Collision geometry in UPC dijet production

Petja Paakkinen
in collab. with K. J. Eskola, V. Guzey, I. Helenius \& H. Paukkunen
University of Jyväskylä
AoF CoE in Quark Matter
partner in ERC AdG YoctoLHC
UPC 2023
14 December 2023

UPCs as probes of nuclei

In ultra-peripheral heavy-ion collisions (UPCs), two nuclei pass each other at an impact parameter larger than the sum of their radii
\rightarrow hadronic interactions suppressed
Hard interactions of one nucleus with the e.m. field of the other can be described in equivalent photon approximation
\rightarrow access to photo-nuclear processes
A "new" way to probe nuclear contents!
Bertulani, Klein \& Nystrand, Ann. Rev. Nucl. Part. Sci. 55 (2005) 271
Baltz et al., Phys. Rept. 458 (2008) 1
Contreras \& Tapia Takaki, Int. J. Mod. Phys. A 30 (2015) 1542012
Klein \& Mäntysaari, Nature Rev. Phys. 1 (2019) 662

Inclusive dijets in UPCs

Guzey \& Klasen, PRC 99 (2019) 065202

Dijet photoproduction in UPCs has been promoted as a probe of nuclear PDFs

Strikman, Vogt \& White, PRL 96 (2006) 082001
ATLAS measurement now fully unfolded!
ATLAS-CONF-2022-021

Triple differential in

$$
\begin{aligned}
H_{\mathrm{T}}=\sum_{i \in \mathrm{jets}} p_{\mathrm{T}, i}, \quad z_{\gamma} & =\frac{M_{\mathrm{jets}}}{\sqrt{s_{\mathrm{NN}}}} e^{+y_{\mathrm{jets}}} \\
x_{A} & =\frac{M_{\mathrm{jets}}}{\sqrt{s_{\mathrm{NN}}}} e^{-y_{\mathrm{jets}}}
\end{aligned}
$$

Previous NLO predictions have been performed in a pointlike approximation
\rightarrow Can/should we do better?

Impact-parameter dependence of UPC dijet production

Let's assume an impact-parameter dependent factorization similar to
Baron \& Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

The inclusive UPC dijet cross section can be written as:

$$
\begin{array}{r}
\mathrm{d} \sigma^{A B \rightarrow A+\operatorname{dijet}+X}=\sum_{i, j, X^{\prime}} \int \mathrm{d}^{2} \mathbf{b} \Gamma_{A B}(\mathbf{b}) \int \mathrm{d}^{2} \mathbf{r} f_{\gamma / A}(y, \mathbf{r}) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
\otimes \int \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \operatorname{dijet}+X^{\prime}} \delta(\mathbf{r}-\mathbf{s}-\mathbf{b})
\end{array}
$$

Impact-parameter dependence of UPC dijet production

Let's assume an impact-parameter dependent factorization similar to
Baron \& Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$
\begin{aligned}
& \begin{array}{l}
\text { Survival factor: } \\
\text { Probability for having no hadronic interaction } \\
\text { at impact parameter b } \\
\mathrm{d} \sigma^{A B \rightarrow A+\mathrm{dijet}+X}=\sum_{i, j, X^{\prime}} \int \mathrm{d}^{2} \mathbf{b} \Gamma_{A B}^{\downarrow}(\mathbf{b}) \int \mathrm{d}^{2} \mathbf{r} f_{\gamma / A}(y, \mathbf{r}) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
\otimes \int \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \mathrm{dijet}+X^{\prime}} \delta(\mathbf{r}-\mathbf{s}-\mathbf{b})
\end{array}
\end{aligned}
$$

