Overview of latest UPC results from CMS (& first glimpse in Run 3)

GK Krintiras (cern.ch/gkrintir)
on behalf of the CMS Collaboration

Contact:

cms-phys-conveners-HIN (CMS HIN Physics conveners) cms-hi-ping-leaders-forwardupc (CMS HIN Forward/UPC conveners)

UPC 2023: International workshop on the physics of Ultra Peripheral Collisions

- Gluon saturation and initial-state effects
 - Coherent J/ψ cross session in UPC PbPb, HIN-22-002
 - comprehensive study vs W_{vN}, also in forward neutron multiplicities (A_nA_n)
 - Azimuthal correlations of exclusive dijets with large Q_→ in pPb, HIN-18-011
 - nontrivial parton distributions inside Pb or simply from ISR/FSR?

- Gluon saturation and initial-state effects
 - Coherent J/ψ cross session in UPC PbPb, HIN-22-002
 - comprehensive study vs W_{vN}, also in forward neutron multiplicities (A_nA_n)
 - \circ Azimuthal correlations of exclusive dijets with large Q_{τ} in pPb, HIN-18-011
 - nontrivial parton distributions inside Pb or simply from ISR/FSR?
- UPC modeling
 - Observation of A_nA_n-dependence of dimuon acoplanarity in UPC PbPb, HIN-19-014

- Gluon saturation and initial-state effects
 - Coherent J/ψ cross session in UPC PbPb, HIN-22-002
 - comprehensive study vs W_{yN} , also in forward neutron multiplicities $(A_n A_n)$
 - \circ Azimuthal correlations of exclusive dijets with large Q_{τ} in pPb, HIN-18-011
 - nontrivial parton distributions inside Pb or simply from ISR/FSR?
- UPC modeling
 - o Observation of A_nA_n-dependence of dimuon acoplanarity in UPC PbPb, HIN-19-014
- Particle collectivity
 - Two-particle azimuthal correlations in γp interactions using pPb, HIN-18-008
 - strongly interacting fluid that responds to the initial geometry?

- Gluon saturation and initial-state effects
 - Coherent J/ψ cross session in UPC PbPb, HIN-22-002
 - \blacksquare comprehensive study vs W_{vN}, also in forward neutron multiplicities (A_nA_n)
 - \circ Azimuthal correlations of exclusive dijets with large Q_{τ} in pPb, HIN-18-011
 - nontrivial parton distributions inside Pb or simply from ISR/FSR?
- UPC modeling
 - Observation of A_nA_n-dependence of dimuon acoplanarity in UPC PbPb, HIN-19-014
 - Particle collectivity
 - Two-particle azimuthal correlations in γp interactions using pPb, HIN-18-008
 - strongly interacting fluid that responds to the initial geometry?
 - **QED** precision and BSM searches
 - \circ Observation of τ lepton pair production in UPC PbPb, HIN-21-009 (editors' suggestion)
 - pursuing better constraints on τ lepton anomalous magnetic moment than LEP(II)
 - Evidence for γy→γy and searches for axion-like particles in UPC PbPb, FSQ-16-012
 - <u>first ATLAS+CMS combination</u> (HonexComb group)

- Gluon saturation and initial-state effects
 - Coherent J/ψ cross session in UPC PbPb, HIN-22-002
 - comprehensive study vs $\mathbf{W}_{\mathbf{vN}}$, also in forward neutron multiplicities $(A_n A_n)$
 - \circ Azimuthal correlations of exclusive dijets with large Q_{τ} in pPb, HIN-18-011
 - nontrivial parton distributions inside Pb or simply from ISR/FSR?
- UPC modeling
 - Observation of A_nA_n-dependence of dimuon acoplanarity in UPC PbPb, HIN-19-014
- Particle collectivity
 - Two-particle azimuthal correlations in γp interactions using pPb, HIN-18-008
 - strongly interacting fluid that responds to the initial geometry?
- QED precision and BSM searches
 - Observation of τ lepton pair production in UPC PbPb, HIN-21-009
 - lacktriangle pursuing better constraints on τ lepton anomalous magnetic moment than LEP(II)
 - o Evidence for yy→yy and searches for axion-like particles in UPC PbPb, FSQ-16-012

All results published as letters (*) nonexhaustive list (e.g., rapidity gaps, etc)

