UPC 2023 First international workshop on the physics of Ultra Peripheral Collisions

Angular modulation of photon-induced J/ψ and lepton pairs in heavy ion collisions at STAR

Kaiyang Wang (for the STAR collaboration)

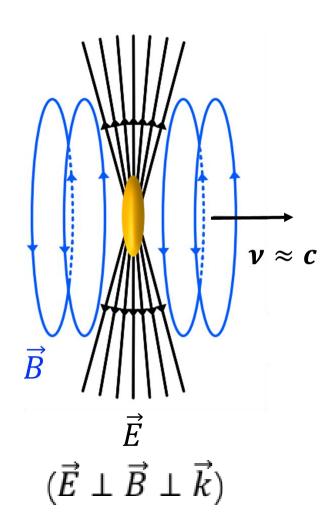
(kaiyangwang@mail.ustc.edu.cn)

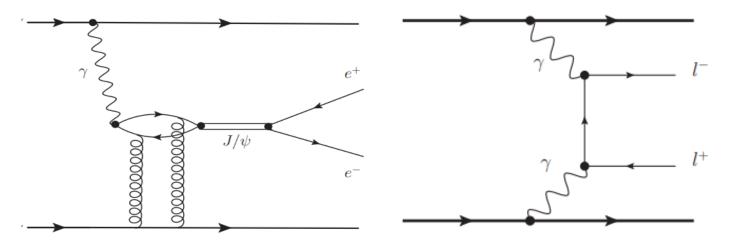
2023. 12.12

University of Science and Technology of China

Supported in part by

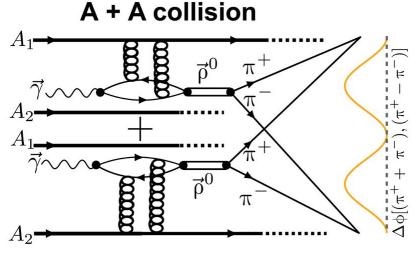
Office of

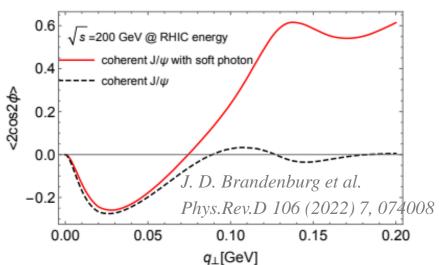

Outline

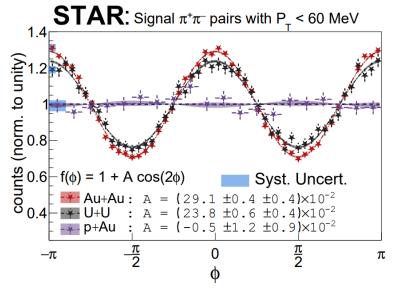


- Introduction
- Angular modulation of photon-induced J/ψ in isobaric collisions
- Angular modulation of photon-induced lepton pairs
- Summary

Photon-induced process

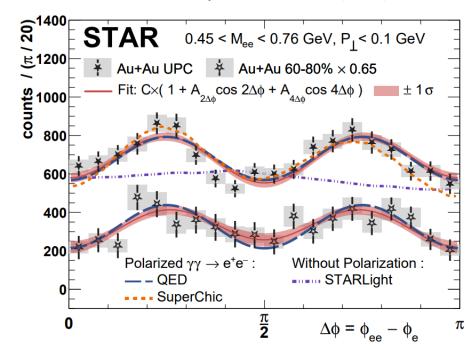


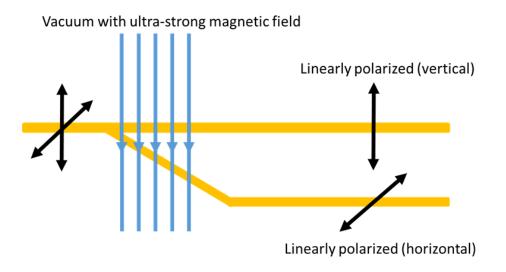



- Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field.
- EM fields can be quantized as a flux of linearly polarized quasi-real photons
 - ✓ Photon-nuclear interaction (vector mesons)
 - ✓ Photon-photon interaction (dilepton...)
 - ✓ Linearly polarized photons → final state polarization

