UPC 2023 First international workshop on the physics of Ultra Peripheral Collisions

Recent results from ultra-peripheral lead-lead collisions with ATLAS

Klaudia Maj, AGH University of Kraków for ATLAS Collaboration Playa del Carmen, 11 Dec 2023

ATLAS detector

Charged particle tracking in $|\eta| < 2.5 \rightarrow$ electrons, muons, charged hadrons Calorimeter system in $|\eta| < 4.9 \rightarrow$ electrons, photons, jets Muon reconstruction in $|\eta| < 2.4$ (muon spectrometer + inner detector)

All components used in UPC measurements

Zero Degree Calorimeters (ZDC)

- **ZDC** are 140 m away from the IP ($|\eta| > 8.3$)
 - Detect neutral particles: e.g. neutrons, photons
- Separate UPCs from inelastic Pb+Pb collisions
- Events are categorised into: 0n0n / 0nXn / XnXn
- Exclusive $\gamma\gamma$ processes: mostly 0n0n
- Photonuclear processes: typically 0nXn
- Each category probes different impact parameters (b)

Ann.Rev.Nucl.Part.Sci. 70 (2020) 323-354

3

$\gamma\gamma \rightarrow ee / \gamma\gamma \rightarrow \mu\mu / \gamma\gamma \rightarrow \tau\tau$

$\gamma\gamma \rightarrow ee / \gamma\gamma \rightarrow \mu\mu$:

- "standard candles" to calibrate modelling of photon flux
- importance of modelling final-state QED emissions
- study correlation with forward neutron emissions

$\gamma\gamma \rightarrow \tau\tau$:

- not observed at the LHC before
- *τ*-leptons never directly targeted in analyses using nucleus-nucleus data
- constraints on τ -lepton anomalous magnetic moment: $a_{\tau} = \frac{(g-2)_{\tau}}{2}$
- its value is sensitive to many BSM models (lepton compositeness, supersymmetry $\delta a_{\tau} \sim m_{\tau}^2/M^2$, TeV-scale leptoquarks, ...)

See also talk by Iwona

$\gamma\gamma \rightarrow ll$: dissociative backgrounds

- Dissociative background contributions precisely evaluated from fit to acoplanarity distributions
- Clear dependence on ZDC topologies:
 - OnOn excellent agreement with STARlight+Pythia8
 - OnXn & XnXn clear contributions from dissociative backgrounds (modelled with SuperChic4)

Phys. Rev. C 104 (2021) 024906 JHEP 06 (2023) 182

$\gamma\gamma \rightarrow ll$: differential cross-sections

- $\gamma\gamma \rightarrow ee$ data compared to predictions from Starlight and SuperChic 3
- Generally good shape agreement (except at high $|\cos\theta^*|$)
- 10-20% differences in normalisation (photon flux) between predictions data typically bracketed by the theory curves

JHEP 06 (2023) 182

$\gamma\gamma \rightarrow ll$: initial-state photon energies

Estimate initial-state photon energies from final-state muon kinematics:

$$\mathbf{k}_{\max,\min} = \frac{1}{2} m_{\mu\mu} e^{\pm y_{\mu\mu}}$$

- Soft FSR photons not accounted for , but impact is small
- Comparison of data and Starlight predictions shows limitations of Starlight photon flux implementation:
 - agreement for both k_{max} and k_{min} around 5-20 GeV
 - data exceeds prediction at higher and lower energies

$\gamma\gamma \rightarrow \tau\tau$: signal regions

- Three signal regions defined:
 - μ 1T-SR: muon + 1 track (e/μ /hadron)
 - μ 3T-SR: muon + 3 tracks (3 hadrons)
 - μe -SR: muon + electron
- Total of ~650 events across all SRs
- Clear observation of $\gamma\gamma \rightarrow \tau\tau$ process
- Various distributions in good agreement with predictions

Phys. Rev. Lett. 131, 151802

$\gamma\gamma \rightarrow \tau\tau$: anomalous magnetic moment a_{τ} 9

- a_{τ} from fit to muon p_T distribution in three signal regions Phys. Rev. Lett. 131, 151802
 - Observed 95% CL limits: $a_{\tau} \in$ (-0.057, 0.024)
 - First limits on a_{τ} since LEP era competitive with DELPHI constraints [EPJC 35 (2004) 159]
 - Statistical uncertainties dominant → expected to improve with Run-3 data