Event classification in neutron multiplicity classes

UPC 2023

Fewer neutrons

- - 0n0n, 0nXn, XnXn (X: ≥1)
 - high purity

Method established in HIN-19-014

11/12/2023

More neutrons

$\langle \alpha^{core} \rangle$ vs. neutron multiplicity class

HIN-19-014

Strong (5.7 σ) neutron multiplicity dependence of $\langle \alpha^{core} \rangle$

- b dependence of initial photon p_{τ} , not captured by STARLight (recent dev in <u>SuperChic</u>)
- Best described by a QED calculation with Sudakov effect

$\langle \alpha^{core} \rangle$ vs. neutron multiplicity class

HIN-19-014

Strong (5.7 σ) neutron multiplicity dependence of $\langle \alpha^{core} \rangle$

- b dependence of initial photon p_T , not captured by STARLight (recent dev in <u>SuperChic</u>)
- same QED calculation w/o Sudakov effect → high-precision data

Search for gluon saturation in heavy nuclei-the challenge

Symmetric system: either ion can serve as the photon source or target nucleus

- A two-way ambiguity!

The cross section at a given y consists of low- and high-x gluon contributions (except for y=0)

- No unambiguous access to $x \sim 10^{-5}$

$$c_{1,2} \, = \, rac{1}{\omega_{1,2}} \cdot rac{M_{VM}^2}{2 \sqrt{s_{
m NN}}} \, .$$

Search for gluon saturation in heavy nuclei-the answer?

HIN-22-002

The cross section at a given *y* consists of low- and high-x gluon contributions (except for y=0)

- No up an alguous access to $x \sim 10^{-5}$

See <u>Luis's talk</u>

CMS UPC 2023 11/12/2023

The anomalous anomaly for e's & µ's

bound e's

Nature **622** (2023) 53

PRL 26 (2021) 141801, 2308.06230

- ALPHATRAP tested high-field QED in hydrogen-like heavy nuclei
- FNAL g-2 reconfirmed previous discrepancy
 - the exact level depends on theory considerations

Maybe their heavier cousin is more sensitive to new physics?

τ 's are multifaceted

- ττ signal regions can be then defined based on the lepton and/or hadron multiplicity
 - dilepton: the lowest reco efficiency
 - $1\ell + 1$ track: main bkg due to $\mu\mu$, ee
 - 1ℓ + 3 tracks: clean with high enough yield

All channels needed for ultimate precision

Data-to-exp comparison: control plots in the signal region

- Very good agreement between data & expectations
 - signal MC (aMC@NLO) is scaled to the integrated luminosity
 - we're in an almost bkg-free phase space region(!)
 - unambiguous reconstruction of the T⁺T⁻ system

HIN-21-009

See <u>Matthew's talk</u>

CMS

UPC 2023

11/12/2023

Available LbyL UPC measurements (so far)

- ATLAS
 - 2015 data, 0.48/nb, Nature Phys. 13 (2017) 9, 852-858
 - 2018 data, 1.73/nb, Phys.Rev.Lett. 123 (2019) 052001
 - 2015+18 data, 2.2/nb, JHEP 03 (2021) 243
- CMS
 - 2015 data, 0.39/nb, Phys.Lett.B 797 (2019) 134826
 - LbyL 018-12-01 08:30:26 CEST
- 1. How an averaged value compared to theory?
- Could some SM bkg explain the excess?

Averaged result and comparison to theory

• The data-to-theory discrepancy is at ~2σ level

GKK et al arXiv:2204.02845 (presented in QM22)

Trying to explain the excess

GKK et al arXiv:2204.02845 (presented in QM22)

- We calculated the inclusive σ for the photoproduction of ηь(1S)
 - σ = (0.19–1.41) 10⁻² nb (range reflects max. and min. of γγ decay rates)
- this contribution isn't significant
- alternative efforts <u>exist</u>, e.g., γγ decay of the recently discovered X(6900) exotic meson

Trying to explain the excess

GKK et al arXiv:2204.02845 (presented in QM22)

- We calculated the inclusive σ for the photoproduction of ηь(1S)
- σ = (0.19–1.41) 10⁻² nb (range reflects max. and min. of γγ decay rates)
- this contribution isn't significant
- alternative efforts <u>exist</u>, e.g., γγ decay of the recently discovered X(6900) exotic meson

