDFs down to $x_{A} \sim 0.005$ and can reduce the current small- x_{A} uncertainties of the gluon distribution by factor of ~ 2.
- Diifractive dijet photoproduction in Pb-Pb UPCs@LHC accesses novel nuclear diffractive PDFs and may shed new light on mechanism of QCD factorization breaking in this process.
- Extraction of diffractive events is problematic due to ambiguity in photon source \rightarrow can be solved by requiring $\mathrm{Mx}_{\mathrm{x}} \gg \mathrm{M}_{\text {dijet }}$, Strikman, Vogt, White, PRL 96 (2006) 082001.
- Both processes can be viewed as precursors of analogous measurements at EIC, Guzey, Klasen, PRC 102 (2020) 6, 065201; JHEP 05 (2020) 074.