$\gamma\gamma \rightarrow \gamma\gamma$

- Light-by-light (LbyL) scattering: key example of rare SM process probed in UPC
- Not allowed classically, but possible in QED at $O(\alpha^4)$
- Several LbyL measurements performed with the LHC Pb+Pb UPC data:
 - 2015 data \rightarrow evidence at 4.4 σ (also CMS result: 4.1 σ)
 - 2018 data \rightarrow first observation at 8.2 σ
 - 2015+18 → differential cross-sections

$\gamma\gamma \rightarrow \gamma\gamma$: analysis

- Event selection: 2 photons with E_T^{γ} > 2.5 GeV, $A_{\phi}^{\gamma\gamma}~<$ 0.01, no tracks
- Dedicated triggers (with large improvements for 2018 data-taking)
- NN PID optimised for low- p_T photons
- Background estimates:
 - CEP gg $\rightarrow \gamma \gamma$ (data-driven)
 - $\gamma\gamma \rightarrow ee$ with mis-identified electrons (data-driven)

$\gamma\gamma \rightarrow \gamma\gamma$: cross-sections

- Fiducial cross-section: $120 \pm 17(\text{stat.}) \pm 13(\text{syst.}) \pm 4$ (lumi) nb
- Compare to theoretical predictions:
 - 80 ± 8 nb (M. Kłusek-Gawenda et al.)
 - 78 ± 8 nb (SuperChic 3)
- Cross-sections measured differentially in $m_{\gamma\gamma}$, $|y_{\gamma\gamma}|$, $p_T\gamma$, $|\cos\theta^*|$
 - Reasonably good agreement of distribution shapes with SuperChic 3 predictions

$\gamma\gamma \rightarrow \gamma\gamma$: search for axion-like particles ¹³

CDF 10¹ LEP Belle II

- Axion-like particles can couple to • photons in initial- and final-state of $\gamma\gamma \rightarrow \gamma\gamma$
- No significant deviation from SM ۲
- Setting 95% CL limits on:
 - cross-section σ
 - coupling $1/\Lambda_a$
- Most stringent limits in the mass range • $6 < m_a < 100 \text{ GeV}$

γ +Pb: global properties

- Photon expected to fluctuate into quarkantiquark pair, and interacts hadronically
- Small systems like p+Pb and pp exhibit signals of collectivity - what about γ+Pb processes?
- Expect forward neutron emissions from breakup of struck nucleus → 0nXn ZDC events

Phys. Rev. C 104 (2021) 014903

*γ***+Pb: looking for collectivity**

- Correlations between charged particles studied as a function of $\Delta\eta$ and $\Delta\varphi$
- Template method used to extract flow coefficients, with non-flow contributions subtracted using low-multiplicity events

Phys. Rev. C 104 (2021) 014903

*γ***+Pb: flow coefficients**

- Significant v_2 observed, lower than in pp or p+Pb collisions
- non-zero v_3 values, compatible with pp and p+Pb collisions
- Both v_2 and v_3 show no significant multiplicity dependence
- CGC calculation (Y. Shi et al.) of v_2 considering interactions of a color dipole (γ fluctuation) with a Pb nucleus: prediction slightly higher than data

*γ***+Pb: flow coefficients**

- Significant v_2 observed, lower than in pp or p+Pb collisions
- non-zero v_3 values, compatible with pp and p+Pb collisions
- Both v_2 and v_3 show no significant multiplicity dependence
- Motivation to look for more QGP-like signals!

γ +Pb vs. p+Pb: theory predictions

- Theory (3+1D hydrodynamics) suggests elliptic flow hierarchy between γ +Pb and p+Pb is dominated by longitudinal flow decorrelations
- Prediction is that both systems should have same radial flow, therefore the same $\langle p_T \rangle$
- Relevant observables: $\langle p_T \rangle$ of charged hadrons

Phys. Rev. Lett. 129 (2022) 252302

γ +Pb vs. p+Pb: measurements

- γ+Pb distribution is highly asymmetric
 photon energy lower compared to energy per nucleon in Pb
- p+Pb distribution is nearly symmetric for selected low multiplicity events
- Important to study γ+Pb properties in different η regions separately

- Negative η : $\langle p_T \rangle$ similar for both p+Pb and γ +Pb
- Positive $\eta: \langle p_T \rangle \gamma + Pb$ lower than for p+Pb

See also talk by Sruthy!

