Photon-photon collisions with gamma-UPC

UPC(2023) Intl Workshop Yucatan, 15th Dec. 2023

David d'Enterria (CERN)

Work with **Hua-Sheng Shao**: https://arxiv.org/abs/2207.03012 [JHEP 09 (2022) 248] Plus parametric uncertainties (with **N. Crepet**) & NLO-QED, to be submitted

Photon-photon collisions with hadron beams

- Electromagnetic ultra-peripheral colls. (UPC): b_{min} > R_A+R_B, hadrons survive
- **EM field** = Weizsäcker-Williams (Equivalent Photon Approx.) photon flux:

■ Quasi-real γ (coherent emission): Q ~ 1/R ~ 0.03 GeV (Pb), 0.28 GeV (p) ■ Maximum γ longitud. energies: $\omega < \omega_{max} \approx \frac{\gamma}{R} \sim 80$ GeV (Pb), ~ 2.5 TeV (p)

Photon-photon collisions at the LHC

Electromagnetic ultra-peripheral colls. (UPC): b_{min} > R_A+R_B, hadrons survive
 EM field = Weizsäcker-Williams (Equivalent Photon Approx.) photon flux:

 Huge photon fluxes: σ(γγ) ~ Z⁴ (~5·10⁷ for PbPb) times larger than p,e[±]

 Beam-energy dependence: Photon luminosities increase as ∞log³(√s)

Quasi-real γ (coherent emission): Q ~ 1/R ~ 0.03 GeV (Pb), 0.28 GeV (p)

Maximum γ longitud. energies: $\omega < \omega_{max} \approx \frac{\gamma}{R} \sim 80$ GeV (Pb), ~ 2.5 TeV (p)

System	$\sqrt{s_{_{ m NN}}}$	\mathcal{L}_{int}	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	$R_{ m A}$	E_{γ}^{\max}	$\sqrt{s_{\gamma\gamma}^{\max}}$
Pb-Pb	5.52 TeV	5 nb^{-1}	$2.76+2.76\mathrm{TeV}$	2960	7.1 fm	80 GeV	160 GeV
p-Pb	8.8 TeV	1 pb^{-1}	7.0 + 2.76 TeV	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV
р-р	14 TeV	$150\mathrm{fb}^{-1}$	$7.0 + 7.0 \mathrm{TeV}$	7450	0.7 fm	2.45 TeV	4.5 TeV

Single X = C-even (spin 0,2) resonances only (Landau-Yang + C symmetry)

Rich & unique (B)SM yy physics with UPCs at LHC

p, A	S ² rch	p, A $\downarrow^{5} \gamma$ ℓ^{+}, W^{+}, t ℓ^{-}, W^{-}, \bar{t} p, A	p, A FI	p, A	p, A — W ⁺ , Z W ⁻ , Z p, A —	S^2 FF $p, A\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	\overline{c}) _{0,2} , $(b\overline{b})_{0,2}$, \mathcal{T}_0 \overline{c} , a, ϕ, \mathcal{MM}, G			
System	$\sqrt{s_{_{ m NN}}}$	$\mathcal{L}_{\mathrm{int}}$	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	$R_{\rm A}$	E_{γ}^{\max}	$\sqrt{s_{\gamma\gamma}^{\max}}$			
Pb-Pb	5.52 TeV	5 nb^{-1}	2.76 + 2.76 TeV	2960	7.1 fm	80 GeV	160 GeV			
p-Pb	8.8 TeV	1 pb ⁻¹	7.0 + 2.76 TeV	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV			
p-p	14 TeV	$150\mathrm{fb}^{-1}$	7.0 + 7.0 TeV	7450	0.7 fm	2.45 TeV	4.5 TeV			
	Process			Physics	motivation					
	$\gamma\gamma \rightarrow e^+e^-, \mu^+\mu^-$	- "Sta	andard candles" for proto	$n/nucleus \gamma$ fluxes,]	EPA calculations,	and higher-order QED corr	ections			
	$\gamma\gamma \to \tau^+\tau^-$			Anomalous $ au$ lepton	e.m. moments [29	9–32]				
	$\gamma\gamma \to \gamma\gamma$		aQGC [25], ALPs [27]	, BI QED [28], non	commut. interactio	ons [36], extra dims. [37],				
	$\gamma\gamma ightarrow {\cal T}_0$		Ditauon	ium properties (hea	viest QED bound s	state) [38, 39]				
	$\gamma\gamma \to (c\overline{c})_{0,2}, (b\overline{b}$	$(\bar{p})_{0,2}$	Properties of	of scalar and tensor	charmonia and bot	tomonia [40, 41]				
	$\gamma\gamma \to XYZ$		Properties of spin-even XYZ heavy-quark exotic states [42]							
	$\gamma\gamma \rightarrow \rm VM\rm VM$		(with VM	$= \rho, \omega, \phi, J/\psi, \Upsilon$): H	3FKL-Pomeron dy	mamics [43–46]				
	$\gamma\gamma \rightarrow W^+W^-, Z$	Z, Z γ , · · ·	ano	malous quartic gaug	e couplings [11, 2	6, 47, 48]				
	$\gamma \gamma \rightarrow H$ Higgs- γ coupling, total H width [49, 50]									
	$\gamma \gamma \rightarrow HH$ Higgs potential [51], quartic $\gamma \gamma HH$ coupling									
	$\gamma\gamma \to t\bar{t}$		a	nomalous top-quark	c e.m. couplings [1	1, 49]				
	$\gamma\gamma \rightarrow \tilde{\ell}\tilde{\ell}, \tilde{\chi}^+\tilde{\chi}^-,$	$H^{++}H^{}$	SUSY pairs: slepton [1]	, 52, 53], chargino	[11, 54], doubly-cl	narged Higgs bosons [11, 5	5].			
	$\gamma\gamma \to a, \phi, \mathcal{MM}$	M, G ALPs [27, 56], radions [57], monopoles [58–61], gravitons [62–64],								