Exclusive dijets with large momentum transfer in yPb collisions

- Good agreement between data and MC.
 - Photon flux in RAPGAP correctly reproduces UPC γPb data
- The measurement is performed in Q_T < 25 GeV
 - large momentum transfer but "back-to-back" regime, i.e., P_T > Q_T

Vector sum of 2 jets:

$$\vec{Q}_T = \vec{k_1} + \vec{k_2}$$

Vector difference of 2 jets

$$\vec{P}_T = \frac{1}{2}(\vec{k_1} - \vec{k_2})$$

HIN-18-011

UPC 2023

Angular correlations in exclusive dijets

- $\Phi \equiv \text{correlation between } \mathbf{P}_{\mathbf{T}} \text{ and } \mathbf{Q}_{\mathbf{T}}$
- Similar trend between data and RAPGAP, with prediction slightly above (below) the data
- <cos(2Φ)> reaches a constant value \sim 0.4 at Q_{τ} > 5 GeV
 - prediction including final-state interactions better describes data
 - recent finding: initial soft gluon emissions also gives sizeable <cos(2Φ)>

Collectivity in yp vs yPb collisions

- v₂ in γp > than min-bias events
 - no "non-flow" subtraction: challenging in low N_{trk}
 - PYTHIA8 describes v₂ → jet-like correlations dominate(?)
- v₂ in γPb < than pPb and pp at similar multiplicity

5.36 TeV PbPb Collisions!

First CMS Run 3 result - $dN_{ch}/d\eta$

- 5.36 TeV data from 2022 test run
- Challenging for MC generators to predict both magnitude and shape of $dN_{ch}/d\eta$
- $\sqrt{s_{N\!N}}$ dependence consistent with power law calculated using lower energies

PAS-HIN-23-007

Grand summary so far...

- Despite decreased LHC availability, PbPb lumi in Run 3 already ~ Run 2
- Relied on many new concepts → lessons learned (see Roderik's <u>talk</u> at 156th LHCC)
 → Ongoing studies to improve understanding and define mitigation measures

Heavy ion data-taking strategy in 2023

- **Record** L1 rate > 50 kHz (vs 35 kHz in 2018) with less than 8% deadtime
 - o up to 50 kHz at the beginning of the fill (large amount of MB)
 - > 60 kHz at the end of the fill recording increased amount of UPC
 - other physics triggers too (high- p_T jets, leptons, etc)

ZDC Offline Energy Sums

- **Excellent** ZDC performance
 - neutron peaks are clearly seen
 - ZDC+ has slightly better resolution
 - o ZDC included as **part of the trigger** for the first time

New jet and hadron triggers for photo-nuclear events DP-2023-X

- **UPC jet and heavy flavor** data sample
 - o jet pT > 16 GeV was run **unprescaled** over the entire data-taking period
 - \circ access of HF hadrons down to p_T of 2.5 GeV

Similar lumi, but **huge** improvements in Run 3 PbPb DP-2023-X

Unprecedented sample of UPC jet and heavy flavor events
 → in 2018 we relied on zero-bias trigger meaning we went from millions to billions

28

Hadronic

UPC jets and

Run 2 (2018)

Run 2 (2018)

Run 3 (2023)

Additional improvements in Run 3 PbPb DP-2023-011

- Increased MB trigger efficiency in peripheral events with ZDC inclusion
- better low-pT tracking thanks to innermost pixel layer consideration
 → increased efficiency and reduced fake rate

• **Dedicated UPC setup** to further improve low- p_T reconstruction capabilities \rightarrow *tracks down to p_T of 50 MeV*

Validation of tracking and dE/dx prospects in Run 3 PbPb

- Excellent resolution for low-mass resonances
- Good PID discrimination using dE/dx
 - → better control of background

Testing the limits of low p_{τ} EGM reconstruction in Run 3 PbPb DP-2023-X

Dedicated UPC setup to access low-p_T electrons (new) and photons (like in Run 2)
 → electromagnetic (EGM) objects down to p_T of 0.5-1 GeV

Validation of low p_{τ} lepton reconstruction in Run 3 PbPb DP-2023-X

- Excellent resolution for **intermediate-mass resonances**
 - \rightarrow $\psi(2S)$ peak already evident despite a small fraction of data is shown

Outlook

- Rich set of UPC results with the Run 2 CMS data set
 - more questions than answers...
- CMS has invested heavily (also) in the PbPb Run 3
 - as of now O(10B) UPC events recorded
 - \circ further offline optimization in the (very) low-p_T realm

Thank you for your attention!