Spin interference effect

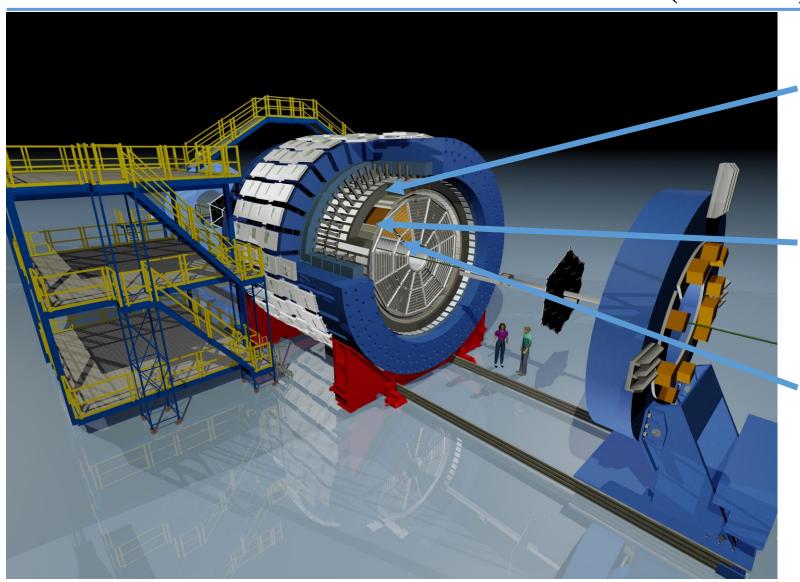
STAR Collaboration, Sci. Adv. 9, eabq 3903 (2023)


- ✓ Spin interference effect has been observed with ρ^0
- ✓ Why J/ ψ ?
 - ➤ Decay daughters, e⁺e⁻ are fermions
 - ➤ Longer lifetime than impact parameter


$$\rho^0 \sim 1.3 \text{ fm/c}$$
 J/ $\psi \sim 2160 \text{ fm/c}$

Birefringence of the QED vacuum

STAR Collaboration, Phys. Rev. Lett. 127 (2021) 052302



- ✓ Related to vacuum birefringence.
- ✓ Evidence of photon-photon interactions

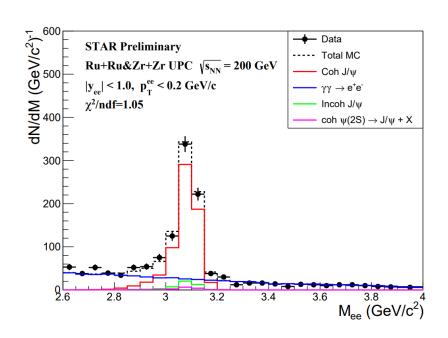
- > Sensitive to initial geometry
 - Comparison between Ru+Ru&Zr+Zr vs. Au+Au
- ightharpoonup Cos2 $\Delta \phi$ azimuthal asymmetry sensitive to daughter mass $\propto m^2/p_\perp^2$
 - Expected to be sizable for $\mu^+\mu^-$ pair production

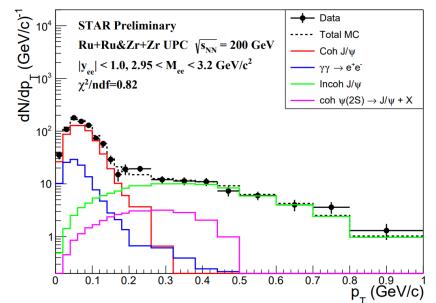
The Solenoidal Tracker At RHIC (STAR)

✓ BEMC: Particle identification, trigger

✓ TOF: Time of flight, particle identification

✓ TPC: Tracking, momentum and dE/dx


Outline

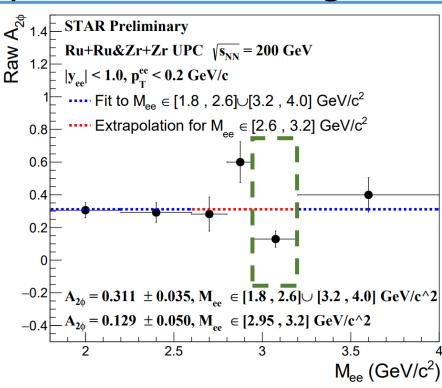


- Introduction
- Angular modulation of photon-induced J/ψ in isobaric collisions
- Angular modulation of photon-induced lepton pairs
- Summary

