A Forward Calorimeter in ALICE (FoCal)

Ionut-Cristian Arsene (University of Oslo) on behalf of the ALICE Collaboration

UPC 2023, 10-15 December, Playa del Carmen, Yucatán, Mexico

ALICE upgrades timeline

Why FoCal ?

ALICE	Workshop: Exploration of small-x structure of nuclei and signal of saturation in forward measurements at the LHC Image: Wednesday 22 Jun 2022, 09:00 → 17:45 Image: Wednesday 22 Jun 2022, 09:00 → 17:45	alS	3:45 → 14:00	Forward dijet production in saturation formalism Speaker: Piotr Kotko (AGH UST) Kotko_CERN_FOCAL	©15m ┏ •
Registratio	n 🛷 You are registered for this event.	Check details	4:05 → 14:20	Heavy flavor and quarkonium production in the forward region Speaker: Kazuhiro Watanabe (Subatech)	©15m 🗷 ▾
10:30 → 10:35	Introduction to the workshop Speaker: Constantinos Loizides (ORNL) Constantinos Loizides (ORNL) Constantinos Loizides (ORNL) Develop Reduction with the FOCAL Researce	© 5m ∠ • 14	4:25 → 14:50	Why ALICE FOCAL may be interesting: Some loose thoughts of a theorist Speaker: Antoni Szczurek P szczurek_FOCAL_20	© 25m 🕑 🔻
10:40 → 10:55 11:00 → 11:25	Physics Potential with the FOLAL Detector Speaker: Ionut Cristian Arsene (University of Oslo (NO)) I Krisene_FOCALwork Status of (n)PDFs and constraints from forward particle production	0 15m 27 ▼ 0 25m 27 ▼	4:55 → 15:10	UPC, experimental overview and ALICE projections Speaker: Joakim Nystrand (University of Bergen (NO)) DPCFOCaLpdf	©15m
11:30 11:55	Speaker: Juan Rojo (VU Amsterdam and Nikher) Projo-FoCal-smalitxQ Signatures of aluon saturation from structure-function measurements	15	5 :15 → 15:40	Experimental forward results (LHC, RHIC) and (n)PDF sensitivity overview Speaker: Norbert Novitzky (University of Taukuba (JP)) P FoCatWorkshopNovi	© 25m 🕑 🔻
	Speaker: Heikki Mäntysaari (University of Jyvaskyla (FI))	15 15	5 :45 → 16:15	Discussion	© 30m 🗹 🔹
12:00 → 12:25	Particle Production from CGC - Photons, Hadrons, Dihadrons Speaker: Jamal Jaillian-Marian	© 25m 🗹 🔻			
12:30 → 12:45	Discussion	🕲 15m 🗷 👻			

• Main goal: explore non-linear gluon evolution and nPDFs at low Bjorken-x

LoI: *ALICE, LHCC-I-036 (2020)* Physics case: *ALICE-PUBLIC-2023-001* Physics performance: *ALICE-PUBLIC-2023-004*

FoCal observables in hadronic collisions

ALICE, LHCC-I-036 (2020)

- Main measurement: isolated direct photons in pp and p-Pb collisions
- Complementary observables:
 - π⁰
 - Jets
 - Quarkonia, Z^0 and W^{\pm}
 - correlations

FoCal observables in UPC

ALICE-PUBLIC-2023-001 Bylinkin, Nystrand, Tapia Takaki, arXiv:2211.16107

- Quarkonia (J/ ψ , ψ ') photoproduction
 - Extension of photon-Pb and photon-proton cross-sections to very high and very low c.m. energy
 - Bjorken-x reach down to ~10⁻⁶, discrimination power for saturation models
- Other photon induced processes also measurable:
 - Low mass vector mesons,
 - $\gamma\gamma \rightarrow ee$,
 - Inclusive photo-nuclear and diffractive di-jets,
 - Light-by-light scattering,...

Many thanks to Alexander Bylinkin, Joakim Nystrand and Daniel Tapia Takaki !

