Photonuclear collisions: dijet production with ATLAS

Blair Daniel Seidlitz Columbia University On Behalf of the ATLAS Collaboration

UPC Dec. 11th , 2023

Pb

Pb+X+Xn

Pb

Motivation

>After the turn-on of the LHC, specific areas of the nuclear parton distribution functions (nPDFs) have been probed.

- These specific regions of x^2 and Q² are limited and leave a large amount of the phase space unexplored.
 - poorly constrained at low-x and intermediate Q^2

Motivation

>We can explore a relatively large phase space with photonuclear dijet production.

Provides a clean probe at a well regulated scale of this kinematic region, similar to DIS

Motivation

- Photonuclear dijets at the LHC has some overlap is with EIC
- As well as coving a unique part of phase space of its own.

Photonuclear interactions

- Single-sided nuclear breakup "OnXn" (zero-degree calorimeter ZDC)
- Rapidity gaps
- Selection on dijets enriches the direct "DIS-like" events

Event topology

Quantifying rapidity gaps

> Detector roll out with schematic event

Event Selection $\Delta \eta_A < 3$

 $Σ_γ Δη_{gap} > 2.5$

arXiv:2101.1077

Sum pf gaps criteria retains high efficiency for resolved photonuclear events which may have a photon fragment forward of the dijets.

- These interesting physics variables are interesting in their own right and can be used to separate direct and resolved.
- Also can be used to understand hadronic background.

Selecting photonuclear events

Clear separation between photonuclear events with large gaps and a steeply falling multiplicity distribution and "hadronic" dijet events which no rapidity gap and a broad multiplicity distribution

ZDC information

Observed uncorrected Pb-going ZDC energy distribution

Further studies could be related to "centrality" of scattering center

>This is a glimpse into ZDCbased physics at the EIC.

Nuclear "emitter" Breakup

The photonuclear jet requirements select events with the highest energy photons.

- $E_{\gamma} \propto 1/b \rightarrow$ Biases towards lower impact parameter collisions
- Much higher probability of breakup due to additional EM interactions
- Sensitive to the details of nuclear structure for low-b collisions

$$f_{\rm no \, BU} \equiv \frac{d\sigma/dz_{\gamma}|_{0nXn}}{d\sigma/dz_{\gamma}|_{XnXn} + d\sigma/dz_{\gamma}|_{0nXn}}$$

ATLAS-CONF-2022-021

Studies of dijet events with large gaps on one side estimate about 50% of photo-nuclear jet production breaks up!

Basic theoretical modeling predicts an even higher rate.
STARLight model of probability of EM breakup as function of b is used along side the pythia model

Future theoretical and modeling improvements of the breakup scenario will help make precision measurements of this part of phase space, which includes include higher backgrounds.

kinematics

$> H_T$: scaler sun of jet p_T -tightly correlated with Q^2

- X_A: fraction of nucleons momentum carried by the struck parton
- Z: the fraction of "nucleon's" momentum carried by photon or resolved parton.
 - In the case of direct, it is a scaled photon nergy
 - In the resolved case the addition of x (vector meson)
 - In DIS language: UPC photon energy distribution convolved with photon structure function.

Raw yields

>Two R = 0.4 anti- k_{T} particle flow jets with p_{T} > 15 GeV

 $> x_A$ and z_v are highly correlated – delicate <u>unfolding problem</u>

Systematics

>Measurement uncertainties are systematics dominated in most bins

\succ Dominated in most bins by the low- μ jet calibration

- A key part of the jet calibration is the so-called *insitu* calibration which measures jets relative to precisely measured reference objects, in this case Z bosons
- Preliminary version, used here, translates uncertainties from high-luminosity pp data.
- The final version will come from low luminosity pp, which much precisely matches the conditions of UPC dijets.
- Tis will reduce this uncertainty considerably

Results

The distribution of z_{γ} values for large x_A in bins of H_T (right) demonstrates the measured photon flux.

- The breakup model performs well within systematic uncertainties.
- Disagreements appear to arise more at low z_γ, where the breakup model tends to over-correct.

Scanning in photon energy

>At intermediate photon energies, we can access higher-x partons

 $\frac{\text{Photon Energy}}{0.004 < z_{\gamma} < 0.008}$

15

Scanning in photon energy

Going higher in photon energy opens the low-x shadowing region Results are quite consistent with the theoretical model

Photon Energy

 $0.008 < z_{\gamma} < 0.015$

16

Scanning in photon energy

Most energetic photons gives access to the lowest x_A PDFs

<u>Photon Energy</u>

 $0.015 < z_{\gamma} < 0.027$

Observing OnOn exclusive dijets

Dijet production in 0n0n ZDC topology with gaps on both sides
 Observe 10x the prediction of Pythia8 yy -> qq
 Broader rapidity distribution (as well as a coplanarity distribution)

2023 5.36 TeV Pb+Pb Run

Run: 461633 10 nt: 9203837 2023-09-26 20:24:30 CEST Collection of a luminosity similar to that of 2018

Upgrade to the ZDC electronics allows for a more differential triggering scheme

Collected 10x more XnXn UPC jet events to probe breakup

Conclusion

Photonuclear dijet production was measured by ATLAS in 5.02 TeV Pb+Pb collisions with 2018 data

- <u>Particle-flow jets</u> allow the measurement to be extended even lower in jet $p_{\rm T}$ while maintaining systematic control
- This measurement has been *fully unfolded* for detector response for the first time.

Paper with final results will be coming out in the next few months

• Sizable reduction of systematic uncertainties will be achieved

With Run 3 data and the robust measurement shown here, ATLAS is well positioned to do more differential studies in the future

- Detailed measurements of the breakup case
- Direct vs resolved separated
- Angular correlations
- Measurements of exclusive dijet production

Thank You!