EXTRA SLIDES

New hadron triggers for photo-nuclear events

ZDC trigger strategy
 For low p_T: at least 1 broken nucleus ("ZDC OR") - no p_T requirement on central system

New jet triggers for photo-nuclear events

- ZDC trigger strategy
- \circ For low p_T: at least 1 broken nucleus ("ZDC OR") no p_T requirement on central system
 - For high p_T: one nucleus remains intact ("ZDCXOR") & asymmetric ZDCXOR for jets
 - 1 ZDC > a low threshold (TL), and the other ZDC < a high threshold (TH)

11/12/2023

Approximated SST clusters — "RAW"

LHCC poster

- PbPb Run2 at 5.02 TeV (2015-2018):
 SST info is stored as per-strip ADC counts in raw data
- PbPb Run3 at 5.36 TeV (from 2023): new RAW' data format is deployed
 - Implemented in the High Level Trigger
 - Rectangular cluster-amplitude approximation, in place of the original per-strip-ADC-count data format:
 - Barycenter: amplitude-weighted strip-index center (10% strip's width precision)
 - Size: the length of the cluster's strip sequence (exact info from original cluster)
 - Average charge: average amplitude of the strip sequence (integer precision)
 Total charge has the precision of (cluster's size) * (integer precision)
 - Booleans for the strips' amplitude saturation and the cluster shape peak filter
 - A list of modules associated to Front End Driver in error state is stored on the event basis

SST cluster format	RAW			RAW'		
Stored content	Strip index		ADC counts (8-bit int)	Approximated cluster properties	[Event-basis]	
Example stored tracker data	First strip 123 (16-bit int)		75	Barycenter = 125.5 (10-bit int) (We store 10x barycenter as int)		
	(derived by first strip & ADC list)	124	103	Size = 6 (6-bit int) Average charge = 100 (8-bit int) Cluster shape: (1-bit Boolean)	FED modules 8 readout error info	
		125	127			
		126	94			
		127	161			
		128	42	Saturated strip Peak filter		
Example total bits per cluster	16 + 8*6 = 64 bits			10 + 6 + 8 + 1*2 = 26 bits + smaller FED error contribution		

An example and sketch of RAW & RAW' SST cluster data format

SST cluster property validations LHCC poster Performance check on tracks

 Good agreement on cluster barycenter & charge btw original RAW v.s. RAW' data format!

- Preserving barycenter accuracy within a deviation of 10% the strip's width
- Outliers in the cluster charge scatter plot are impacts from noisy and dead SST channels

 An agreement better than 2% btw RAW & RAW' is achieved!

- * The uncertainties shown in the plots are statistical errors
- * Analysis-level track selections are applied

Some relevant publicity

 Photon-nucleus energy dependence of coherent J/ψ cross session in UPC PbPb, HIN-22-002

 \circ comprehensive study of the coherent J/ ψ photo-production, also in neutron

multiplicities

CERN seminar (CMS Collaboration)

Probing gluon pdf at x->0 with ultraperipheral PbPb collisions at 5.02 TeV in CMS

PRL Editor's suggestion, Summary

- Observation of τ lepton pair production in UPC PbPb, HIN-21-009
 - \circ pursuing better constraints on τ lepton anomalous magnetic moment than LEP(II)

In-jet v₂ with respect to the jet axis

- In rotated reference frame, calculate two particle correlation using jet constituents
- v_2 well described by MC for N_{ch}^{jet} <80
- Upward trend seen for N_{ch}^{jet} >80
 - Potential sign of collectivity in jets?

CMS PAS HIN-23-013

Coherent J/ψ in Run 1

PLB 772 (2017) 489

- Run 1 data from CMS and ALICE well consistent with LTA model calculations
- Large uncertainties and wide y bins

First \sim calculations on exclusive J/ ψ production

- First NLO pQCD calculations published recently (Eskola et al).
- Quark contributions at NLO + strong cancellations between LO and NLO gluons
 → dominance of quark contribution at central rapidities.

- Needs careful attention when interpreting the data.
- "σ ∝ (gluon PDF)²" not true at NLO.
- Large scale dependency.