UPC(2023), Yucatan, Dec'23

Existing dedicated $\gamma\gamma$ MC event generators

So far dedicated MC event generators include only hard-coded γγ processes, LO QED/QCD only, no extra γ/gluon FSR, no generation of ("uninteresting") background processes,...

STARlight

S	u	p	e	rC	h	ic	

Two-Photon Channels	
Particle	Jetset ID
e ⁺ e ⁻ pair	11
$\mu^+\mu^-$ pair	13
τ ⁺ τ ⁻ pair	15
$\tau^+\tau^-$ pair, polarized decay	10015*
ρ ⁰ pair	33
a ₂ (1320) decayed by PYTHIA	115
η decayed by PYTHIA	221
f ₂ (1270) decayed by PYTHIA	225
η' decayed by PYTHIA	331
$f_2(1525) \rightarrow K^+K^-(50\%), K^0\bar{K}^0(50\%)$	335
η_c decayed by PYTHIA	441
f ₀ (980) decayed by PYTHIA	9010221

	Two-photon collisions
55	$W^+(\to \nu_l(8) + l^+(9)) + W^-(\to \overline{\nu}_l(10) + l^-(11))$
56	$e^+(6) + e^-(7)$
57	$\mu^+(6) + \mu^-(7)$
58	$\tau^+(6) + \tau^-(7)$
59	$\gamma(6) + \gamma(7)$
60	$H(5) \rightarrow b(6) + \overline{b}(6)$
68	$a(5) \rightarrow \gamma(6) + \gamma(7)$
69	$M(5) \rightarrow \gamma(6) + \gamma(7)$ (Dirac Coupling)
70	$M(5) \rightarrow \gamma(6) + \gamma(7) \ (\beta g \text{ Coupling})$
71	$m(6) + \overline{m}(7)$ (Dirac Coupling)
72	$m(6) + \overline{m}(7) \ (\beta g \text{ Coupling})$
73	$ \tilde{\chi}^{-}(6)(\to \tilde{\chi}_0^1(8) + \mu^{-}(9) + \overline{\nu}_{\mu}(10)) + \tilde{\chi}^{+}(7)(\to \tilde{\chi}_0^1(11) + \mu^{+}(12) + \nu_{\mu}(13)) $
74	$\tilde{\chi}^{-}(6)(\rightarrow \tilde{\chi}_{0}^{1}(8) + \overline{u}(9) + d(10)) + \tilde{\chi}^{+}(7)(\rightarrow \tilde{\chi}_{0}^{1}(11) + u(12) + \overline{d}(13))$
75	$\tilde{\chi}^{-}(6)(\rightarrow \tilde{\chi}_{0}^{1}(8) + \mu^{-}(9) + \overline{\nu}_{\mu}(10)) + \tilde{\chi}^{+}(7)(\rightarrow \tilde{\chi}_{0}^{1}(11) + u(12) + \overline{d}(13))$
76	$\tilde{l}^{-}(5))(\rightarrow \tilde{\chi}_{0}^{1}(8) + \mu^{-}(9)) + \tilde{l}^{+}(6)(\rightarrow \tilde{\chi}_{0}^{1}(10) + \mu^{+}(11))$
77	$\phi(5) \to \mu^+(6)\mu^-(7)$
78	$J/\psi(5) \to e^+(6)e^-(7)$
79	$\psi_{2S}(5) \to e^+(6)e^-(7)$

FPMC

IPROC	Description	
16006	$\gamma\gamma \rightarrow ll$	only pp OPC
16010	$\gamma\gamma \rightarrow W^+W^-$	
16010	$\gamma \gamma \rightarrow W^+W^-$ b	eyond SM
16015	$\gamma\gamma \to ZZ$ beyon	nd SM

UPCgen, LPAIR/CepGen

$$\gamma\gamma \to \ell^+\ell^-$$

gamma-UPC yy MC event generator

- gamma-UPC features:
- Any arbitrary (B)SM & QQbar matrix elements w/ MG5@NLO & HelacOnia
- N γ /gluon FSR out-of-the-box. Extendable to NLO QCD/EW
- LHE output: Shower+hadronization via PS (PY8, HERWIG,...)
- 2 different form factors (γ fluxes) coded. Glauber MC for the non-overlap
- Any colliding combination: p-p,p-A,A-A (for any A)