J/ψ measurements in 200 GeV isobaric UPCs

MC input

P. Wang et al 2022 Chinese Phys. C 46 074103 W. Zha et al Phys. Lett. B 800,135089 (2020)


Collision species (taken in 2018)

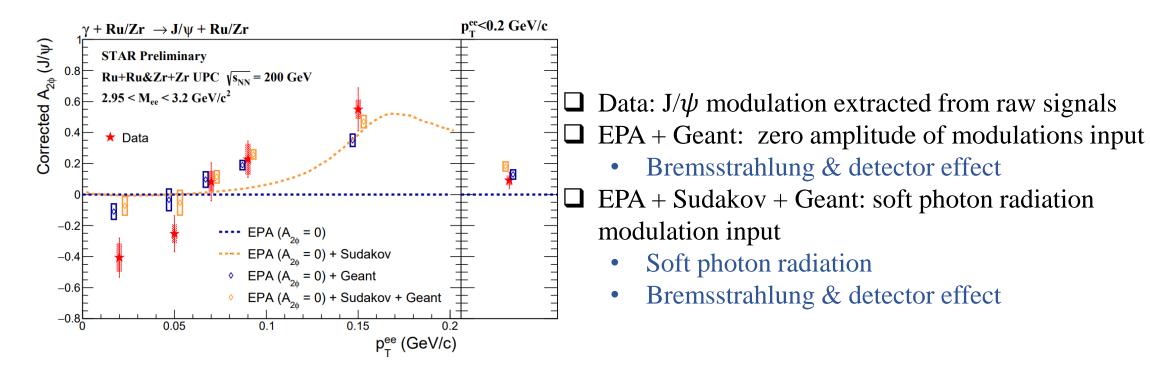
- ${}^{96}_{44}Ru + {}^{96}_{44}Ru, \sqrt{s_{NN}} = 200 \text{ GeV}$
- ${}^{96}_{40}Zr + {}^{96}_{40}Zr, \sqrt{s_{NN}} = 200 \text{ GeV}$
- ✓ Similar nuclear size

- Measured $\gamma A \rightarrow J/\psi \rightarrow e^+e^- \& \gamma \gamma \rightarrow e^+e^-$ (in the mass continuum) within |y| < 1
- \triangleright Signal extractions are performed via fitting to the M_{ee} & p_T distributions

J/ψ interference signal extraction

$$A_2^{raw} = \frac{N_{J/\psi} \times A_2^{J/\psi} + N_{\gamma\gamma} \times A_2^{\gamma\gamma}}{N_{J/\psi + N_{\gamma\gamma}}}$$

$$A_2^{J/\psi} = \left(1 + \frac{N_{\gamma\gamma}}{N_{J/\psi}}\right) \times A_2^{raw} - \left(\frac{N_{\gamma\gamma}}{N_{J/\psi}}\right) \times A_2^{\gamma\gamma}$$

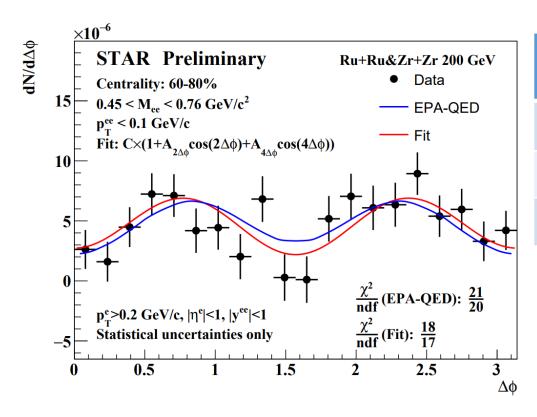

 $N_{\gamma\gamma} \& N_{J/\psi}$: From fitting of M_{ee} spectrum

 $A_2^{\gamma\gamma}$: Extrapolated from $M_{ee} \in [1.8, 2.6] \cup$ [3.2, 4.0] GeV/c^2