Overview of the $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$ process

- **Promising candidate** for the a_{τ} = $(g_{\tau}$ -2)/2 determination
 - "using a large heavy ion collider" for g_r-2 suggested since 90s
 - cross section in UPC receives a **Z⁴ enhancement** relative to pp
- LHC could **improve** the sensitivity on a_{τ} relative to LEP

au lepton photoproduction in ultraperipheral collisions (UPC)

11/12/2023

LbyL scattering (with UPC)

- BSM at high masses: Increase √s
- BSM at **low couplings**: Increase \mathcal{L}
 - plus taking advantage of reduced pileup, kin. thresholds, and clean final states
- Thanks to Z⁴ ~10⁷ factor in PbPb, γγ luminosities >> pp ones at low W_{γγ}

α spectrum vs. neutron multiplicity

- 0n0n (fewer neutrons) → XnXn (more neutrons)
 - Tail contribution becomes larger.
 - Seems has depletion in the very small α .

$\langle m^{\mu\nu} \rangle$ vs. neutron multiplicity

Strong neutron multiplicity dependence of (m,,,,)

- Deviation from constant >> 5σ
- b dependence of initial photon energy.

Ultra-peripheral nuclear collisions

When two ions "miss" each other, no QGP is created but,

- Strong EM fields generated by relativistic ions (B $\sim 10^{16}$ T).
- Lorentz contracted EM fields \rightarrow flux of quasi-real γ (Q²< \hbar ²/R²). The photon flux \propto Z².
 - Photon kinematics: $p_T < \hbar/R_A \sim 30 \text{ MeV}$ ($E_{max} \sim 80 \text{ GeV}$) at LHC.

- light-light and light-Nucleus collider
- BSM searches (ALP, g_{τ} -2).

Vector meson photoproduction

Directly probes gluonic structure of nucleus and nucleon.

At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]² (gluon PDFs)

Coherent production:

- Photon ($\hbar/k_L > 2R$) couples coherently to whole nucleus.
- Vector Meson (VM) $\langle p_T^{\cdot} \rangle \sim 50 \text{ MeV}.$
- Target nucleus usually remains intact.

Incoherent production:

- Photon couples to part of nucleus.
- VM $< p_{\tau} > \sim 500 \text{ MeV}.$
- Target nucleus usually breaks.

Final state kinematics directly map to:

• Photon energy:
$$\omega = \frac{M_{VM}}{2} e^{\pm y}$$

• **Bjorken-x** of gluons:
$$x = \frac{M_{VM}}{\sqrt{s_{\mathrm{NN}}}} e^{\mp y}$$

Coherent J/Ψ in 0n0n, 0nXn, XnXn help to disentangle

CMS-PAS-HIN-22-002

• Disentangle the low- and high- energy photon-nucleus contributions of a single y+Pb.

- Tracker and muon detectors used to reconstruct/identify muons.
- CMS able to reconstruct muons down to muon p_{τ} ~ 1 GeV in forward region.

Search for gluon saturation with yp interactions

J/ψ photoproduction from **photon-proton** interactions in ep, pPb and pp collisions

Data follow a power-law trend, consistent with expectation from the rapidly increasing gluon density in a proton.

No clear indication of gluon saturation down to $x \sim 10^{-5}$ in a free nucleon.

Search for gluon saturation with heavy nuclei

- Coherent Vector Meson production extensively measured at LHC.
- LO: $\sigma(J/\psi) \propto [xG(x)]^2 \rightarrow \sigma(J/\psi) < I.A.$ (no nuclear effects) \rightarrow evidence for strong nuclear modification in heavy nuclei.
- No theory calculations (e.g., shadowing, saturation) can simultaneously predict mid- and forward rapidity data!?

How robust our signal extraction is?

Signal yields are extracted by fitting the mass and transverse momentum spectra.

Clean event sample, well described

Coherent J/ψ in forward and mid-rapidity ranges

ALICE, **EPJC 81 (2021) 712**

LHCb, arXiv:2206.08221

AnAn: No forward neutron selection

 A tension between ALICE forward and mid rapidity data?