Impact-parameter dependence of UPC dijet production

Let's assume an impact-parameter dependent factorization similar to
Baron \& Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$
\begin{gathered}
\begin{array}{l}
\text { Photon flux: } \\
\text { The number of photons at radius } \mathbf{r} \\
\text { from the emitting nucleus }
\end{array} \\
\mathrm{d} \sigma^{A B \rightarrow A+\operatorname{dijet}+X}=\sum_{i, j, X^{\prime}} \int \mathrm{d}^{2} \mathbf{b} \Gamma_{A B}(\mathbf{b}) \int \mathrm{d}^{2} \mathbf{r} f_{\gamma / A}^{\downarrow}(y, \mathbf{r}) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
\otimes \int \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \operatorname{dijet}+X^{\prime}} \delta(\mathbf{r}-\mathbf{s}-\mathbf{b})
\end{gathered}
$$

Impact-parameter dependence of UPC dijet production

Let's assume an impact-parameter dependent factorization similar to
Baron \& Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$
\begin{aligned}
& \begin{array}{l}
\text { Photon PDF: } \\
\text { Density of partons type } i \text { within the photon }
\end{array} \\
& \mathrm{d} \sigma^{A B \rightarrow A+\operatorname{dijet}+X}=\sum_{i, j, X^{\prime}} \int \mathrm{d}^{2} \mathbf{b} \Gamma_{A B}(\mathbf{b}) \int \mathrm{d}^{2} \mathbf{r} f_{\gamma / A}(y, \mathbf{r}) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
& \otimes \int \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \mathrm{dijet}+X^{\prime}} \delta(\mathbf{r}-\mathbf{s}-\mathbf{b})
\end{aligned}
$$

Impact-parameter dependence of UPC dijet production

Let's assume an impact-parameter dependent factorization similar to
Baron \& Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$
\begin{aligned}
& \mathrm{d} \sigma^{A B \rightarrow A+\operatorname{dijet}+X}=\sum_{i, j, X^{\prime}} \int \mathrm{d}^{2} \mathbf{b} \Gamma_{A B}(\mathbf{b}) \int \mathrm{d}^{2} \mathbf{r} f_{\gamma / A}(y, \mathbf{r}) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
& \qquad \int \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \mathrm{dijet}+X^{\prime}} \delta(\mathbf{r}-\mathbf{s}-\mathbf{b}) \\
& \begin{array}{l}
\text { Nuclear PDF: } \\
\text { Density of partons type } j \text { within the nucleus } \\
\text { at distance } s \text { from the center }
\end{array}
\end{aligned}
$$

Impact-parameter dependence of UPC dijet production

Let's assume an impact-parameter dependent factorization similar to
Baron \& Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$
\begin{array}{r}
\mathrm{d} \sigma^{A B \rightarrow A+\operatorname{dijet}+X}=\sum_{i, j, X^{\prime}} \int \mathrm{d}^{2} \mathbf{b} \Gamma_{A B}(\mathbf{b}) \int \mathrm{d}^{2} \mathbf{r} f_{\gamma / A}(y, \mathbf{r}) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
\otimes \int \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \operatorname{dijet}+X^{\prime}} \delta(\mathbf{r}-\mathbf{s}-\mathbf{b})
\end{array}
$$

Impact-parameter dependence of UPC dijet production

Impact-parameter dependence of UPC dijet production

Impact-parameter dependence of UPC dijet production

Let's assume an impact-parameter dependent factorization similar to
Baron \& Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$
\begin{array}{r}
\mathrm{d} \sigma^{A B \rightarrow A+\mathrm{dijet}+X}=\sum_{i, j, X^{\prime}} \int \mathrm{d}^{2} \mathbf{b} \Gamma_{A B}(\mathbf{b}) \int \mathrm{d}^{2} \mathbf{r} f_{\gamma / A}(y, \mathbf{r}) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
\otimes \int \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \mathrm{dijet}+X^{\prime}} \delta(\mathbf{r}-\mathbf{s}-\mathbf{b})
\end{array}
$$

