







# Inclusive UPC di-jets at small-x: CGC, TMDs and Sudakov factor

#### **Cyrille Marquet**

Centre de Physique Théorique Ecole Polytechnique & CNRS

#### Introduction

#### **Collinear factorization**



Large logarithms  $\ln(Q^2/\Lambda_{\rm QCD}^2)$  resummed using DGLAP



Additional Sudakov logarithms  $\ln(Q^2/\mathbf{k}_{\perp}^2)$  resummed using CSS

Collins, Soper, Sterman ('85-'89); Ji, Ma, Yuan (2005); Collins (2011); Echevarria, Idilbi, Scimemi (2012)

4



Additional logarithms  $\ln(s/Q^2) \sim \ln(1/x)$  resummed using BFKL

Catani, Ciafaloni, Hautmann ('90-'94)

5

# Inclusive UPC di-jets at small x





(\*) the photon may also be virtual, but a large  $Q^2$  value is not needed

The hard scale is:  $|p_{1t}|, |p_{2t}| \sim \mathbf{P} \gg Q_s$ 

The semi-hard scale is:

$$|k_t|^2 = |p_{1t} + p_{2t}|^2 = |p_{1t}|^2 + |p_{2t}|^2 + 2|p_{1t}||p_{2t}|\cos\Delta\phi$$

 $\rightarrow$  the small-x gluon's transverse momentum (di-jet imbalance)

# The "TMD" regime: factorization for nearly back-to-back jets

# The back-to-back regime at LO

$$|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$$

 a factorization can be established in the small x limit, for nearly back-to-back di-jets
 Dominguez, CM, Xiao and Yuan (2011)

 $d\sigma \propto H^{ij}(\mathbf{P}) \Big[ \frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \Big( \frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \Big) \mathcal{H}(x, k_t) \Big]$ hard factors

8

# The back-to-back regime at LO

$$|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$$

 a factorization can be established in the small x limit, for nearly back-to-back di-jets
 Dominguez, CM, Xiao and Yuan (2011)

 $d\sigma \propto H^{ij}(\mathbf{P}) \Big[ \frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \Big( \frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \Big) \mathcal{H}(x, k_t) \Big]$ 

hard factors

the gluon TMDs have the following operator definition:

$$2\int \frac{d\xi^{+}d^{2}\boldsymbol{\xi}_{t}}{(2\pi)^{3}p_{A}^{-}} e^{ixp_{A}^{-}\xi^{+}-ik_{t}\cdot\boldsymbol{\xi}_{t}} \left\langle A|\operatorname{Tr}\left[F^{i-}\left(\xi^{+},\boldsymbol{\xi}_{t}\right)F^{j-}\left(0\right)\right]|A\rangle$$
$$=\frac{\delta_{ij}}{2}\mathcal{F}(x,k_{t})+\left(\frac{k_{i}k_{j}}{k_{t}^{2}}-\frac{\delta_{ij}}{2}\right)\mathcal{H}(x,k_{t})$$

unpolarized gluon TMD

linearly-polarized gluon TMD <sup>9</sup>

#### Some remarks

 gauge links are missing in the previous definition, their structure for this process implies that the gluon TMDs are of the Weizsäcker Williams type, which at small-x gives

$$\mathcal{F}_{WW}(x,k_t) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} \ e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[ (\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x$$

similarly for  $H_{WW}$  with projection onto the other 2d Lorentz structure

#### Some remarks

 gauge links are missing in the previous definition, their structure for this process implies that the gluon TMDs are of the Weizsäcker Williams type, which at small-x gives

$$\mathcal{F}_{WW}(x,k_t) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} \, e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[ (\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x$$

similarly for  $H_{WW}$  with projection onto the other 2d Lorentz structure

• factorization may be rewritten

$$d\sigma \propto H^{ns}(\mathbf{P}, k_t, Q^2) \mathcal{F}(x, k_t) + H^h(\mathbf{P}, k_t, Q^2) \Big( \mathcal{H}(x, k_t) - \mathcal{F}(x, k_t) \Big)$$

= 0 in BFKL regime

projection onto "non-sense" polarization  $H^{ns} = H^{ij}k^ik^j/k_t^2$ 

projection onto linear polarization  $H^{h} = H^{ij}(k^{i}k^{j}/k_{t}^{2} - \delta^{ij}/2)$ 

at LO, non-zero  $H^h$  requires non-zero Q<sup>2</sup> or quark masses 11

# Matching to BFKL/high-energy factorization

# TMD regime vs BFKL regime

• TMD factorization requires  $k_t$  to be small:  $|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$ 

this is very different from the BFKL regime which requires k<sub>t</sub> to be large:  $|p_{1t}|, |p_{2t}|, |k_t| \gg Q_s$ 

