Nantes Université

Photoproduction of J/ψ and dileptons in events with nuclear overlap

Nicolas Bizé, on behalf of the ALICE Collaboration

UPC 2023 - Playa del Carmen - 14/12/23

- Physics motivations and experimental apparatus
- Results
 - Dielectron photoproduction measurement at midrapidity
 - Coherently photoproduced J/ ψ y differential cross section at forward rapidity
 - Inclusive J/ ψ polarization at forward rapidity
- Summary and outlook

In Ultra-Peripheral Collisions (UPC)

• Strong EM fields generated in ultra relativistic heavy-ion collisions can be treated as quasi-real photon flux $\propto Z^2$

In Ultra-Peripheral Collisions (UPC)

- Strong EM fields generated in ultra relativistic heavy-ion collisions can be treated as quasi-real photon flux $\propto Z^2$
- Ideal ground to study processes such as vector meson or dilepton photoproduction

In Ultra-Peripheral Collisions (UPC)

- Strong EM fields generated in ultra relativistic heavy-ion collisions can be treated as quasi-real photon flux $\propto Z^2$
- Ideal ground to study processes such as vector meson or dilepton photoproduction

In Ultra-Peripheral Collisions (UPC)

- Strong EM fields generated in ultra relativistic heavy-ion collisions can be treated as quasi-real photon flux $\propto Z^2$
- Ideal ground to study processes such as vector meson or dilepton photoproduction

In events with nuclear overlap

- Vector meson photoproduction
 - Probe gluon distribution in different Bjorken-*x* regions in nuclei $(10^{-5} < x < 10^{-2} \text{ at LHC energies})$
 - collision
- Dilepton photoproduction
 - Map EM fields generated by highly Lorentz-contracted nuclei
- Possible QGP medium effects

Hadronic interactions become dominant

- Test the coherence while nucleus breaking during hadronic

Nicolas Bizé

UPC 2023 - Playa del Carmen

Nicolas Bizé

V Université

UPC 2023 - Playa del Carmen

Dielectron photoproduction in events with nuclear overlap

Nicolas Bizé

UPC 2023 - Playa del Carmen

Dielectron in Pb—Pb collisions with nuclear overlap

Measured in STAR and ATLAS (PRL 121, 212301 (2018))

PRL 121, 132301 (2018)

Dielectron in Pb—Pb collisions with nuclear overlap

Measured in STAR and ATLAS (PRL 121, 212301 (2018))

Dielectron excess w.r.t. hadronic cocktail

Nicolas Bizé

UPC 2023 - Playa del Carmen

PRL 121, 132301 (2018)

Dielectron excess in Pb—Pb collisions with nuclear overlap

- Measurement of a low mass dielectron excess at very low $p_{\rm T}$ and **midrapidity** in peripheral Pb—Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at LHC
- Efficiency-corrected dielectron invariant mass spectra in centrality 50-70 % and 70-90 %
 - Excess compared to hadronic expectation in both centrality classes, with larger significance in peripheral Pb–Pb collisions

JHEP 06 (2023) 024

14/12/23

1	
I	=
_ 3	=
1∩ ⁻୰	_
IU	
	=
	_
	=
	_
	_
	=
	_
	_
	=
ev/c	_
, I .	. —
	Ξ
	Ξ
	_
	_
	_
	_
	_
	=
	Ξ
2.5	
~	
	<u>ں</u>
ie\//r	<u>י</u> <
	' '

Jubatech

Dielectron excess in Pb—Pb collisions with nuclear overlap

- Measurement of a low mass dielectron excess at very low $p_{\rm T}$ and **midrapidity** in peripheral Pb—Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at LHC
- Thermal radiation from medium is expected to be at least one order of magnitude smaller than the measured excess

QED:

W. Zha et al., Phys. Lett. B 800 (2020) 135089 J. D. Brandenburg et al., Eur. Phys. J. A 57 (2021) 299

STARlight: S.R. Klein et al., Comput. Phys. Commun. 212 (2017) 258 S.R. Klein, Phys. Rev. C. 97 (2018) 054903

JHEP 06 (2023) 024

Wigner:

M. Klusek-Gawenda et al., Phys. Lett. B. 814 (2021) 136114

Nicolas Bizé

UPC 2023 - Playa del Carmen

Dielectron photoproduction in Pb—Pb collisions with nuclear overlap

JHEP 06 (2023) 024

QED: W. Zha et al., Phys. Lett. B 800 (2020) 135089 J. D. Brandenburg et al., Eur. Phys. J. A 57 (2021) 299

Wigner: M. Klusek-Gawenda et al., Phys. Lett. B. 814 (2021) 136114

Nantes V Université

Nicolas Bizé

UPC 2023 - Playa del Carmen

- Clear peak observed for $p_{\rm T,ee}$ < 0.1 GeV/*c* in all m_{ee} intervals in centrality range 70-90 %
- Data described by $\gamma\gamma$ models including impact parameter dependence of photon $k_{\rm T}$ distribution
- STARlight model does not reproduce excess at very low $p_{T.ee}$

STARlight:

S.R. Klein et al., Comput. Phys. Commun. 212 (2017) 258 S.R. Klein, Phys. Rev. C. 97 (2018) 054903

Coherent photoproduced J/ψ y-differential cross section at forward rapidity

Vector meson photoproduction in events with nuclear overlap

Nicolas Bizé

14/12/23

11

J/ψ yield excess in Pb—Pb with nuclear overlap

 J/ψ excess observed at very low $p_{\rm T}$ < 0.3 GeV/cand forward rapidity in peripheral Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV and 5.02 TeV

PRL 116, 222301(2016)

STARlight: S.R. Klein et al., Comput. Phys. Commun. 212 (2017) 258

V Université

ALI-PUB-561525

Increase of J/ ψR_{AA} in agreement with model including a dominant photoproduction mechanism at low $p_{\rm T}$ in most peripheral collisions

UPC 2023 - Playa del Carmen

14/12/23

12

How to obtain the coherent photoproduced J/ψ contribution ?

Coherently photoproduced J/ψ yield :

How do we extract the J/ ψ yield excess?

Nicolas Bizé

 f_I : fraction of incoherently photoproduced J/ ψ f_D : fraction of J/ ψ feed down from coherently photoproduced $\psi(2S)$

J/ψ yield excess in Pb—Pb with nuclear overlap

The J/ ψ yield excess can be expressed as :

$$Y_{J/\psi}^{\text{excess}} = Y_{J/\psi}^{\text{raw}} - Y_{J/\psi}^{\text{hadronic}}$$

Hadroproduced J/ ψ yield is estimated with :

$$Y_{J/\psi}^{\text{hadronic}} \equiv \int_{0}^{0.3} \frac{dN_{AA}^{h}}{dp_{\text{T}}} \left(p_{\text{T}}\right) \, dp_{\text{T}} = \mathscr{N} \int_{0}^{0.3} \frac{d\sigma_{pp}^{h}}{dp_{\text{T}}} \left(p_{\text{T}}\right) \times R_{AA}^{h} \left(p_{\text{T}}\right) \times A\varepsilon_{AA}^{h} \left(p_{\text{T}}\right) \, dp_{\text{T}}$$

Normalization factor Hadronic J/ψ cross section in pp collisions Hadronic J/ ψ nuclear modification factor Acceptance efficiency in Pb-Pb

IN Nantes

V Université

14

Coherent J/ ψ photoproduction in Pb – Pb with nuclear overlap

Centrality dependence

ALI-PREL-503800

- Measurements of the coherent photoproduced J/ψ cross section at mid and forward rapidity show **no significant centrality dependence**
- Data qualitatively described by UPC models extended to describe events with nuclear overlap

14/12/23

Jubatech

Coherent J/ ψ photoproduction in Pb – Pb with nuclear overlap

Rapidity dependence

- Theoretical models predict a strong rapidity dependence for vector meson photoproduction cross section
- New y-differential measurement performed in Pb—Pb collisions at $s_{\rm NN} = 5.02$ TeV with nuclear overlap

0.45 dơ/dy [mb] 0.35 0.25 0.15 0.05

Coherent J/ ψ photoproduction in Pb – Pb with nuclear overlap

Rapidity dependence

- Theoretical models predict a strong rapidity dependence for vector meson photoproduction cross section
- New y-differential measurement performed in Pb-Pb collisions at $s_{NN} = 5.02$ TeV with nuclear overlap

0.45 dơ/dy [mb] 0.35 0.25 0.15 0.05

Raw J/ψ yield in rapidity intervals

ALI-PREL-548019

J/ψ signal extracted in **different rapidity intervals** from the dimuon invariant mass spectra

17

Raw J/\psi yield in rapidity intervals

ALI-PREL-548019

J/ψ signal extracted in **different rapidity intervals** from the dimuon invariant mass spectra

Hadronic J/ ψ yield modeling at very low $p_{\rm T}$

$$Y_{J/\psi}^{\text{hadronic}} \equiv \int_{0}^{0.3} \frac{dN_{AA}^{h}}{dp_{\text{T}}} \left(p_{\text{T}}\right) \, dp_{\text{T}} = \mathcal{N} \int_{0}^{0.3} \frac{d\sigma_{pp}^{h}}{dp_{\text{T}}} \left(p_{\text{T}}\right) \times R_{AA}^{h} \left(p_{\text{T}}\right) \times A\varepsilon_{AA}^{h} \left(p_{\text{T}}\right) \, dp_{\text{T}}$$

Nicolas Bizé

14/12/23

18

Hadronic J/ ψ yield modeling at very low p_{T}

$$Y_{J/\psi}^{\text{hadronic}} \equiv \int_{0}^{0.3} \frac{dN_{AA}^{h}}{dp_{\text{T}}} \left(p_{\text{T}}\right) \, dp_{\text{T}} = \mathcal{N} \int_{0}^{0.3} \frac{d\sigma_{pp}^{h}}{dp_{\text{T}}} \left(p_{\text{T}}\right) \times R_{AA}^{h} \left(p_{\text{T}}\right) \times A\varepsilon_{AA}^{h} \left(p_{\text{T}}\right) \, dp_{\text{T}}$$