Coherent J/ψ in extended rapidity range

CMS-PAS-HIN-22-002

(*) measured in |y| but placed in y<0 for illustration

- A tension between ALICE forward and mid rapidity data?
- CMS data cover a unique rapidity region.

$$\frac{d\sigma_{J/\psi}^{coh}}{dy} = \frac{N(J/\psi)}{(1 + f_I + f_D) \cdot \epsilon(J/\psi) \cdot Acc(J/\psi) \cdot BR(J/\psi \to \mu\mu) \cdot L_{int}} \cdot \Delta y$$

- Extracted from the fits
 - o incoherent (f_I) and feed-down (f_D) fractions
- Calculated in-situ
 - efficiency (ε) and acceptance (Acc)
- Estimated from calibration methods
 - integrated luminosity L_{int} (<u>PAS-LUM-18-001</u>)
- Given as external input
 - the BR

A solution to the two-way ambiguity puzzle

Guzey et al., EPJC 74 (2014) 2942

Low-energy γ

$$w_1=rac{M_{VM}}{2}e^{-y}$$

$$w_2=rac{M_{VM}}{2}e^{+y}$$

High-energy γ

What is measured Photon flux from theory What we want to extract

$$egin{aligned} egin{aligned} rac{d\sigma_{AA o AA'J/\psi}^{0nXn}}{dy} = N_{\gamma/A}^{0nXn}(\omega_1) \cdot oldsymbol{\sigma}_{\gamma A o J/\psi A'(\omega_1)} + N_{\gamma/A}^{0nXn}(w_2) \cdot oldsymbol{\sigma}_{\gamma A o J/\psi A'(w_2)} \ rac{d\sigma_{AA o AA'J/\psi}^{XnXn}}{dy} = N_{\gamma/A}^{XnXn}(\omega_1) \cdot oldsymbol{\sigma}_{\gamma A o J/\psi A'(\omega_1)} + N_{\gamma/A}^{XnXn}(w_2) \cdot oldsymbol{\sigma}_{\gamma A o J/\psi A'(w_2)} \end{aligned}$$

 \longrightarrow Solve for $\sigma_{\gamma A o J/\psi A'(\omega_1)}$ and $\sigma_{\gamma A o J/\psi A'(w_2)}$

Entering a new regime of small $x \sim 10^{-4}$ - 10^{-5} in nuclei w/o the need to increase the energy!

0.05

Coherent J/ψ in 0n0n, 0nXn, XnXn

CMS-PAS-HIN-22-002

- Data in 0n0n and 0nXn are higher than Leading Twist Approximation (LTA) prediction.
- Data in XnXn stay in between LTA weak suppression (WS) and strong suppression (SS) assumptions.
- Competing experimental (up to \sim 8%) and theory (up to \sim 9%) systematic uncertainty
 - experimental related to fit extraction
 - subdominant efficiency, luminosity, exclusivity, and neutron bin migrations
 - theory related to photon flux estimation

Coherent J/ ψ cross section of single $\gamma+Pb$ vs. W

ALICE, LHCb vs. IA:

- Data close to IA at low W.
- Data lower than IA at W~125 GeV.

New data from CMS:

Rapid increase at W<40 GeV.

Coherent J/ ψ cross section of single $\gamma+Pb$ vs. W

PbPb 1.52 nb⁻¹ (5.02 TeV)

ALICE, LHCb vs. IA:

- Data close to IA at low W.
- Data lower than IA at W~125 GeV.

New data from CMS:

- Rapid increase at W<40 GeV.
- A nearly flat trend for W>40 GeV.

No models can describe the entire

data distribution. Experimental uncertainty highly correlated across W

Nuclear gluon suppression factor

CMS-PAS-HIN-22-002

$$R_g^A = \left(\frac{\sigma_{\gamma A \to J/\psi A}^{exp}}{\sigma_{\gamma A \to J/\psi A}^{IA}}\right)^{1/2}$$

Impulse approx. (IA) neglects all nuclear effects.

- Rg represents nuclear gluon suppression factor at LO.
- $x \sim 10^{-3} 10^{-2}$: flat trend.

Nuclear gluon suppression factor

CMS-PAS-HIN-22-002

$$R_g^A = \left(\frac{\sigma_{\gamma A \to J/\psi A}^{exp}}{\sigma_{\gamma A \to J/\psi A}^{IA}}\right)^{1/2}$$

Impulse approx. (IA) neglects all nuclear effects.

- Rg represents nuclear gluon suppression factor at LO.
- $x \sim 10^{-3} 10^{-2}$: flat trend.
- Quickly decrease towards lower x region.

Beyond models' expectations

What physics behind?