• nevertheless, TMD factorization can be matched to BFKL:

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)

$$d\sigma \propto H^{ij}(\mathbf{P}, k_t) \left[ \frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \left( \frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \right) \mathcal{H}(x, k_t) \right]$$

# TMD regime vs BFKL regime

• TMD factorization requires  $k_t$  to be small:  $|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$ 

this is very different from the BFKL regime which require k<sub>t</sub> to be large:  $|p_{1t}|, |p_{2t}|, |k_t| \gg Q_s$ 

nevertheless, TMD factorization can be matched to BFKL:

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)

$$d\sigma \propto H^{ij}(\mathbf{P}, k_t) \Big[ \frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \Big( \frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \Big) \mathcal{H}(x, k_t) \Big]$$

hard factors now kt dependent

$$H^{ij}(\mathbf{P}, k_t) = H^{ij}(\mathbf{P}, k_t = 0) + \sum_n c_n (k_t/\mathbf{P})^n$$

• this is known as ITMD (improved TMD), and valid for  $|p_{1t}|, |p_{2t}| \gg Qs$ 

# **ITMD** factorization

ITMD factorization emerges from CGC calculations in the  $\mathbf{P} \gg Q_s$  limit



# **ITMD** factorization

ITMD factorization emerges from CGC calculations in the  $\mathbf{P} \gg Q_s$  limit



# Genuine higher-twist corrections

ITMD factorization emerges from CGC calculations in the  $\mathbf{P} \gg Q_s$  limit



CGC and ITMD can be compared numerically
 Fujii, CM, Watanabe (2020) Boussarie, Mäntysaari, Salazar, Schenke (2021) 17

# NLO corrections and QCD evolution

# Resumming large logarithms

Simultaneous resummation of high-energy  $\ln(1/x)$  and Sudakov  $\ln(Q^2/\mathbf{k}_{\perp}^2)$  logarithms?

Longstanding problem, studied using many different approaches, including recently:

**SW**: Balitsky, Tarasov (2015) **RO**: Balitsky (2021-2023)

**HEF**: Deak, Hautmann, Jung, Kutak, van Hameren, Sapeta, Hentschinski (2016-2021) **BFKL**: Nefedov (2021)

**PB**: Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek (2022)

**CGC**: Mueller, Xiao, Yuan (2011); Hatta, Xiao, Yuan, Zhou (2017-2021); Stasto, Wei, Xiao, Yuan (2018); PT, Altinoluk, Beuf, Marquet (2022); Caucal, Salazar, Schenke, Venugopalan (2022-2023)

#### **Real emission diagrams**

Altinoluk, Boussarie, CM and Taels (2020)



linearly-polarized gluon TMD involved at NLO, even for photo-production

#### see also

Caucal, Salazar and Venugopalan (2021) Bergabo and Jalilian-Marian (2022) Iancu and Mulian (2023)

#### Virtual diagrams

Caucal, Salazar and Venugopalan (2021)



#### full NLO CGC is UV, soft, collinear finite, rapidity divergences give small-x evolution

see also Taels, Altinoluk, Beuf and CM (2022) Bergabo and Jalilian-Marian (2022)

# The back-to-back regime at NLO

full NLO + TMD limit

Taels, Altinoluk, Beuf and CM (2022)



Remnants of soft-collinear generate Sudakov double log with wrong sign!  $d\sigma_{\rm NLO}^{\rm TMD} = d\sigma_{\rm LO}^{\rm TMD} \times \frac{\alpha_s N_c}{4\pi} \ln \left( \frac{\mathbf{P}_{\perp}^2 (\mathbf{b} - \mathbf{b}')^2}{c_0^2} \right)^2 \qquad \frac{\mathbf{P}_{\perp}^2 \sim \mu^2}{(\mathbf{b} - \mathbf{b}')^2 \sim 1/\mathbf{k}_{\perp}^2}$ 

this is due to an over-subtraction of the small-x rapidity logarithms

Sudakov and small-x logs aren't completely separated in phase space!

#### Kinematically-constrained evolution

Taels, Altinoluk, Beuf and CM (2022)

To obtain 
$$d\sigma_{\text{TMD}}^{\text{NLO}}$$
 "="  $d\sigma_{\text{TMD}}^{\text{LO}} \times \left(-\frac{\alpha_s N_c}{4\pi}\right) \ln^2(\mathbf{P}^2 |\mathbf{x} - \mathbf{y}|^2)$ 

and then write

$$\mathcal{F}_{WW}(x,k_t;P) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} e^{-S_{sud}(\mathbf{P},\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[ (\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x$$

, re-summing the small-x logs and Sudakov logs separately, the rapidity subtraction must be altered

This leads to a kinematically-constrained small-x evolution

#### Kinematically-constrained evolution

Taels, Altinoluk, Beuf and CM (2022)