Now, if $f_{j / B}\left(x, Q^{2}, \mathbf{s}\right)=\frac{1}{B} T_{B}(\mathbf{s}) \cdot f_{j / B}\left(x, Q^{2}\right)$, we can write

$$
\mathrm{d} \sigma^{A B \rightarrow A+\operatorname{dijet}+X}=\sum_{i, j, X^{\prime}} f_{\gamma / A}^{\mathrm{eff}}(y) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \otimes f_{j / B}\left(x, Q^{2}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \mathrm{dijet}+X^{\prime}}
$$

where the effective photon flux reads
$f_{\gamma / A}^{\text {eff }}(y)=\frac{1}{B} \int \mathrm{~d}^{2} \mathbf{r} \int \mathrm{~d}^{2} \mathbf{s} f_{\gamma / A}(y, \mathbf{r}) T_{B}(\mathbf{s}) \Gamma_{A B}(\mathbf{r}-\mathbf{s}) \quad$ as in ATLAS-CONF-2022-021 (see Appendix A)

Effective photon flux in UPC PbPb (1: PL approx.)

Pointlike (PL) approximation: $\quad T_{B}(\mathbf{s})=B \delta(\mathbf{s}), \quad \Gamma_{A B}(\mathbf{b})=\theta\left(|\mathbf{b}|-b_{\min }\right), \quad b_{\min }=2 R_{\mathrm{PL}}=14.2 \mathrm{fm}$

$$
\Rightarrow f_{\gamma / A}^{\mathrm{eff}, \mathrm{PL}}(y)=\int \mathrm{d}^{2} \mathbf{r} \underbrace{}_{=\frac{Z^{2} \alpha_{\mathrm{e}, \mathrm{~m}}}{\pi^{2}} m_{p}^{2} y\left[K_{1}^{2}(\zeta)+\frac{1}{\gamma_{L}} K_{0}^{2}(\zeta)\right]_{\zeta=y m_{p}|\mathbf{r}|}^{f_{\gamma / A}^{\mathrm{PL}}(y, \mathbf{r})}} \theta\left(|\mathbf{r}|-b_{\min }\right)=\frac{2 Z^{2} \alpha_{e . \mathrm{m}}}{\pi y}\left[\zeta K_{0}(\zeta) K_{1}(\zeta)-\frac{\zeta^{2}}{2}\left[K_{1}^{2}(\zeta)-K_{0}^{2}(\zeta)\right]\right]_{\zeta=y m_{p} b_{\min }}
$$

\rightarrow Coincides with Guzey \& Klasen, PRC 99 (2019) 065202

Effective photon flux in UPC PbPb (2: ws with $T_{B}(\mathbf{s})=B \delta(\mathbf{s})$)

Woods-Saxon source on point-like target $\left(\mathrm{WS}_{\delta(\mathbf{s})}\right): \quad T_{B}(\mathbf{s})=B \delta(\mathbf{s}), \quad \Gamma_{A B}(\mathbf{b})=\exp \left[-\sigma_{\mathrm{NN}} T_{A B}^{\mathrm{WS}}(\mathbf{b})\right]$
$\Rightarrow f_{\gamma / A}^{\text {eff }, \mathrm{WS}_{\delta(\mathbf{s})}}(y)=\int \mathrm{d}^{2} \mathbf{r} \underbrace{f_{\gamma / A}^{\mathrm{WS}}(y, \mathbf{r})} \Gamma_{A B}(\mathbf{r})$

$$
=\frac{Z^{2} \alpha_{\varrho_{0}, \mathrm{~m}}}{\pi^{2}} \frac{1}{y}\left|\int_{0}^{\infty} \frac{\mathrm{d} k_{\perp} k_{\perp}^{2}}{k_{\perp}^{2}+\left(y m_{p}\right)^{2}} F^{\mathrm{WS}}\left(k_{\perp}^{2}+\left(y m_{p}\right)^{2}\right) J_{1}\left(|\mathbf{r}| k_{\perp}\right)\right|^{2}
$$

\rightarrow cf. Guzey \& Zhalov, JHEP 02 (2014) 046; Zha et al., PLB 781 (2018) 182; Eskola et al., PRC 106 (2022) 035202