- gamma-UPC key properties:
 - 1) Matrix elements: MG5@NLO & HelacOnia (N γ/g FSR's, NLO QCD/EW)
 - 2) p,A form factors: Charge (ChFF) (and Electric Dipole, EDFF) γ fluxes
- 3) p,A survival probability: Glauber-MC (and optical) based eikonal

Heavy-ion form factors & γ fluxes: ChFF, EDFF

Electric dipole form factor (EDFF)

Same as STARlight

$$N_{\gamma/Z}^{\text{EDFF}}(E_{\gamma}, b) = \frac{Z^2 \alpha}{\pi^2} \frac{\xi^2}{b^2} \left[K_1^2(\xi) + \frac{1}{\gamma_{\text{L}}^2} K_0^2(\xi) \right] \qquad \xi = \frac{E_{\gamma} b}{\gamma_{\text{L}}}$$

Charge form factor (ChFF)

$$N_{\gamma/Z}^{\rm ChFF}(E_{\gamma},b) = \frac{Z^2 \alpha}{\pi^2} \left| \int_0^{+\infty} \frac{dk_{\perp} k_{\perp}^2}{k_{\perp}^2 + E_{\gamma}^2/\gamma_{\rm L}^2} F_{\rm ch,A} \left(\sqrt{k_{\perp}^2 + E_{\gamma}^2/\gamma_{\rm L}^2} \right) J_1(bk_{\perp}) \right|^2$$

- Main difference comes from the $b < R_A$ regime
- + EDFF photon number density is divergent at b=0
 - Need a (arbitrary) cutoff when convoluting with ME

UPC(2023), Yucatan, Dec'23

ChFF, much more realistic, preferred.

David d'Enterria (CERN)

Proton form factors & γ fluxes: ChFF, EDFF

Electric dipole form factor (EDFF)

Same as STARlight

$$N_{\gamma/Z}^{\rm EDFF}(E_{\gamma}, b) = \frac{Z^2 \alpha}{\pi^2} \frac{\xi^2}{b^2} \left[K_1^2(\xi) + \frac{1}{\gamma_{\rm L}^2} K_0^2(\xi) \right] \qquad \xi = \frac{E_{\gamma} b}{\gamma_{\rm L}}$$

Charge form factor (ChFF)

$$N_{\gamma/\mathbf{Z}}^{\mathrm{ChFF}}(E_{\gamma},b) = \frac{Z^{2}\alpha}{\pi^{2}} \left| \int_{0}^{+\infty} \frac{dk_{\perp}k_{\perp}^{2}}{k_{\perp}^{2} + E_{\gamma}^{2}/\gamma_{\mathrm{L}}^{2}} F_{\mathrm{ch},\mathrm{A}} \left(\sqrt{k_{\perp}^{2} + E_{\gamma}^{2}/\gamma_{\mathrm{L}}^{2}} \right) J_{1}\left(bk_{\perp}\right) \right|^{2}$$
$$F_{\mathrm{ch},\mathrm{A}}(q) = \int \mathrm{d}^{3}\boldsymbol{r} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \rho_{\mathrm{A}}(\boldsymbol{r}) = \frac{4\pi}{q} \int_{0}^{+\infty} \mathrm{d}r \rho_{\mathrm{A}}(r) r\sin\left(qr\right)$$

Proton dipole form-factor:

$$F_{\rm ch,p}(q) = \frac{1}{\left(1 + q^2 a_{\rm p}^2\right)^2} \quad \text{with } a_{\rm p}^{-2} = Q_0^2 = 0.71 \text{ GeV}^2$$
$$N_{\gamma/p}^{\rm ChFF}(E_{\gamma}, b) = \frac{\alpha}{\pi^2} \frac{\xi^2}{b^2} \left\{ \left[K_1(\xi) - \sqrt{1 + \tilde{a}_{\rm p}^{-2}} K_1\left(\xi \sqrt{1 + \tilde{a}_{\rm p}^{-2}}\right) \right] - \frac{\xi}{2\tilde{a}_{\rm p}^2} K_0\left(\xi \sqrt{1 + \tilde{a}_{\rm p}^{-2}}\right) \right\}$$

Updated proton elastic ChFF, from fit to latest A1+PRad data:

γγ **EPA cross sections & survival probability**

Cross section:

$$\sigma(A B \xrightarrow{\gamma\gamma} A X B) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{d^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(AB)}}{dE_{\gamma_1} dE_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Effective two-photon luminosity:

$$\frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathrm{AB})}}{\mathrm{d}E_{\gamma_1} \mathrm{d}E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no}\,\mathrm{inel}}\left(|\boldsymbol{b}_1 - \boldsymbol{b}_2|\right) N_{\gamma_1/Z_1}(E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/Z_2}(E_{\gamma_2}, \boldsymbol{b}_2)$$

$$\times \theta(b_1 - \epsilon R_{\rm A})\theta(b_2 - \epsilon R_{\rm B})$$

No hadronic/inelastic interaction probability density:

γγ **EPA cross sections & survival probability**

Cross section:

$$\sigma(A B \xrightarrow{\gamma\gamma} A X B) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{d^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(AB)}}{dE_{\gamma_1} dE_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Effective two-photon luminosity:

$$\frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no}\,\mathrm{inel}}\left(|\boldsymbol{b}_1 - \boldsymbol{b}_2|\right) N_{\gamma_1/Z_1}(E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/Z_2}(E_{\gamma_2}, \boldsymbol{b}_2)$$

$$\times \theta(b_1 - \epsilon R_{\rm A})\theta(b_2 - \epsilon R_{\rm B})$$

No hadronic/inelastic interaction probability density:

How peripheral are Pb-Pb UPCs at the LHC?