The ALICE detector (Run 3 setup)

The ALICE detector + FoCal

FoCal design challenges

- Discriminate direct photons and decay photons (mainly from π^{0})
 - Requires: small Moliere radius, high granularity readout

- Suppress bremsstrahlung and fragmentation photons
 - Requires: measurement of hadronic showers

FoCal structure

FoCal-E (electromagnetic)

- High granularity Si-W calorimeter
- Longitudinal segmentation (20 layers)
 - 3.5mm W in each layer $(1 X_0)$
 - 18 pad layers (1x1 cm²)
 - Energy measurement
 - 2 pixel layers (30x30 µm²)
 - Two shower separation

FoCal-H (hadronic)

- Metal-scintillator using "spaghetti" design
 - Scintillation fibers embedded in Cu tubes
- Photon isolation, hadronic jet components

FoCal prototype for test beams

Small prototype built for performance tests

- FoCal-E
 - ~ 9 x 8 cm² transverse size
 - 18 pad layers
 - 2 pixel layers
- FoCal-H
 - 9 Cu-scintillator towers
 - ~ 20 x 20 cm² transverse size

FoCal prototype tested in electron/hadron beams at SPS in Nov 2022 and May 2023

Energy resolution in beam tests

- FoCal-E: energy resolution < 4% at high energies
- FoCal-H: energy resolution < 15% at high energy
 - Disagreements with MC under investigation

Transverse and longitudinal shower profiles

Two-shower separation in FoCal-E pixels

Longitudinal shower profile in FoCal-E

ALICE

Performance in hadronic collisions

Direct photons measured in FoCal vs. D-mesons in LHCb

 Photon-hadron correlations combining FoCal and central-rapidity acceptance significantly extends the coverage in x

Direct photons

Isolation energy in FoCal-E and FoCal-H

Signal fraction up to ~70% at p_T ~14 GeV/c

• Still untapped potential by using additional more sophisticated methods

Prompt photon R_{pPb}

- nPDF+NLO *R*_{pPb} reweighted using FoCal pseudo data
- Reduction of nNNPDF30 uncertainties similar to LHCb D^o mesons

Light mesons

ALI-SIMUL-55895

Jets

 Jet energy scale (JES) and jet energy resolution (JER) quantified using Pythia + GEANT for R=0.6 anti-k_T jets

Ultra-peripheral collisions

ALICE

Vector meson photo-production in UPC

- High efficiency (~80%) for J/ψ measurement in e⁺e⁻
- Coverage up to *y*~5.5

Pb-Pb @ 5.36 TeV, L = 7/nb

VM	$\sigma(\mathrm{Pb} + \mathrm{Pb} \rightarrow \mathrm{Pb} + \mathrm{Pb} + \mathrm{VM})$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
ρ^0	5.0 b	$20 \ \mu b$	140,000
ϕ	440 mb	$10~\mu{ m b}$	70,000
${ m J}/\psi$	$39 \mathrm{~mb}$	$53~\mu{ m b}$	$370,\!000$
$\psi(2S)$	$7.5 \mathrm{~mb}$	$1.1 \ \mu \mathrm{b}$	7,500
$\Upsilon(1S)$	94 μb	5.0 nb	35

p-Pb, Pb-p @ 8.8 TeV, L = 150/nb

VM	$\sigma(p + Pb \rightarrow p + Pb + VM)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
		$\mathbf{p} \to \mathbf{FoCal}$	$\mathbf{p} \to \mathbf{FoCal}$
ρ^0	35 mb	140 nb	21,000
ϕ	$1.7 \mathrm{\ mb}$	51 nb	7,700
${ m J}/\psi$	$98 \ \mu b$	400 nb	60,000
$\psi(2S)$	$16 \ \mu \mathrm{b}$	8.9 nb	1,300
$\Upsilon(1S)$	220 nb	0.38 nb	60
		$Pb \rightarrow FoCal$	$Pb \rightarrow FoCal$
ρ^0	35 mb	17 nb	2,600
ϕ	$1.7 \mathrm{\ mb}$	5.3 nb	800
${ m J}/\psi$	$98 \ \mu b$	36 nb	$5,\!400$
$\psi(2S)$	$16 \ \mu \mathrm{b}$	0.53 nb	80
$\Upsilon(1S)$	220 nb	$0.67 \ \mathrm{pb}$	~ 0