ATLAS-CONF-2023-059

*γ***+Pb: dijet production and nPDFs**

- Precise measurements of various processes in nuclear interactions require good understanding of nuclear parton distribution functions (nPDFs)
- Poor nPDF constraints at low x and intermediate Q² (100 < Q² < 1000 GeV)

γ +Pb: dijet production and nPDFs

- Precise measurements of various processes in nuclear interactions require good understanding of nuclear parton distribution functions (nPDFs)
- Poor nPDF constraints at low x and intermediate Q² (100 < Q² < 1000 GeV)
- γ+Pb dijet production → clean, DIS-like probe of this kinematic region
- Measurement of triple-differential crosssections:

$$H_T = \Sigma p_T^{jet}$$
 (proxy for Q),

$$x_{A} = \frac{m_{jets}e^{-y_{jets}}}{\sqrt{s_{NN}}}, \qquad z_{\gamma} = \frac{m_{jets}e^{+y_{jets}}}{\sqrt{s_{NN}}}$$

γ+Pb: dijet kinematic coverage

- Requiring $\Delta R = 0.4$ particle-flow jets with $p_T > 15$ GeV, $|\eta| < 4.4$
- Selecting events with 0nXn ZDC, $\sum_{\gamma} \Delta \eta > 2.5$, 35 < m_{jets} <185 GeV
- H_T does not depend significantly on x_A or z_γ
- x_A and z_γ highly correlated \rightarrow acceptance effects

*γ***+Pb: dijet cross-sections**

Good description by Pythia8 with Pb photon flux and nCTEQ PDFs

ATLAS-CONF-2022-021

See also talk by **Blair**!

First Run-3 Pb+Pb data available

- New Pb+Pb data collected in October 2023!
 - 1.7 nb⁻¹ at $\sqrt{s_{NN}} = 5.36$ TeV
- Readout and trigger upgrade of ZDC
- Significant improvements in trigger and reconstruction efficiency at low-p_T for leptons
- A lot of J/ Ψ from Run-3 Pb+Pb data!

24

Summary

- · UPCs can be used to probe rare SM processes and search for BSM phenomena
- · ATLAS has a rich and diverse UPC physics program
- New 2023 Pb+Pb data ready to analyse stay tuned for new results!

See also talks by Iwona, Sruthy and Blair!

- "Measurement of dilepton production from photon fusion processes in UPC in Pb+Pb collisions with the ATLAS detector"- By Iwona Grabowska-Bold — Tuesday 2:00 pm
- "Measurement of dijet production in UPC with the ATLAS detector" By Blair Daniel Seidlitz Thursday 9:30 am
- "Measurements of the properties of photonuclear events in UPC with the ATLAS detector" By Sruthy Jyothi Das - Thursday 6:00 pm

All results from ATLAS available at:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylonsPublicResults

Research project partly supported by the National Science Centre of Poland under grant number UMO-2021/40/C/ST2/00187 and by PL-GRID infrastructure."

Additional slides

Photon-induced processes: ATLAS results 28

$\gamma\gamma \rightarrow ll$: QED FSR emission modelling

- Modelling studied using coplanarity distribution in 0n0n $\gamma\gamma \rightarrow \mu\mu$ events
- Starlight distribution does not extend beyond 0.01 due to absence of QED FSR emissions
- Adding Pythia8 QED showering improves agreement in the tail

29

*γ***+A: event characteristics**

- Few previous studies exist of general characteristics of min-bias γ +A
- Track multiplicity: fairly good description at low values by DPMJET-III and Pythia8 γ +p, tail better described by DPMJET-III γ +Pb
- Photon-direction sum of gaps: reasonable agreement with sum of peripheral HIJING Pb+Pb and DPMJET-III $\gamma+\text{Pb}$
- Track signed rapidity: distribution strongly skewed towards nucleus-going direction (negative η), all generator setups fail to reproduce steep slope

Phys. Rev. C 104 (2021) 014903

$\gamma\gamma \rightarrow \tau\tau$: signal strength

 $\mu_{\tau\tau}$ = observed yield / SM expectation

- Fit of $\gamma\gamma \rightarrow \tau\tau$ signal strength assuming SM value for a_{τ}
- Results for each signal region compatible with unity
- Combined fit reaches 5% precision, limited by statistical uncertainties

Signal categories - ZDC selection

- Different processes present different activity in the forward region:
 - Exclusive dilepton production - ions stay intact
 - Background events with nuclear breakup
- Three classes defined, based on the signal in the ZDC

- The association between given ZDC signal and given process is nontrivial
 - Migrations due to ion excitation and presence of EM pile-up

ATLAS detector

 η - broad pseudo rapidity coverage

$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

p⊤ - transverse momentum

$$p_T = \sqrt{p_x^2 + p_y^2}$$