How peripheral are p-p UPCs at the LHC?

• Average $|\vec{b}_1 - \vec{b}_2|$ vs. m_{$\gamma\gamma$}: $m_{\gamma\gamma} < 10 \text{ GeV}: \langle \Delta b \rangle > 50 \text{ fm}$ $m_{\gamma\gamma} > 1 \text{ TeV}: \langle \Delta b \rangle < 3 \text{ fm}$ ■ p-p survival probab. vs. $m_{\gamma\gamma}$: $m_{\gamma\gamma} < 10 \text{ GeV}: \langle P_{\text{non-overlap}} \rangle > 95\%$ $m_{\gamma\gamma} > 1 \text{ TeV}: \langle P_{\text{non-overlap}} \rangle < 80\%$

Effective γγ luminosities (LHC/FCC)

Effective γγ luminosities (LHC)

Thanks to Z^4 boost, A-A $\gamma\gamma$ lumis (per collision) well above p-p ones:

ChFF γγ luminosity uncertainties (PbPb): Low-mass: few %. High mass: <7%

Effective $\gamma\gamma$ luminosities (LHC): pp vs. PbPb

- **Thanks to Z⁴ boost**, Pb-Pb $\gamma\gamma$ lumis (per collision) well above the p-p ones.
- Up to $W_{yy} \approx 30$ GeV, accounting for much larger p beam luminosity
- Up to $W_{\gamma\gamma} \approx 300 \text{ GeV}$ requiring double-arm p tagging at PPS (~220 m) (kinematic matching required to remove huge pp pileup):

Effective $\gamma\gamma$ luminosities (LHC): pp vs. PbPb

- Thanks to Z^4 boost, Pb-Pb $\gamma\gamma$ lumis (per collision) well above the p-p ones.
- Up to $W_{yy} \approx 30$ GeV, accounting for much larger p beam luminosity
- Up to $W_{\gamma\gamma} \approx 300 \text{ GeV}$ requiring double-arm p tagging at PPS (~220 m) (kinematic matching required to remove huge pp pileup):

Light-by-light scattering: Data vs. gamma-UPC

LbL scattering $\gamma\gamma \rightarrow \gamma\gamma$ (1st studided in PRL 111 (2013) 080405): Integrated fiducial cross-section:

• Measurement:

 $\sigma_{fid} = 120 \pm 17(stat.) \pm 13(syst.) \pm 4(lumi.)$ nb

ATLAS data [15]	g	amma-U	Superchic σ	
	EDFF	ChFF	average	
120 ± 22 nb	63 nb	76 nb	70 ± 7 nb	78 ± 8 nb

ATLAS: JHEP 03 (2021) 243 CMS: Phys. Lett. B 797 (2019) 134826

Shape well reproduced except lowest mass: Data is 2σ larger than theory
 But CMS does not see excess: (non)exclusive backgrounds at low masses?

UPC(2023), Yucatan, Dec'23

Example $\gamma\gamma \rightarrow X^0$ cross sections (LHC)

γγ→a→γγ g_{aγ}=0.1 TeV⁻¹

Dotted: EDFF

 10^{1}

Solid: ChFF

Axion

L_{int}: 3 ab⁻¹ (pp)

 10^{2}

m_a [GeV]

1.2 pb⁻¹ (pPb)

13 nb⁻¹ (PbPb)

C-even SM resonances (9 states with m~3–10 GeV, plus Higgs):