Bylinkin, Nystrand, Tapia Takaki, arXiv:2211.16107

J/ ψ and ψ (2S) reconstruction in Pb-Pb

- Ground and excited charmonium states can be separated
- Coherent and incoherent components can be extracted from the p_T distribution
- Very large photoproduced quarkonia sample expected to be measured with FoCal
- Potential of improving the mass and p_T resolution

Coherent J/ψ photoproduction in Pb-Pb UPC

- Extension of the measurement to $y \sim 5.5$, very good stat. uncertainties
- Interference between quark and gluon contributions largest in the FoCal acceptance Flett, Jones, Martin, Ryskin and Teubner, arXiv:1908.08398

Photo-nuclear cross-section $\sigma(\gamma+Pb)$

 Emitter-target ambiguity solved using measurements in ZDC neutron emission classes

Photo-nuclear cross-section $\sigma(\gamma+Pb)$

- Combined FoCal + ZDC analysis
 - coverage in W_{pPb} to be extended both towards low and high values

- Simulation studies done with realistic expectations of quarkonia yields
- ψ(2S)/J/ψ ratio expected to be measured with about 3% and 12% statistical uncertainty in p-Pb (low-W) and Pb-p (high-W), respectively

ALICE

Photoproduction off protons $\sigma(\gamma+p)$ at high-*W*

- FoCal extends coverage in $W_{\gamma p}$ up to about 2 TeV
- Large lever arm for discriminating linear vs saturation scenarios

UPC p-Pb $\sqrt{s_{NN}}$ = 8.16 TeV, 150 nb⁻¹

Bylinkin, Nystrand, Tapia Takaki, arXiv:2211.16107

Energy dependence of the $\psi(2S)/J/\psi$ ratio

Ratio has a good discrimination power between linear vs saturation models in the range of very high- W_{yp}

Limitation due to the expected low $\psi(2S)$ yields (~12% stat.uncert.)

3.5

45

m_{supcl pair} [GeV/c²]

4

Counts

 10^{3}

 10^{2}

10

ALICE simulation, Pb-p $\sqrt{s_{NN}}$ = 8.79 TeV

– fit total •-Crystall-Ball (J/ψ)

25

--- Crystall-Ball (w(2S))

3

STARLight, J/ ψ and $\psi(2S) \rightarrow e^+e^-$

3.4 < y < 5.8, p_<200 MeV/c

Dissociative to exclusive J/ψ photoproduction ratio

- Probe of the fluctuations in the proton target configurations
- Reduction of the dissociative/exclusive ratio towards high c.m. provides a signature of gluon saturation

Production off proton in Pb-p at low- W_{yp}

ALICE

Bylinkin, Nystrand, Tapia Takaki, arXiv:2211.16107

- Coverage down to W_{yp} ~12 GeV with Pb-p at 8.16 TeV, overlap with E401 data
- With an eventual run at 1.26 TeV, measurements could fill the gap between low energy data points and LHC experiments

Summary

- FoCal is a planned ALICE upgrade for the LHC Run-4 covering forward rapidities
- Main goal: explore gluon content at low-x using multiple measurements
- Hadronic collisions
 - Isolated direct photons
 - Jets
 - Mesons, quarkonia, weak bosons
 - Correlations
- Main probes studied so far in UPC (Pb-Pb, p-Pb, Pb-p)
 - Coherent and incoherent J/ψ and $\psi(2S)$
 - Combined FoCal with ZDC and other ALICE detectors to tag neutron emission and dissociative production off protons