• R_{AA} strongly increases at low $p_{\rm T}$ < 0.3 GeV/cfor all rapidity intervals

• Using R_{AA} (excluding excess region and assuming instead smooth evolution of R_{AA} from high to low $p_{\rm T}$), and J/ ψ cross section in pp, the expected hadronic J/ψ yield is modeled as :

$$Y_{J/\psi}^{\text{excess}} = Y_{J/\psi}^{\text{raw}} - Y_{J/\psi}^{\text{hadronic}}$$

19

Coherently photoproduced J/ψ cross section

Rapidity dependence

ALI-PREL-548022

 Measurement shows a strong rapidity dependence in peripheral Pb-Pb collisions

Coherently photoproduced J/ψ cross section

Rapidity dependence

ALI-PREL-547942

- Measurement shows a strong rapidity dependence
- Data qualitatively described by UPC models extended for collisions with nuclear overlap, but the rapidity dependence is not reproduced

Models :

- GG-hs : γ flux with constraints on impact parameter range
- Zha : assumptions on γ -pomeron coupling
- GBW/IIM S3 : only γ reaching the spectator nucleon region considered + nuclear overlap is not considered in the calculation of $\sigma_{\gamma Pb}$

21

Coherently photoproduced J/ψ cross section

Rapidity dependence

ALI-PREL-547985

- Focus on different scenarios for GBW/IIM models :
- GBW/IIM S1 : no relevant modifications w.r.t.
 - **UPC** calculations
- GBW/IIM S2 : only γ reaching spectator
 - nucleon region considered + $\sigma_{\gamma Pb}$ unmodified
 - GBW/IIM S3 : S2 + nuclear overlap <u>not</u> considered in $\sigma_{\gamma Pb}$ calculation
 - All three scenarios are able to describe lacksquarequalitatively the order of magnitude of the cross section

Inclusive J/ψ polarization

Vector meson photoproduction in events with nuclear overlap

Nicolas Bizé

UPC 2023 - Playa del Carmen

Coherently photoproduced J/ ψ polarization in Pb – Pb collisions

 Vector meson expected to keep the polarization of the incoming photon (s-channel helicity conservation)

 J/ψ polarization measured via dimuon decay channel where the dimuon angular distribution is :

$$W(\cos(\theta,\phi)) \propto \frac{1}{3+\lambda_{\theta}} \left[1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi \right]$$

 $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0, 0, 0) \longrightarrow \text{No polarization}$ $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (+1, 0, 0)$ —> Transverse polarization $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1, 0, 0) \longrightarrow \text{Longitudinal polarization}$

Coherently photoproduced J/ ψ polarization in Pb – Pb collisions

UPC results are found to be consistent with $\lambda_{\theta} = 1$, indicating a coherently photoproduced J/ψ transverse polarization

UPC 2023 - Playa del Carmen

Nicolas Bizé

J/ψ signal extraction in angular intervals

Nicolas Bizé

 J/ψ signal is extracted for six different cos θ intervals at low p_T ($p_T < 0.3$ GeV/c) in Pb-Pb peripheral collisions from dimuon invariant mass spectra

14/12/23

Inclusive J/ ψ polarization in Pb—Pb collisions

Angular distribution suggests a transverse polarization

Nantes Université

Nicolas Bizé

UPC 2023 - Playa del Carmen

Inclusive J/ ψ polarization in Pb—Pb collisions

Angular distribution suggests a transverse polarization

Nantes Université

Nicolas Bizé

UPC 2023 - Playa del Carmen

ALI-PREL-546778

λ_{θ} value of inclusive J/ ψ for $p_{\rm T}$ < 0.3 GeV/c consistent with UPC measurements

Summary

- Dielectron excess measurement at midrapidity, low $p_{\rm T.ee}$ < 0.2 GeV/c and low dielectron invariant mass
 - Agreement with $\gamma\gamma$ models including impact parameter dependence of the photon $k_{\rm T}$ distribution
- $p_{\rm T}$ < 0.3 GeV/*C*
 - _ description. *y*-dependence of cross section not well reproduced
- First J/ ψ polarization measurement at forward rapidity
 - Hint for transverse polarization of inclusive J/ ψ for $p_{\rm T}$ < 0.3 GeV/c

• y-differential coherently photoproduced J/ ψ excess at forward rapidity and low

Comparison with UPC models extended to account for nuclear overlap offers qualitative data

- Agreement with expectations from s-channel helicity conservation and with UPC measurement

28

ALICE Run 3 and Run 4 will provide a larger Pb—Pb data sample :

- Study J/ ψ photoproduction in more central events both at mid and forward rapidity
- Better precision on cross section and polarization measurements to constrain the models
- Access excited states like ψ (2S), to look for possible QGP effects on the photoproduced vector meson

Thank you for your attention !

Back up

Dielectron excess in two centrality classes

Nicolas Bizé

Jubatech

$p_{\rm T,ee}$ distributions in different invariant mass intervals

UPC 2023 - Playa del Carmen

Jubatech