Colliding Form		gamma-UPC $\sigma(\gamma\gamma \to X)$									
system	factor	$\eta_{\rm c}(1{\rm S})$	$\eta_{\rm c}(2S)$	χ_{c0}	Xc2	$\eta_{\rm b}(1S)$	$\eta_{\rm b}(2S)$	Хю	Х ь2	\mathcal{T}_0	Н
	pointlike	61 pb	13 pb	17 pb	19 pb	110 fb	44 fb	29 fb	8.9 fb	0.12 fb	0.17 fb
p-p, 14 TeV	$EDFF(S_{\gamma\gamma}^2 = 1)$	51 pb	11 pb	14 pb	15 pb	88 fb	35 fb	23 fb	7.1 fb	0.10 fb	0.12 fb
	EDFF	50 pb	11 pb	14 pb	15 pb	86 fb	35 fb	23 fb	7.0 fb	0.10 fb	0.11 fb
	ChFF	56 pb	12 pb	15 pb	17 pb	99 fb	40 fb	26 fb	8.0 fb	0.11 fb	0.14 fb
- DL 9 9 TaV	EDFF	0.16 µb	33 nb	43 nb	46 nb	0.23 nb	92 pb	60 pb	18 pb	0.31 pb	0.11 pb
p-r0, 8.8 lev	ChFF	0.18 μb	38 nb	49 nb	53 nb	0.27 nb	106 pb	70 pb	21 pb	0.35 pb	0.14 pb
00751	EDFF	76 nb	16 nb	21 nb	23 nb	0.10 nb	42 pb	28 pb	8.5 pb	0.15 pb	31 fb
0-0, 7 164	ChFF	82 nb	17 nb	22 nb	24 nb	0.11 fb	44 pb	29 pb	9.0 pb	0.16 pb	32 fb
Co Co 7 ToV	EDFF	2.5 μb	0.50 µb	0.63 μb	0.70 μb	3.1 nb	1.2 nb	0.81 nb	0.25 nb	4.6 pb	0.48 pb
Ca-Ca, / lev	ChFF	2.7 μb	0.58 µb	0.74 μb	0.81 µb	3.5 nb	1.4 nb	0.91 nb	0.29 nb	5.2 pb	0.62 pb
Ar Ar 62 TaV	EDFF	1.5 μb	0.31 μb	0.40 μb	0.42 μb	1.8 nb	0.73 nb	0.48 nb	0.15 nb	2.9 pb	0.25 pb
AI-AI, 0.5 Iev	ChFF	1.6 µb	0.34 µb	0.44 μb	0.49 μb	2.1 nb	0.83 nb	0.55 nb	0.17 nb	3.1 pb	0.31 pb
Kr Kr 6 46 TaV	EDFF	22 µb	4.4 μb	5.9 µb	6.3 μb	25 nb	10 nb	6.7 nb	1.9 nb	41 pb	2.5 pb
KI-KI, 0.40 ICV	ChFF	25 µb	5.1 μb	6.4 µb	7.0 μb	31 nb	12 nb	7.9 nb	2.3 nb	46 pb	3.4 pb
Va Va 5 % TaV	EDFF	89 µb	18 µb	24 µb	26 µb	98 nb	38 nb	26 nb	7.7 nb	0.16 nb	4.8 pb
Ae-Ae, 5.00 lev	ChFF	101 µb	21 µb	27 µb	29 µb	116 nb	46 nb	31 nb	9.2 nb	0.19 nb	6.2 pb
Ph Ph 5 52 TeV	EDFF	0.39 mb	79 µb	0.10 mb	0.11 mb	0.40 μb	0.15 μb	0.10 μb	31 nb	0.71 nb	9.3 pb
10-10, 3.32 164	ChFF	0.46 mb	95 μb	0.12 mb	0.13 mb	0.50 µb	0.19 µb	0.13 μb	38 nb	0.86 nb	13 pb

10⁵

10⁴

ية 10³ ح

10²

10¹

10⁰

10⁰

 Most low-mass resonances accessible in PbPb (pp without pileup) with low-p₊

ch.part PID & y reco.

- Higgs boson: no significance

C-even **BSM** resonances:

PbPb (pp with RPs) best limits below (above) m_{yy}~100 GeV

Massive graviton searches via $\gamma\gamma \rightarrow G \rightarrow \gamma\gamma$

UPCs = optimal search environment for spin-0 (ALP), spin-2 (G) BSM over LbL

UPC(2023), Yucatan, Dec'23

Para-ditauonium via $\gamma\gamma \rightarrow \tau_0 \rightarrow \gamma\gamma$?

Ditauonium $\tau \equiv (\tau^+ \tau^-)$, never observed, is smallest & most-bound leptonium state: Mass: $m_{\tau} = 2m_{\tau} + E_{bind} = 3553.6962 \pm 0.2400 \text{ MeV}$, $E_{bind} = -\alpha^2 m_{\tau}/(4n^2) = -23.7 \text{ keV}$ Bohr radius: $a_0 = 2/(\alpha m_{\tau}) = 30.4 \text{ fm}$ (×3500 smaller than positronium)

Signal & background x-sections: $\sigma(ab \rightarrow ab + X) = 4\pi^2(2J+1)\frac{\Gamma_{\gamma\gamma}(X)}{m_{\gamma\gamma}^2}\frac{d\mathcal{L}_{\gamma\gamma}^{(ab)}}{dW_{\gamma\gamma}}$

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.		$\sigma imes \mathcal{B}_{\gamma\gamma}$				$N imes \mathcal{B}_{\gamma\gamma}$		
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{ m S})$	$\chi_{\rm c,0}(1{\rm P})$	$\chi_{c,2}(1P)$	LbL	${\mathcal T}_0$	${\mathcal T}_0$	$\chi_{c,2}(1P)$
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	_
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500
e^+e^- at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62

Largest x-sections (0.6 nb) in PbPb UPC but only ~1 evt expected. Visible at e⁺e⁻

20/25

Example $\gamma\gamma \rightarrow X^+X^-$ cross sections (LHC)

Double fermions, e.g. $\gamma\gamma \rightarrow$ ttbar (note <u>NLO</u> in QCD):

Process: $\gamma \gamma \rightarrow t \bar{t}$		gamma-UPC σ	NLO
Colliding system,	EDFF	ChFF	average
p-p at 14 TeV	0.198 ^{+0.004} _{-0.003} fb	$0.287^{+0.005}_{-0.004}$ fb	$0.242^{+0.005}_{-0.004} \pm 0.045$ fb
p-Pb at 8.8 TeV	36.5 ^{+0.8} _{-0.7} fb	59.3 ^{+1.3} _{-1.1} fb	$48^{+1.0}_{-0.9} \pm 11$ fb
Pb-Pb at 5.52 TeV	12.6 ^{+0.4} _{-0.3} fb	$18.8^{+0.5}_{-0.4}$ fb	$15.7^{+0.5}_{-0.4} \pm 3.1 \text{ fb}$