- ✓ Sizeable contributions from $\gamma\gamma \rightarrow e^+e^-$ process
- ✓ Possible variations for $A_{2\phi}$ in the mass continuum has been considered as systematics
- ✓ Enhancement on left side of J/ ψ peak → Bremsstrahlung & soft photon radiation

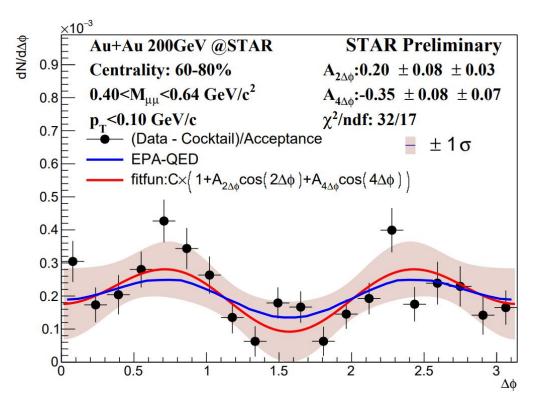
p_T -dependent interference of J/ ψ

- \checkmark J/ ψ signal shows an increasing trend from negative to positive
- \triangleright MC with soft photon radiation well describes increase trend @ $p_T > 0.1 \ GeV/c$
- \geq 2.4 σ lower than MC with zero modulation input @ $p_T < 0.06 \; GeV/c$


Outline

- Introduction
- Angular modulation of photon-induced J/ψ in isobaric collisions
- Angular modulation of photon-induced lepton pairs
- Summary

Modulation of di-electron in isobaric peripheral collisions


W.M. Zha et al., Phys. Lett. B 800 (2020) 135089

	$ A_{4\Delta\phi} $ (%)	$ A_{2\Delta\phi} $ (%)	χ^2/ndf
Isobar(60-80%)	47±14	6±13	18/17
Au+Au(60-80%)	27±6	6±6	10/17
QED-EPA for Isobar	40	0	

- Clear $\cos(4\Delta\phi)$ signal (~3.6 σ) in isobaric collisions: $|A_{4\Delta\phi}| = 0.47 \pm 0.13 (\text{stat}) \pm 0.05 (\text{sys})$
- QED-EPA could describe the data
- Hint of larger modulation in isobaric collisions than Au+Au collisions $(0.27\pm0.06) \rightarrow b$ dependence

Modulation of di-muon in Au+Au peripheral collisions

	Measured	χ^2/ndf	QED-EPA
$ A_{4\Delta\phi} $ (%)	35 ± 11	20/17	22
$ A_{2\Delta\phi} $ (%)	20 ± 9	32/17	13

- Solution of non-zero 4th-order azimuthal angular modulation of $\mu^+\mu^-$ pairs (3.3 σ).
- First indication of non-zero the 2nd-order azimuthal angular modulation $(2.3\sigma)!$

Summary

- $ightharpoonup J/\psi \cos 2\Delta \phi$ modulation in isobaric UPC shows strong p_T dependence
 - \geq 2.4 σ negative modulation @ $p_T < 0.06 \ GeV/c$
- > Angular modulation of photon-induced lepton pairs in peripheral collisions
 - ➤ Hint of impact parameter dependence in isobar & Au+Au collisions
 - ightharpoonup Hint of non-zero $\cos 2\Delta \phi$ modulation in $\gamma\gamma \to \mu^+\mu^-$ in Au+Au peripheral collisions

Summary

- $ightharpoonup J/\psi \cos 2\Delta \phi$ modulation in isobaric UPC shows strong p_T dependence
 - \geq 2.4 σ negative modulation @ $p_T < 0.06 \ GeV/c$
- > Angular modulation of photon-induced lepton pairs in peripheral collisions
 - ➤ Hint of impact parameter dependence in isobar & Au+Au collisions
 - ightharpoonup Hint of non-zero $\cos 2\Delta \phi$ modulation in $\gamma\gamma \to \mu^+\mu^-$ in Au+Au peripheral collisions

Thank you!