CMS-PAS-HIN-22-002

 $\hat{\sigma}_{ ext{PQCD}}^{ ext{inel}} \leq \hat{\sigma}_{ ext{black}} = \pi R_{ ext{target}}^2$

- ullet σ stops rapid rising trend \to splitting and recombination of gluons become equal
 - Clear evidence for gluon saturation!!?

OR

- Nucleus target becomes totally absorptive to incoming photons → Black Disk Limit!!?
 - Nucleus becomes a black disk, internal structure is invisible.

Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions

Exclusive dijets in UPC PbPb @5 TeV

- Analysis selections (part I):
 - At least one track in the central tracker
 - Particle flow jets using the anti-k_t algorithm with R=0.4
 - Only two jets $|\eta_{lab}|$ < 2.4, $p_{T,1}$ > 30 GeV, $p_{T,2}$ > 20 GeV
 - Veto activity in the forward region (2.8 < $|\eta|$ < 5.2): HF, HE and EE calorimeters

RAPGAP MC extensively exploited for **ep** collisions at HERA is used for modelling exclusive dijet photoproduction via photon-gluon fusion

3

Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions

Exclusive dijets in UPC PbPb @5 TeV

 γ + Pb \rightarrow jet + jet + Pb events are asymmetric in rapidity.

Rapidity Gap Selection: No track with $p_T > 0.2$ GeV, $|\eta| < 2.5$

Two separate data sets are defined: one of them has BRG > FRG, and the other FRG > BRG

Samples are merged by changing the rapidity sign of the jets in the FRG > BRG dataset.

Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions

Exclusive dijets in UPC PbPb @5 TeV

No tracker activity far from the jets to reject non-exclusive and two-photon processes.

- $\max[\eta_{jet} \eta_{track}] < 1$
- Backward Rapidity Gap (BRG) > 1.2

Two-particle (2PC) azimuthal correlations in yp interactions using pPb

- Select enriched sample of γp events in UPC pPb collisions.
- Require no neutron on Pb-going size ZDC, as well as a large region with no detector activity on Pb going side.
- Plots show 2D and 1D 2PCs in γp events and min-bias pPb events.
- Stronger away-side correlation observed in γp events compared to min-bias pPb.

HIN-18-008

Another novel regime of QCD: Black Disk Limit

- L. Frankfurt, V. Guzey, M. McDermott, M. Strikman PRL 87 (2001)192301
- L. Frankfurt, M. Strikman, M. Zhalov, PLB 537 (2002) 51

In the *strong absorption scenario*, the interaction probability may reach the unitarity limit. The nucleus target becomes totally absorptive to incoming photons.

$$\hat{\sigma}_{ ext{PQCD}}^{ ext{inel}} \leq \hat{\sigma}_{ ext{black}} = \pi R_{ ext{target}}^2$$

"Black Disk Limit (BDL)"

- opposite to the "color transparency"

The BDL represents a novel regime at small x when the LO QCD and the notion of the parton distributions becomes inapplicable for describing hard processes .

New theoretical tools are needed in this regime!

The slowly increasing trend at high W

CMS-PAS-HIN-22-002

 Periphery of nucleus may not be fully saturated or fully black at W~40 GeV, but gradually turn to saturated or fully black with further increasing of the probing energy.

Coherent Jpsi in OnOn, OnXn, XnXn

CMS-PAS-HIN-22-002

Fewer neutrons

More neutrons

ALICE UPC ρ vs system size

ALICE, PLB 820 (2021) 136481

If J/Ψ-nucleus approaches BDL, why ρ-Nucleus does not?

- With A decrease, it is harder to reach BDL → the direct A^{2/3} cannot scale to small A.
- Relation of dipole size vs. M in seen by nucleus is different to what seen by nucleon?

Quarkonium photoproduction in y-p

Future opportunities

- Muon systems with $|\eta| < 2.8$
- Trigger and DAQ rate: ~10x

Exciting opportunities ahead by:

- Higher luminosities.
- A variety of ion species.
- Upgrades enabled by new technologies!

__1.8 _ 2.0 _2.2 _ 2.4 2.6 2.8

Hardware commissioning/magnet training

Future opportunities

Various vector meson species in **yPb** as a function of a broad W range with neutron tagging

e.g., control of dipole sizes and hard scales.