Double quarkonia:

Double bosons (loop induced):

 γ, W^+, Z

 $\gamma_{\gamma,W}$

р. A

p, A

Process: $\gamma \gamma \rightarrow J/\psi J/\psi$	gamma-UPC σ				
Colliding system, c.m. energy	EDFF	ChFF	average		
p-p at 14 TeV	20^{+11}_{-6} fb	23 ₋₇ ⁺¹³ fb	$22^{+12}_{-7} \pm 2$ fb		
p-Pb at 8.8 TeV	55 ⁺³⁰ ₋₁₆ pb	64 ⁺³⁵ ₋₁₈ pb	$60^{+32}_{-17} \pm 4 \text{ pb}$		
Pb-Pb at 5.52 GeV	103 ⁺⁵⁷ ₋₂₉ nb	128 ⁺⁷¹ ₋₃₆ nb	$115^{+64}_{-32} \pm 12 \text{ nb}$		

Loop-induced rare processes in SM (BSM potential)

Process: $\gamma \gamma \rightarrow Z \gamma$	gamma-UPC σ					
Colliding system, c.m. energy	EDFF	ChFF	average			
p-p at 14 TeV	36.2 ab	44.7 ab	40.5 ± 4.3 ab			
p-Pb at 8.8 TeV	10.3 fb	15.6 fb	$13.0 \pm 2.6 \text{ fb}$			
Pb-Pb at 5.52 TeV	109 fb	152 fb	130 ± 22 fb			
Process: $\gamma \gamma \rightarrow ZZ$		gamma-UPC	Ξσ			
Colliding system, c.m. energy	EDFF	ChFF	average			
p-p at 14 TeV	52.8 ab	78.4 ab	66 ± 13 ab			
p-Pb at 8.8 TeV	12.3 fb	18.8 fb	$15.5 \pm 3.2 \text{ fb}$			
Pb-Pb at 5.52 TeV	46.8 fb	63.2 fb	55 ± 8 fb			

C ⊃	$\frac{c_{WWW}}{\Lambda^2} \mathrm{Tr} \left[W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho} \right] \cdot$	σ =	$\sigma_{\rm SM} + \left(\frac{c_{\rm WWW}}{\Lambda^2}\right)$	$\times 1 \text{ TeV}^2$	σ_{WWW}
-----	--	-----	--	--------------------------	----------------

Process: $\gamma \gamma \rightarrow W^+W^-$	gamma-UPC average		
Colliding system, c.m. energy	$\sigma_{ m SM}$	σ_{WWW}	
p-p at 14 TeV	63 ± 11 fb	53 ± 8 ab	
p-Pb at 8.8 TeV	$26 \pm 5 \text{ pb}$	$28 \pm 5 \text{ fb}$	
Pb-Pb at 5.52 TeV	277 ± 44 pb	394 ± 64 fb	

 S^2

p, A

Exclusive dileptons: Data vs. gamma-UPC

Breit-Wheeler process $\gamma \gamma \rightarrow e^+e^-$:

Generic conclusions:

EDFF gamma-UPC~ Starlight ChFF gamma-UPC~ SuperChic

Exclusive dimuons $\gamma \gamma \rightarrow \mu^+ \mu^-$:

Process, system	ATLAS data [19]	gamma-UPC σ		Starlight σ	Superchic σ	
		EDFF	ChFF	average		
$\gamma \gamma \rightarrow \mu^+ \mu^-$, Pb-Pb at 5.02 TeV	$34.1 \pm 0.8 \mu b$	32.1 µb	40.4 µb	$36.2 \pm 4.2 \mu b$	32.1 μb	38.9 μb

Norm.: EDFF better than ChFF Shape: ChFF better than EDFF

γγ collisions: NLO QED corrections

All calculations so far included only LO diagrams (plus FSR emission in some cases)...

Impact of virtual & real NLO QED corrections on exclusive dilepton production:

Dimuon: x-section reduced by up to ~10% at high mass Ditau: x-section increases/decreases by few % at low/high masses: Relevant for accurate (g-2) extractions!

UPC(2023), Yucatan, Deci23

γγ collisions: NLO QED corrections

All calculations so far included only LO diagrams (plus FSR emission in some cases)...

Impact of virtual & real NLO QED corrections on exclusive dilepton p_T(pair), Aco(pair):

NLO corrections increase the p_{τ} (pair), Aco(pair) tails:

Relevant for non-exclusive backgd removal when applyings cuts on both variables!

UPC(2023), Yucatan, Dec'23

David d'Enterria (CERN)

gamma-UPC outlook & summary

UPCs at the LHC provide the largest x-sections ever studied for $\gamma\gamma$ colls. over $W_{\gamma\gamma} = 1-2000$ GeV: Unique (B)SM physics open for study. Increasing number

of precise measurements.

