

Observation of the $\gamma\gamma \rightarrow \tau^+\tau^-$ production in PbPb collisions with the CMS experiment

Matthew Nickel on Behalf of the CMS Collaboration

Published in PRL as Editor's Suggestion: Phys. Rev. Lett. 131, 151803

Anomalous Magnetic Moment

- Anomalous magnetic moment : $a_l = \frac{g_l 2}{2}$
- Precise measurement of Standard Model
 - Measurements of a_{μ} have discrepancy with SM predictions
 - Ongoing work in theory community to improve Lattice QCD calculations
 - Deviations of a_l from SM could indicate lepton compositeness or other BSM physics
 - BSM effects are 280 times more sensitive to $a_{\tau}~$ compared to $a_{\mu}~$ due to $\tau~$ mass

$\gamma\gamma \rightarrow \tau\tau$ process

- $\gamma\gamma \rightarrow \tau\tau$ cross-section can help determine a_{τ}
- Using UPC heavy lon events means:
 - Have clean sample with few backgrounds
 - Have Z^4 photon flux enhancement
- With luminosity already achieved by LHC, measurements of a_{τ} should exceed precision of DELPHI

https://arxiv.org/abs/1908.05180

Tau decays

- τ has mean lifetime of 2.9 × 10⁻¹³s
 - Will decay within millimeters of IP
- CMS detector will only see decay products of 2 tau leptons

Decay Channel	Branching Ratio
$\mu^- \overline{ u}_\mu { u}_ au$	17.4%
$e^- ar{ u}_e u_ au$	17.8%
$\pi^- \nu_{ au} + n * \pi^0$	47.9%
$\pi^-\pi^+\pi^- u_ au+n*\pi^0$	14.6%
Other	2.3%

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-tau-branching-fractions.pdf

https://tikz.net/tau_decay/

CMS Detector

https://www.mpoweruk.com/CMS-Detector.htm

$\gamma\gamma \rightarrow \tau\tau$ candidate events at CMS

- Analysis considers events with decay $\tau + \tau \rightarrow \mu^{\mp} \nu_{\mu} \nu_{\tau} + \pi^{\pm} \pi^{\mp} \pi^{\pm} \nu_{\tau}$
- Accounts for 5% of τ decays.
- Expect ~100 events after cuts with available luminosity
- Provides cleanest sample
- Lepton + 1 track events have contamination from dilepton photoproduction
- Future analysis plan to add more channels to increase precision

Identifying signal and background

- Trigger requires 1 muon w/1 hit in pixel detector and no HF activity on at least 1 side
- Offline selections are shown in table
- After Cuts only signal MC events remain
- Signal region (D) consists of 1 muon and 3 charged hadrons
- Background estimates used ABCD method
 - ABCD regions shown in figure

Muon selection

 $p_{\rm T} > 3.5 \,{
m GeV}$ for $|\eta| < 1.2$ $p_{\rm T} > 2.5 \,{
m GeV}$ for $1.2 < |\eta| < 2.4$

Pion selection

 $p_{
m T} > 0.5\,{
m GeV}$ for the leading $p_{
m T} > 0.3\,{
m GeV}$ for the (sub-)subleading $|\eta| < 2.5$

$$\tau_{3\text{prong}}$$
 selection $p_{\text{T}}^{\text{vis}} > 2 \text{ GeV}$ and $0.2 < m_{\tau}^{\text{vis}} < 1.5 \text{ GeV}$

Data and MC have consistent kinematics

- Have agreement in full $\tau\tau$ system (muon and 3 prong decay + combined system)
- Monte Carlo is scaled to luminosity

Signal yield estimations

Uncertainties are dominated by statistics

- Largest source of uncertainty is statistical (13%)
- Main systematic uncertainties: trigger, tracking and luminosity
- Total uncertainty 16%

Source	Relative uncertainty (%)
Muon scale factor	6.7
Luminosity measurement	5.0
Pion scale factor	3.6
MC sample size (bin by bin)	3.0
MC sample size (efficiency)	1.1
HF scale effect on background shape	0.9
au lepton branching fraction measurement	0.6
Effect of <i>N</i> _{ch} on background shape	0.2
Total	9.7

Cross section measurement is consistent with SM

$$\sigma(\gamma\gamma \to \tau^{+}\tau^{-}) = \frac{N_{sig}}{2\epsilon L_{int}B_{\tau\mu}B_{\tau_{3prong}}}$$

$$L = 404\mu b, B_{\tau\mu} = 17.39\%, B_{\tau_{3prong}} = 14.55\%, \epsilon = 78.5\%$$

$$\sigma(\gamma\gamma \to \tau^{+}\tau^{-}) = 4.8 \pm 0.6(\text{stat}) \pm .5(\text{sys}) \mu b$$
CMS PbPb - 404 μ b⁻¹ ($\sqrt{s_{NN}} = 5.02 \text{ TeV}$)
PbPb($\gamma\gamma$) \rightarrow Pb^(*)Pb^(*) $\tau^{+}\tau^{-}$
Data, $4.8 \pm 0.6(\text{stat}) \pm 0.5(\text{sys})\mu b$
L. Beresford and J. Liu,
Phys.Rev.D 102 (2020) 113008
M. Dyndal et al.,
Phys.Lett.B 809 (2020) 135682
4 5 6 $\sigma(\gamma\gamma \to \tau^{+}\tau^{-})^{8}[\mu b]^{9}$ 10

•

•

٠

Limits on $a_{ au}$

- Determine a_{τ} via theoretical calculation of $\sigma_{\gamma\gamma\to\tau\tau}(\delta a_{\tau})$
- With phase 2 luminosity, can match DELPHI precision

https://arxiv.org/abs/1908.05180

Outlook

- Searches for BSM phenomena via UPC data in multiple collaborations at LHC
 - Cross-experiment collaboration should lead to higher precision and statistical significance
- CMS has dedicated program studying $a_{ au}$
 - 2018 Results with additional channels expected early 2024
 - 2023 data have 20% more luminosity than 2018
 - 2023 Data have hadronic only triggers

Conclusion

- First observation of $\gamma\gamma \rightarrow \tau\tau$ in heavy ion collisions
- $\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) = 4.8 \pm 0.6(\text{stat}) \pm .5(\text{sys}) \,\mu b$
- 68% CL limit of (-8.8 < $a_{ au}$ < 5.6) × 10⁻²
- Projected Run 3 + 4 68% CL limit of ($-1.8 < a_\tau < 1.5$) $\times \, 10^{-2}$
- Results published in PRL: Phys. Rev. Lett. 131, 151803

Thanks

Thanks to our LHC and CMS colleagues for providing the facilities to make this research possible. This research was funded in part by DoE Grant DE-SC0023908. Thanks to Michael Murray (KU), Georgios Krintiras (KU) and Arash Jofrehei (UZH). Thanks to Daniel Tapia Tapia Takaki, Gerardo Herrera and entire UPC 2023 organizing committee for this conference.

UPC 2023

Important Sources

- CMS $\gamma\gamma \rightarrow \tau\tau$: https://arxiv.org/abs/2206.05192
- ATLAS $\gamma \gamma \rightarrow \tau \tau$: https://arxiv.org/abs/2204.13478
- Theory $\gamma\gamma \rightarrow \tau\tau$: https://arxiv.org/abs/1908.05180
- Muon G-2: https://arxiv.org/abs/2308.06230