Effective photon flux in UPC PbPb (3: Full wS profile)

Woods-Saxon nuclear profile (WS): $\quad T_{B}(\mathbf{s})=\int \mathrm{d} z \rho_{B}^{\mathrm{WS}}(z, \mathbf{s}), \quad \Gamma_{A B}(\mathbf{b})=\exp \left[-\sigma_{\mathrm{NN}} T_{A B}^{\mathrm{WS}}(\mathbf{b})\right]$
$\Rightarrow f_{\gamma / A}^{\mathrm{eff}, \mathrm{WS}}(y)=\int \mathrm{d}^{2} \mathbf{r} \underbrace{f_{\gamma / A}^{\mathrm{WS}}(y, \mathbf{r})} \Gamma_{A B}^{\mathrm{eff}}(\mathbf{r}), \quad$ where $\quad \Gamma_{A B}^{\mathrm{eff}}(\mathbf{r})=\frac{1}{B} \int \mathrm{~d}^{2} \mathbf{s} T_{B}(\mathbf{s}) \Gamma_{A B}(\mathbf{r}-\mathbf{s})$

$$
=\frac{Z^{2} \alpha_{\mathrm{e} . \mathrm{m}}}{\pi^{2}} \frac{1}{y}\left|\int_{0}^{\infty} \frac{\mathrm{d} k_{\perp} k_{\perp}^{2}}{k_{\perp}^{2}+\left(y m_{p}\right)^{2}} F^{\mathrm{WS}}\left(k_{\perp}^{2}+\left(y m_{p}\right)^{2}\right) J_{1}\left(|\mathbf{r}| k_{\perp}\right)\right|^{2}
$$

\rightarrow Accounting for the \mathbf{s} dependence important at small $|\mathbf{r}|$!

Effective photon flux in UPC PbPb

For the 'far-passing' events with $|\mathbf{r}|>3 R_{\text {PL }}$ the PL approximation works fine...

Effective photon flux in UPC PbPb

For the 'far-passing' events with $|\mathbf{r}|>3 R_{\text {PL }}$ the PL approximation works fine...
... but producing high- p_{T} jets requires sufficient energy from the photon which enhances sensitivity to the 'near-encounter' region

Effective photon flux and UPC dijet cross section

\rightarrow Most of the events with large z_{γ} (correspondingly small x_{A}) come from small $|\mathbf{r}|$!

Effective photon flux and UPC dijet cross section

\rightarrow Full WS cross section larger than $\mathrm{WS}_{\delta(\mathbf{s})}$ by a factor 2 in the largest z_{γ} bin

Effective photon flux and UPC dijet cross section

Note:

- All of this assumed that we can factorize $f_{j / B}\left(x, Q^{2}, \mathbf{s}\right)=\frac{1}{B} T_{B}(\mathbf{s}) \cdot f_{j / B}\left(x, Q^{2}\right)$, but this is a simplification - use impact-parameter dependent nPDFs (EPS09s, FGS10) instead.
- Here we have neglected the possibility of electromagnetic breakup through Coulomb excitations; Including it would modify the $\Gamma_{A B}(\mathbf{b})$ suppression factor.
\rightarrow ATLAS measurement in $0 n \mathrm{Xn}$ neutron class, must take this effect into account

Breakup-class modelling

Require 0 neutrons in one direction

Require $X>0$ neutrons in opposite direction

Poissonian probability for no electromagnetic breakup of nucleus A through Coulomb excitations:

$$
\begin{aligned}
& \Gamma_{A B}^{\mathrm{e} . \mathrm{m} .}(\mathbf{b})=\exp \left[-\left.\int_{E_{\text {min }}} \mathrm{d} k \frac{\mathrm{~d}^{3} N_{\gamma / B}}{\mathrm{~d} k \mathrm{~d}^{2} \mathbf{r}}\right|_{\mathbf{r}=\mathbf{b}} \sigma_{\gamma A \rightarrow A^{*}}(k)\right] \rightarrow \text { take from Starlight } \\
& \text { Baltz, Klein \& Nystrand, PRL } 89 \text { (2002) } 012301 \\
& \text { Klein et al., Comput. Phys. Commun. } 212 \text { (2017) } 258 \\
& \Gamma_{A B}^{\text {hadr.+e.m. }}(\mathbf{b})=\Gamma_{A B}^{\mathrm{e} . \mathrm{m} .}(\mathbf{b}) \Gamma_{A B}^{\text {hadr. }}(\mathbf{b}), \quad \Gamma_{A B, \text { eff. }}^{\text {hadr. }}(\mathbf{r})=\frac{1}{B} \int \mathrm{~d}^{2} \mathbf{s} T_{B}(\mathbf{s}) \Gamma_{A B}^{\text {hadr. }+\mathrm{e} . \mathrm{m} .}(\mathbf{r}-\mathbf{s})
\end{aligned}
$$

Breakup-class modelling

Poissonian probability for no electromagnetic breakup of nucleus A through Coulomb excitations:

$$
\begin{aligned}
\Gamma_{A B}^{\mathrm{e} . \mathrm{m} .}(\mathbf{b}) & =\exp \left[-\left.\int_{E_{\min }} \mathrm{d} k \frac{\mathrm{~d}^{3} N_{\gamma / B}}{\mathrm{~d} k \mathrm{~d}^{2} \mathbf{r}}\right|_{\mathbf{r}=\mathbf{b}} \sigma_{\gamma A \rightarrow A^{*}}(k)\right]
\end{aligned} \rightarrow \text { take from Starlight } \quad \begin{aligned}
& \text { Baltz, Klein \& Nystrand, PRL 89 (2002) } 012301 \\
& \text { Klein et al., Comput. Phys. Commun. 212 (2017) } 258
\end{aligned}
$$

Effective photon flux and UPC dijet cross section w/ breakup classes

\rightarrow Breakup-class modelling necessary for apples to apples comparison with data

Effective photon flux and UPC dijet cross section w/ breakup classes

\rightarrow Difference between PL and WS approximations survives after the e.m. breakup modelling

Impact-parameter dependence (revisit)
Note that it is possible to reorganise:

$$
\begin{aligned}
& \mathrm{d} \sigma^{A B \rightarrow A+\text { dijet }+X} \\
& =\sum_{i, j, X^{\prime}} \mathrm{d} \hat{\sigma}^{i j \rightarrow \text { dijet }+X^{\prime}} \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \\
& \quad \otimes \mathrm{d}^{2} \mathbf{s} f_{j / B}\left(x, Q^{2}, \mathbf{s}\right) \\
& \quad \otimes \underbrace{\int \mathrm{d}^{2} \mathbf{r} \int \mathrm{~d}^{2} \mathbf{b} f_{\gamma / A}(y, \mathbf{r}) \Gamma_{A B}(\mathbf{b}) \delta(\mathbf{r}-\mathbf{s}-\mathbf{b})}_{=: f_{\gamma / A}^{\text {eff }}(y, \mathbf{s})}
\end{aligned}
$$

where $f_{\gamma / A}^{\mathrm{eff}}(y, \mathbf{s})$ sets how the nuclear partons are sampled:

- If it is constant in s over support of $f_{j / B}\left(x, Q^{2}, \mathbf{s}\right)$, then one recovers ordinary non-spatial nPDFs.
- If not, then one needs to use spatially dependent nPDFs.