CERN yellow report, arXiv:1812.06772

Condition	Tot.	Central 1	Central 2	Forward 1	Forward 2
		Narrow	Wide	Narrow	Wide
Rapidity	-	y < 0.9	y < 2.4	2.5 < y < 4.0	2 < y < 5
$e/\pi/\mu$ pseudorapidity	-	$ \eta < 0.9$	$ \eta < 2.4$	$2.5 < \eta < 4.0$	$2 < \eta < 5$

PbPb $L_{int} = 13 \text{ nb}^{-1}$									
	σ	All	Central 1	Central 2	Forward 1	Forward 2			
Meson		Total	Total	Total	Total 1	Total			
$ ho o \pi^+ \pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B			
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B			
$\phi \to \text{K}^+\text{K}^-$	0.22b	2.9 B	82 M	490 M	15 M	330 M			
$\mathrm{J}/\psi ightarrow \mu^+\mu^-$	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M			
$\psi(2S) \to \mu^+ \mu^-$	$30 \mu \mathrm{b}$	400 K	35 K	180 K	19 K	47 K			
$Y(1S) \to \mu^+ \mu^-$	$2.0~\mu \mathrm{b}$	26 K	2.8 K	14 K	880	2.0 K			

Future opportunities

- Variation of saturation scales in search for gluon saturation.
- When approaching the BDL:
 - \circ Coh. cross section scales with A^{2/3}
 - o Incoh. cross section strongly suppressed, internal substructure becomes invisible

Signal yield estimation

- Binned likelihood fit to a discriminating variable
- Angular separation ($\Delta\phi$) between leptonic and hadronic candidates
 - MC signal (peaky) and bkg template (flat) from data
- Number of observed post-fit signal events: 77 ± 12
- Observed significance is more than 5σ
 - taking into account systematic uncertainties
 - affecting the rate with log-normal priors
 - affecting the shape with Gaussian prior

HIN-21-009

Cross section measurement

CMS

- Extra ingredients needed
 - $L = 404 / \mu b$
 - Bτ_{..}= 17.39%
 - $B\tau_{s pronq} = 14.55\%$
 - **efficiency** (ϵ) from MC = 78.5%

$$\sigma(\gamma\gamma \to \tau^+\tau^-) = N_{\rm sig}/(2\epsilon\,\mathcal{L}_{\rm int}\,\mathcal{B}_{ au_\mu}\,\mathcal{B}_{ au_{
m 3prong}})$$

HIN-21-009

$$f_{iducial} = 4.8 \pm 0.6(stat) \pm 0.5(sys) \mu b$$

10

PbPb - $404 \,\mu b^{-1} (\sqrt{s_{NN}} = 5.02 \,\text{TeV})$

Data, $4.8 \pm 0.6 \text{(stat)} \pm 0.5 \text{(sys)} \mu \text{b}$

PbPb($\gamma\gamma$) \rightarrow Pb^(*)Pb^(*) $\tau^+\tau^-$

Constraints on a_{τ} , performance at HL-LHC, a_{τ} from ATLAS

- Using the theo calculation of $\sigma(\gamma\gamma \to \tau\tau)$ as a function of a_{τ} -scale only
 - model-dependent measurements at LHC can be obtained
- We expect a total uncertainty well below the current theory uncertainty
 - projected limit at HL-LHC competing with LEP

80

CMS

Constraints on a_{τ} , performance at HL-LHC, a_{τ} from ATLAS

- Using the theo calculation of $\sigma(\gamma\gamma \to \tau\tau)$ as a function of a_{τ} -scale only
 - model-dependent measurements at LHC can be obtained
- We expect a total uncertainty well below the current theory uncertainty
 - projected limit at HL-LHC competing with LEP

Sensitivity from shape analysis+final states

provements

UPC 2023

81

Nuclear PDFs uncertainty in exclusive J/Ψ production

- EPPS16 larger unc in fwd region (more freedom in the gluon PDF shape than nCTEQ)
- Rapid gluon increase at low-x dictates the upper boundaries of the large unc
 → reduced scale sensitivity and stronger dependence on the gluon PDFs for Y's?

Outlook

- For the first time, disentangled the low and high γ energy contributions to coh. J/ψ
 - o a new region from W=40 to 400 GeV to be studied/understood
 - o interesting recent theo dev that the small-x **quark** PDFs dominate exclusive J/ ψ at y !~0
- τ + τ observation paves the way for **precise at** a_{τ} (HL-)LHC \rightarrow cross exp combinations HIN-21-009