To obtain 
$$d\sigma_{\text{TMD}}^{\text{NLO}}$$
 "="  $d\sigma_{\text{TMD}}^{\text{LO}} \times \left(-\frac{\alpha_s N_c}{4\pi}\right) \ln^2(\mathbf{P}^2 |\mathbf{x} - \mathbf{y}|^2)$ 

and then write

 $\mathcal{F}_{WW}(x,k_t;P) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} \ e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} e^{-S_{sud}(\mathbf{P},\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[ (\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x$ 

, re-summing the small-x logs and Sudakov logs separately, the rapidity subtraction must be altered

This leads to a kinematically-constrained small-x evolution

→ in the small-x evolved LO contribution, the kernel of the JIMWLK equation now contains an extra theta term  $\theta \left[ (k_g^+/k_f^+) \mathbf{P}^2 - \mathbf{k}_g^2 \right]$ 

confirmed beyond large Nc and double logs in

Caucal, Salazar, Schenke, Venugopalan (2022)

#### Conclusions

 to match collinear physics and small-x physics in the linear BFKL regime, the necessity of a kinematical constraint in the small-x evolution was recognized a long time ago (led to CCFM equation)

Ciafaloni ('88); Andersson, Gustafson, Samuelsson ('96); Kwiecinski, Martin, Sutton ('96); Salam ('98)

• more recently, that necessity also emerged in CGC calculations, often in connection with the issue of negative NLO cross sections

Beuf (2014); Hatta, Iancu (2016); Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2019)

- now it also appears in the context of two-scale processes and TMD physics
- inclusive UPC di-jets provide a good testing ground for these theoretical developments, measurements in the TMD regime would be very welcome

#### Extra

# Small-x improved TMD factorization

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)

$$d\sigma \propto f(x_1) \sum H_{(c)}(\mathbf{P}, k_t) \times \text{TMD}_{(c)}(x_2, k_t)$$

standard collinear pdf for the large-x projectile off-shell hard factors

c

several gluon TMDs for the small-x target

# ITMD factorization (schematically)

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)

$$d\sigma \propto f(x_1) \sum_{c} H_{(c)}(\mathbf{P}, k_t) \times \text{TMD}_{(c)}(x_2, k_t)$$
standard collinear pdf  
for the large-x projectile
$$\mathsf{ITMD} \sim f(x_1) \sum_{c} \left[ H_{(c)}(\mathbf{P}, 0) + \mathcal{O}\left(\frac{k_t^2}{\mathbf{P}^2}\right)_{(c)} \right] \times \left[ \text{UGD}(x_2, k_t) + \mathcal{O}\left(\frac{Q_s^2(x_2)}{k_t^2}\right)_{(c)} \right]$$

$$\mathsf{IEading-twist}_{hard factors}$$

$$\mathsf{kimenatic}_{higher twists}$$

$$\mathsf{universal}_{perturbative}_{tail}$$

$$\mathsf{leading-twist}_{saturation corrections}$$

# ITMD factorization (schematically)

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)



improvement wrt TMD factorization is all-order resummation of kinematic twists, which allows proper matching to BFKL physics at large kt 29

# ITMD factorization (schematically)

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)

$$d\sigma \propto f(x_1) \sum_{c} H_{(c)}(\mathbf{P}, k_t) \times \text{TMD}_{(c)}(x_2, k_t)$$
standard collinear pdf  
for the large-x projectile
$$\mathsf{HEF} \sim f(x_1) \sum_{c} \left[ H_{(c)}(\mathbf{P}, 0) + \mathcal{O}\left(\frac{k_t^2}{\mathbf{P}^2}\right)_{(c)} \right] \times \left[ \text{UGD}(x_2, k_t) + \mathcal{O}\left(\frac{\mathcal{Q}_s^2(x_2)}{k_t^2}\right)_{(c)} \right]$$

$$\mathsf{HEF} \sim f(x_1) \sum_{c} \left[ H_{(c)}(\mathbf{P}, 0) + \mathcal{O}\left(\frac{k_t^2}{\mathbf{P}^2}\right)_{(c)} \right] \times \left[ \text{UGD}(x_2, k_t) + \mathcal{O}\left(\frac{\mathcal{Q}_s^2(x_2)}{k_t^2}\right)_{(c)} \right]$$

$$\mathsf{leading-twist}$$

$$\mathsf{kimenatic}$$

$$\mathsf{higher twists}$$

$$\mathsf{tail}$$

$$\mathsf{leading-twist}$$

$$\mathsf{saturation corrections}$$

improvement wrt HEF factorization is all-order resummation of leading twist saturation corrections, which unveils the process-depenpent TMDs and allows matching to TMD physics at low  $k_t$  <sup>30</sup>