- gamma-UPC is a new versatile code to generate any γγ process in UPCs with protons & ions. Interfaced to MG5@NLO & HelacOnia.
- Recent developments (v1.0 \rightarrow v1.2 \rightarrow v1.3, in preparation):
 - Photon k_T smearing (lhe_ktsmearing_UPC.py script run on LHE file)
 - Proton kinematics for transport to & tagging at RPs spectrometers
 - NLO QED corrections
 - Parametric uncertainties
 - Non-exclusive collisions possible
- Future developments:
 - Semi-exclusive W/Z-photon processes
 - NLO EW corrections
 - UPCs for e-proton & e-ion collisions

• ...

Download it, test it, use it (or ask us to produce the LHE files) for your favourite γγ EXP/PH studies!

http://cern.ch/hshao/gammaupc.html

account of account of a count of a				
Instruction gamma- macross sections Infective photon-photon Indexters Iss Iss Indexters	troduction			
Include photom photom Image: State of the second symmetry in the sec	neoretical gamma-			i i
I notion I S\$	Iffective photon-photon	N I M	\land / \land	
Lis Timon and Analy Anal	Linosities	\$\$ \$\$ \$\$\$\$	\$\$\ \$\$\$\$\$\$\	
$ \begin{bmatrix} 1 & C & \\ 1$	ss se tiona esuits / \	\$\$ \$\$ \$\$/	\$\$ \$\$\\$\$	
In Bendens \$	^ C \\$\$:- \/\$\$ \ 	\$\$ \$\$ \$\$	\$\$1 \$\$	
Ic gamma-Ja\$\$\$\$ I \$\$ \$\$ \$\$ S\$ Thd \$\$ proxection of a pair d' 1/\$\$ mesons, t IVW I \$\$ \$\$ \$\$ S\$ S\$ Interes \$\$ seess \$\$ he study of BF [L-Pomeron dy u I gamma and \$\$\$ \$\$ \$\$\$ \$\$ \$\$ Interes \$\$ seess \$\$ he study of BF [L-Pomeron dy u - 7 and 5 Te I gamma and \$\$\$ \$\$\$\$\$\$\$ \$\$ \$\$ \$\$ \$\$ Interes \$\$ seess \$\$ he study of BF [L-Pomeron dy u - 7 and 5 Te I gamma and \$\$\$ \$\$\$\$\$\$\$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ Interes \$\$ \$\$ \$\$ - 7 and 5 Te I gamma and \$\$\$ \$\$<	I ^{B Exclusiv} \\$\$ ^{Psi} \$\$ \\$\$\$\$\$1 mesons	\$\$ \$\$ \$\$\$\$	\$\$ \$\$	B. Exclusiv
Image:	I _{C gamma-ga} \\$\$\$ I	\$\$/ \$\$ \$\$	The ex\$\$/prodection of	of a pair of J/ψ mesons, b
Planning big ASS SSSSSS SSSSSSSSSSSSSSSSSSSSSSS	I \$\$	\\$\$\$\$\$\$\$	interest\\$\$rocess \$\$the stu	dy of BFIL-Pomeron dyr
P. Pb, and Pb-Pb UPCs at the LHC. The presponding or anomy altraperipheral proton and nuclear A smaller taking into account detector and dimuon A detector A	Izgamma and g \\$\$	\\$\$\$\$\$\$ \\$\$	HELAC S\$\$\$\$\$	ap, one can easily obtain a
A library for exclusive photon-photon processes in estanded in the seale vaniable answ ultraperipheral proton and nuclear collisions electron and dimono 1/0 decay chann be smaller taking into account dector reptance and eff three By Hua-Sheng Shao (LPTHE) and David d'Enterria (CERN) I TABLE VI Total cross section The quoted asymmetric uncertainty is derived from the renormal The quoted asymmetric uncertainty is derived from the renormal the section of the process section	gamma to 22			HC. The corresponding cro
I down ultraperipheral proton and nuclear collisions dectron and dimuon 1/0 decay chann to know the particles I Massi By Huia-Sheng Shao (LPTHE) and David d'Enterrai (CERN) I TABLE VI Total cross section The quoted asymmetric uncertainty is derived from the renormal The quoted asymmetric uncertainty is derived from the renormal	It-toar A library for exclusion	sive photon-phot	on processes in	ity of $\mathcal{L}_{int} = 10 \text{ mb}^{-1}$, one sl
A vacation like particles be smaller taking into account detector [ceptance and eff if vacation like particles be smaller taking into account detector [ceptance and eff if vacation like particles be smaller taking into account detector [ceptance and eff if vacation like particles be smaller taking into account detector [ceptance and eff if vacation like particles be smaller taking into account detector [ceptance and eff if vacation like particles	I commultraperipheral prof	ton and nuclear	collisions electron an	d dimuon J/ψ decay channe
I mans By Hua-Sheng Shao (LPTHE) and David d'Enterrai (CERN) I from the section in the section of the section o	G Axion-like particles			detector a ceptance and ef
ton cross section ults; Datas, gamma-	By Hua-Sheng Shao (I	_PTHE) and David	d'Enterria (CERN	D I
	nton cross section			ty is derived from the renormal
F Please cite arXiv:2207.03012	Please cite arXiv:22	207.03012		$k \rightarrow 1/h(1/h)$
A Exclusive dielectrons in Pb-Pb UPCs sqrt(s)= Colliding system, c.m. energy El	A Exclusive dielectrons in Pb-Pb UPCs sqrt(s)=			ystem, c.m. energy EI

Backup slides

γγ collisions: el.-el., inel-el., inel.-inel.

