UPC 2023: International Workshop on the Physics of Ultra Peripheral Collisions

Supported in part by the U.S. DEPARTMENT OF ENERGY Office of Science

DAVID TLUSTY (CREIGHTON UNIVERSITY) FOR THE STAR COLLABORATION

Creighton IINIVERSITY

OUTLINE

STAR Experiment

- **Recently Published UPC Results from STAR**
 - coherent ρ_0 and nuclear imaging
 - coherent and incoherent J/ψ photo-production in d+Au and Au+Au
 - coherent $\psi(2S)$ photo-production in Au+Au
 - di-leptons from Breit-Wheeler process
- Highlights of the newest preliminary results
- Dutlook
- Summary

MOTIVATION

- nuclear parton
 modification important in cold QCD
- nuclear shadowing at lower x
- anti-shadowing at higher x

1.5

LHC kinematics

UPC AS A GREAT TOOL TO EXPLORE NUCLEAR EFFECTS

- clean probe to the nuclear parton distributions
- coherent (on nucleus) and incoherent (on nucleons)
- coherent photo production

$$x = (M_{VM}c^2)^2/W^2$$

final state is exclusive

- explore non-linear QED
- test for Physics Beyond Standard Model

EXPERIMENT

UTRA-PERIPHERAL COLLISIONS AT RHIC

Relativistic Heavy Ion Collider located in ven National La (Long Island, USA) anffequasisreal photon energy, and proton olarization

sions that don't "collide"

STAR EXPERIMENTAL SETUP (UPC RELEVANT DETECTORS ONLY)

- Solenoidal Tracker At RHIC
- central rapidity coverage $(-1,1) \xrightarrow{2019} (-1.5,1.5)$
- neutron tagging
- charged hadrons PID
 - plus electron calorimetry including decay topology
- veto particles in the UPCs rapidity gap regions

ho_0 CROSS SECTION AND INTERFERENCE Phys. Rev. C 96, 054904

- integrated luminosity of 1100±100 µb⁻¹ of data collected in 2010
- XnXn extrapolated from 1n1n using STARlight

multiple diffractive minima in the coherent region

- nucleus is beginning to act like a black disk
- Iowest t: destructive interference between photo production with the photon emitted by any of the two pions
- position should not depend on energy

NUCLEAR IMAGING

• -t is Fourier conjugate to the impact parameter

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

- $|t| < 0.06 (\text{GeV}/c)^2$
- F(b) normalized by mean value to compare XnXn and 1n1n
- the radius include interference effects

IMAGING A NUCLEUS WITH VECTOR MESON PHOTO-PRODUCTION

Sci. Adv. 9, eabq3903 (2023)

- the arly polarized in transverse plane by ton polarization vector => vector meson => angular momentum of the daughter particles => azimuthal $cos(2\phi)$ modulation in the momentum distribution with respect to the polarization direction
 - interference between two contributing amplitudes (panel A)
- possible in symmetric beams
- still subject of discussions in community

$$\cos \phi = \frac{(\overrightarrow{p_{\pi^{-}}} + \overrightarrow{p_{\pi^{+}}}) \cdot (\overrightarrow{p_{\pi^{-}}} - \overrightarrow{p_{\pi^{+}}})}{|\overrightarrow{p_{\pi^{-}}} + \overrightarrow{p_{\pi^{+}}}| \times |\overrightarrow{p_{\pi^{-}}} - \overrightarrow{p_{\pi^{+}}}|} \qquad \overrightarrow{P_{\pi^{-}}} + \overrightarrow{P_{\pi^{+}}} \\ |\overrightarrow{p_{\pi^{-}}} + \overrightarrow{p_{\pi^{+}}}| \ll |\overrightarrow{p_{\pi^{-}}} - \overrightarrow{p_{\pi^{+}}}| \qquad \overrightarrow{P_{\pi^{-}}} = \overrightarrow{P_{\pi^{+}}}| \qquad \overrightarrow{P_{\pi^{+}}} = \overrightarrow{P_{\pi^{+}}}| \qquad\overrightarrow{P_{\pi^{+}}} = \overrightarrow{P_{\pi^{+}}}| \qquadP_{\pi^{+}} = \overrightarrow{P_{\pi^{+}}}| \qquadP_{\pi^{+}} = \overrightarrow{P_{\pi^{+}}}| \overrightarrow{$$

IMAGING A NUCLEUS WITH VECTOR MESON PHOTO-PRODUCTION

the modulation is observed both in Au+Au and U+U, but not in p+Au Sci. Adv. 9, eabq3903 (2023)

- fit of Fourier conjugated Wood-Saxon into $\rho_0 p_T^2$ spectra => extract Radius $R(\phi)$ Ashik Ikbal Sheikh (Tuesday 11:45am)
- R_0 radius from nuclear form factor consistent with low energy experiments
- σ_b quantifies the strength of the interference effect
 solves 20 year puzzle of seemingly higher than expected nuclear radius