EPS09s spatially dependent nPDFs

For EPS09s (Helenius et al., JHEP 07 (2012) 073) we have:

$$
f_{j / B}\left(x, Q^{2}, \mathbf{s}\right)=\frac{1}{B} T_{B}(\mathbf{s}) \sum_{N \in B} r_{j}^{N / B}\left(x, Q^{2}, \mathbf{s}\right) f_{j / N}\left(x, Q^{2}\right)
$$

with the $r_{j}^{N / B}$ parametrized as

$$
r_{j}^{N / B}\left(x, Q^{2}, \mathbf{s}\right)=\sum_{m=0}^{4} c_{m}^{j / N}\left(x, Q^{2}\right)\left[T_{B}(\mathbf{s})\right]^{m}, \quad c_{0}^{j / N}\left(x, Q^{2}\right) \equiv 1
$$

The cross section then becomes
$\mathrm{d} \sigma^{A B \rightarrow A+\mathrm{dijet}+X}=\sum_{i, j, X^{\prime}} \sum_{m=0}^{4} f_{\gamma / A}^{\mathrm{eff}, m}(y) \otimes f_{i / \gamma}\left(x_{\gamma}, Q^{2}\right) \otimes \sum_{N \in B} c_{m}^{j / N}\left(x, Q^{2}\right) f_{j / N}\left(x, Q^{2}\right) \otimes \mathrm{d} \hat{\sigma}^{i j \rightarrow \mathrm{dijet}+X^{\prime}}$
where

$$
f_{\gamma / A}^{\mathrm{eff}, m}(y)=\frac{1}{B} \int \mathrm{~d}^{2} \mathbf{r} \int \mathrm{~d}^{2} \mathbf{s} f_{\gamma / A}(y, \mathbf{r})\left[T_{B}(\mathbf{s})\right]^{m+1} \Gamma_{A B}^{\text {hadr..e.m. }}(\mathbf{r}-\mathbf{s})
$$

UPC dijet cross section w/ spatial dependence

\rightarrow Spatial vs. non-spatial nPDFs only a small correction

UPC dijet cross section w/ spatial dependence

\rightarrow Spatial vs. non-spatial nPDFs only a small correction

UPC dijet cross section w/ spatial dependence

\rightarrow Spatial vs. non-spatial nPDFs only a small correction

UPC dijet cross section w/ spatial dependence

\rightarrow Spatial vs. non-spatial nPDFs only a small correction

UPC dijet cross section w/ spatial dependence

\rightarrow Spatial vs. non-spatial nPDFs only a small correction

UPC dijet cross section w/ spatial dependence

\rightarrow Spatial vs. non-spatial nPDFs only a small correction

Summary

- In principle, inclusive dijet photoproduction off nuclei is a good probe for nuclear PDFs
- However, in UPCs impact-parameter space is restricted due to requirement of no nuclear overlap
- Due to requiring the production of high $-p_{\mathrm{T}}$ jets, significant part of the cross section comes from events where the nuclei pass each other at small impact parameters
\rightarrow Sensitivity to the nuclear transverse profile
\rightarrow Significant effect in the largest measured z_{γ} bins
- We also studied impact of e.m. breakup modelling which is needed for direct comparison with data
- While energetic photons probe more on the edge of the target nucleus, we found that applying impact-parameter dependent nPDFs has only a small effect on the cross section

Thank you!

Dijet photoproduction at EIC

The experimental condition for photoproduction at EIC is much simpler - depends only on electron scattering angle!

$$
\begin{aligned}
f_{\gamma / e}(y)=\frac{\alpha_{\mathrm{e} . \mathrm{m} .}}{2 \pi}\left[\frac{1+(1-y)^{2}}{y}\right. & \log \frac{Q_{\max }^{2}(1-y)}{m_{e}^{2} y^{2}} \\
& \left.+2 m_{e}^{2} y\left(\frac{1}{Q_{\max }^{2}}-\frac{1-y}{m_{e}^{2} y^{2}}\right)\right]
\end{aligned}
$$

where $Q_{\text {max }}^{2}$ is the maximal photon virtuality
Probe nPDFs down to $x \sim 10^{-2}$
Klasen \& Kovarik, PRD 97 (2018) 114013 Guzey \& Klasen, PRC 102 (2020) 065201

Guzey \& Klasen, PRC 102 (2020) 065201