Photons emitted coherently by p/A or incoherently by their constituent quarks/protons:

gamma-UPC codes only the fully coherent γ flux. For heavy-ions, the most important, by far, x-sections: el-el : inel-el : inel-inel = Z⁴ : Z² : Z = 1 : 1/6.7e3 : 1/45.e6 for PbPb

For proton-proton collisions:

- Cross section of **3** processes similar (depending on central system produced).
- Incoherent photon flux available via γ PDF: LuxQED, MMHT2015qed, CT18lux, NNPDF31lux-QED.
- Inel.-el: gamma-UPC+MG5 with ChFF (lpp2) + γ PDF (lpp1) in ppl. possible, but survival factor should be properly implemented.
- Inel-inel: One can always run MG5-standalone with p beams selecting lux-type γ PDF

Observation of $\gamma \gamma \rightarrow \gamma \gamma$ (PbPb, 5 TeV)

- Observation of light-by-light scattering in PbPb colls at 5 TeV (2.2 nb⁻¹): - 2 photons (E₁>2.5 GeV, $|\eta|$ <2.4, m₂>5 GeV) with no hadronic activity over $|\eta|$ <5
 - Photon pair: p_{τ} <1 GeV, Acoplanarity cut: A φ < 0.01 to remove backgds.

[ATLAS, PRL123 (2019) 052001]

Combination of ATLAS (2015+2018) data, compared to LbL prediction:

do_{fid}/dm_W [nb/GeV] 01

- LbL observation: Signif. = 8.8σ
- Fiduc. x-section $\sigma(\gamma\gamma \rightarrow \gamma\gamma) = 120 \pm 22$ nb is \sim 1.5 higher than theory (80±8 nb).
- Shape of differential distributions consistent with MC within uncertainties
- Control of (non)excl. backgds at low m,?

Ongoing detailed CMS analysis of 2018 data. UPC(2023), Yucatan, Dec'23

10⁻¹

ALPs searches via $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ (PbPb, 5 TeV)

Recasting exclusive $\gamma\gamma$ measurement as ALP search on top of LbL continuum:

Events / (1 GeV

1.2

0.8

0.6

0.4

0.2

0

Gel

9 GeV

14 GeV

22 GeV

90 GeV

6 GeV

11 GeV

- 16 GeV

30 GeV

PbPb

• ALP model:
$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_a^2}{2} a^2 - \frac{g_{a\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

- Limits on $\sigma_{\gamma\gamma
 ightarrow a
 ightarrow \gamma\gamma}$ extracted
 - Cast into limits on aγγ coupling (1/Λ_a) assuming BR(a→γγ)=1 [CMS, PLB797 (2019) 134826]

Reco effic.: ~20% (6 GeV), ~45% (>40 GeV).
 ALP width dominated by exp. resolution.

■ Most stringent limits to date on ALPs over $m_a = 5-100 \text{ GeV}$ ■ $\sigma(\gamma\gamma \rightarrow a \rightarrow \gamma\gamma) > 2-70 \text{ nb}$ excluded at 95% C.L. over that mass interval.

UPC(2023), Yucatan, Dec'23

CMS

Simulation

 $\rightarrow \gamma \gamma \rightarrow a \rightarrow \gamma \gamma$ Starlight v2.76

Anomalous tau lepton $(g-2)_{\tau}$ via $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$

Anomalous tau-lepton magnetic moment only mildly constrained from $\gamma\gamma \rightarrow \tau\tau$ studies at LEP times: $(g-2)_{\tau} = -0.05 - 0.03$

Improved limits via UPCs at the LHC expected. First observation by ATLAS/CMS in various decay modes (1-prong, 3-prong, e-mu):

CMS

30⊢

ਸੇ 25

15

10

2

n

2.8

Data / Pred

8

-

Events 20

PbPb - 404 µb⁻¹ (\star{s_NN} = 5.02 TeV)

 $\gamma \gamma \rightarrow \tau_{\mu} \tau_{3 prong}$

14 16 18

Visible τ_μ p₋ [GeV]

Background

Fotal

T Data

Pb

Ze

Ongoing extended CMS studies with Run-2 PbPb (and pp) data

8

10 12

CMS

∧a 9940

- 35

25 Events /

15

10

Data / Exp

Ph

Observation of $\gamma \gamma \rightarrow \tau \tau$ (PbPb, 5 TeV)

$\gamma\gamma\to\tau\tau$ production

ATLAS: CERN-EP-2022-079, CMS: CERN-EP-2022-098

- First observation of $\gamma\gamma \rightarrow \tau\tau$ production in hadron collisions by ATLAS and CMS.
- Targets μ +3prong (CMS) or μ +3prong, μ +1prong and μ +e (ATLAS) decays
- CMS: $\sigma_{fid} = 4.8 \pm 0.6(stat.) \pm 0.5(syst.)$ mb