J/ψ CROSS SECTION IN D+AU UPC EVENTS AT 200 GEV Phys. Rev. Lett. 128, 122303 (2022)

 $\mu + X^{1}/dtdy (nb/GeV^{2})$

 $d\sigma^{(\gamma^* + d)}$

10

- integrated luminosity of 93 nb^{-1} of d+Au data collected in 2016
- ► J/ $\psi \rightarrow e^+e^-$ decay channel
- first J/ψ produced off a light ion
 - deuteron loosely bound => ideal for testing baseline nuclear effects

CGC Model Ref: H. Mäntysaari and B. Schenke, Phys. Rev. C 101, 015203 (2020), arXiv:1910.03297 [hep-ph].

LTA Model: V. Gauzy, M. Strickman, E. Kryshen, and M. Zhalov (2021)

n-tagged data provide the first direct measurement of incoherent diffractive J/ ψ production at low -tessential experimental baseline for a high precision measurement at EIC

1	1	
1	1	

J/ψ photoproduction in AU+AU UPC events at 200 GeV

- integrated luminosity
 of 13.5 nb⁻¹ of Au+Au
 data collected in 2016
- $J/\psi \rightarrow e^+e^- decay$ channel

(a) Coherent, nucleus stays intact

(b) Incoherent with elastic nucleon

(c) Incoherent with nucleon dissociation

NUCLEAR SUPPRESSION FACTOR

Impulse Approximation (IA) - ratio of all n and

Incoherent production more **Twist Approximation (LTA)**

 W_{γ^*N} range will be extended by STAR forward upgrade

Adam's talk (Tuesday 11:15)

CGC Model Ref.: H. Mäntysaari, F. Salazar, and B. Schenke, arXiv:2207.03712 [hep-ph] (2022).

LTA Model Ref.: M. Strickman, E. Kryshen, and M. Zhalov arXiv:2303.12052 [hep-ph] (2023).

QUANTUM INTERFERENCE IN SYMMETRIC AU+AU UPCS

- ambiguity of which nucleus is the hard photon source
- comparison with STARlight (SL) and Color Glass Condensate (CGC)
- the destructive interference at lowest p_T^2 confirmed with rapidity dependent data
 - much weaker outside mid rapidity

 $\cap \cap$

- first $\psi(2S)$ photo-production measurement at RHIC

— can be sensitive to non-linear QCD effect (see Martin Hentschinski talk on Wednesday

FIRST OBSERVATION OF BREIT-WHEELER PROCESS

- integrated luminosity of 700 nb⁻¹ of Au+Au data collected in 2010
- high purity of e^+e^- pairs in UPC data necessary

 A_1 1+

FIRST OBSERVATION OF BREIT-WHEELER PROC

- intrinsic photon spin converted into orbital angular momentum => anisotropy in e^{\pm} momentum
- results consistent with QED but not STARlight
- experimental access to photon polarization demonstrated

Ref SuperChic: L. A. Harland-Lang, V. A. Khoze, and M. G. Ryskin, Eur. Phys. J. C 79, 39 (2019). Ref SL: S.R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth, Comput. Phys. Commun. 212, 258 (2017) Ref QED, GEPA: W. Zha, J.D. Brandenburg, Z. Tang, and Z. Xu, Phys. Lett. B 800, 135089 (2020).

										-
CECC		Quantity		Measured	1	S	L	GEPA	QEI	
ULJJ			$\sigma(\mu b)$	26	$51 \pm 4 \pm 13$	± 34	22	20	260	260
					Ultraperipheral			Peripheral		
					Measured	QED	SC	SL	Measured	QEI
			$ \begin{array}{c c} A_{4\Delta\phi} & (\%) \\ A_{2\Delta\phi} & (\%) \end{array} $		16.8 ± 2.5 2.0 ± 2.4	16.5 0	19 5	0 5	$\begin{array}{c} 27\pm 6\\ 6\pm 6\end{array}$	34.5 0
			$\sqrt{\langle P_{\perp}^2 \rangle}$ (Me)	V)	38.1 ± 0.9	37.6	35.4	35.9	50.9 ± 2.5	48.5
counts / (π / 20)	1400 ┌				1	1			- 1 1	
		ST	AR 0	.45	$5 < M_{ee} < 0$	0.76	GeV	, P ₁ <	: 0.1 GeV	
	1200	+ +	Au+Au UPC		Å Au+A	u 60%	%-80	% × (0.65	_
	1000	F	=it: C×(1 + /	4 2∆	$_{\phi}$ cos 2 $\Delta \phi$ -	+ Α _{4Δφ}	cos 4	4∆φ)	± 1	σ_
	800		* *				, , ,	¥		-
	600	× ×		.	¥ ¥ ¥					
	400			Y Y		¥	-		Y Y	- J
	200		Polarized γ	γ-	→ e ⁺ e ⁻ :	Ŵ	ithou	t Pol	arization :	
	0	— – QED • • • • Super	Ch	nic I		•••• S	TARI	_ight	_	
17)	0				$\frac{\pi}{2}$		Δ	$\phi = \phi$	$\phi_{\mu\nu} - \phi_{\mu\nu}$	

 $\gamma\gamma \rightarrow e^+e^-$ CROSS SECTIONS

first measurement up to 6 GeV/c²

constrains modeling of neutron emission and photon flux

arXiv:2311.13632v1

HIGHLIGHTS OF STAR PRELIMINARY RESULTS

ANGULAR MODULATION OF PHOTON-INDUCED J/ψ and lepton pairs in heavy ion collisions at star

- > $\Delta \phi$ modulation observed in peripheral di-muon data
- > p_T dependent interference of J/ ψ
- Kaiyang Wang (Tuesday 10am)

DEPENDENCE OF PHOTON-INDUCED PRODUCTION IN ISOBARIC COLLISIONS FCTROMAGNETIC FIFI D

- collision system dependence
- Kaifeng Shen (Tuesday 10:30am)

EXCLUSIVE J/ψ_0 HOTOPRODUCTION AND ENTANGLEMENT-ENABLED SPIN INTERFERENCE IN ULTRA-PERIPHERAL COLLISIONS AT STAR

Ashik !kbal Sheikh (Tuesday 11:45am)

interference of J/ψ depends on p_T p_T

STAR HIGHLIGHTS

DIMUON PRODUCTION AT LOW-PT PERIPHERAL AU+AU COLLISIONS

- Ziyang Li (Thursday 18:30)
- EPA-QED more consistent with data than STARlight

4π Photo-Production – Search for excited ρ mesons

Resonance	M[MeV/c ²]	PDG <i>M</i> [3]	Γ [MeV/c ²]	PD
 $\rho(1450)$	1454 ± 32	1465 ± 25	357 ± 98	Z
$\rho(1700)$	1714 ± 26	1720 ± 20	467 ± 38	25
$\rho(2150)$	2100 ± 47	-	656 ± 132	

- Double resonance structure with $\rho(1450)$ and $\rho(1700)$ masses consistent with PDG best estimation observed
- The shape is expected to change (in lower mass region particularly) after corrections
- $\rho(1700)$ width larger than PDG best estimation, but consistent with $\gamma p \rightarrow p 4\pi$ experiments [5,6]
- Another possible resonance in the $\rho(2150)$ location, need to investigate further if it indeed is $\rho(2150)$ - possibly in 6π decay channel

OUTLOOK

STAR EXPERIMENT – FORWARD UPGRADE

Since 2022, STAR has forward detectors $(2.5 < \eta < 4.0)$, which would be crucial to the RHIC Run 23-25 physics

- ► $W_{\gamma^*N} < 10 \, \text{GeV}$
- first-time ϕ meson photo production
- high statistics VM at higher p_T^2
- spin-dependent VM production

SUMMARY

- RHIC
 - experiment
 - production
 - nuclear interference
 - J/ψ in d+Au and $\psi(2S)$ in Au+Au (first time at RHIC)
 - observation of Breit-Wheeler process (mass spectra up to 6 GeV/c²)
- STAR program continues
 - stay tuned to following talks about new preliminary results
 - the detector has just been upgraded with forward tracking and calorimeter system

STAR has made many first-time or otherwise significant measurements in UPCs at

coherent ρ_0 photo-production and nuclear imaging - Au radius consistent with low energy

Strong nuclear suppression in J/ψ seen for both coherent (~ 30%) and incoherent (~60%)

BACKUP SLIDES

ρ_0 CROSS SECTION

- integrated luminosity of 1100±100 µb–1 of data collected in 2010
- XnXn extrapolated from 1n1n using STARlight
- incoherent components in $d\sigma/dt$ are fit in range -t = (0.2, 0.45)
 - σ_{incoh} are integrals of the fits

$\sigma_{ m coh.}$	
$\sigma_{ m incoh.}$	
$\sigma_{\rm incoh.}/\sigma_{\rm coh.}$	

Nuclear excitation and ρ_0 photo production are not completely independent

FIRST OBSERVATION OF BREIT-WHEELER PROCESS

- integrated luminosity of 700 nb⁻¹ of Au+Au data collected in 2010
- high purity of e^+e^- pairs in UPC data necessary

 A_1 1+

J/ψ Photoproduction in AU+AU UPC EVENTS AT 200 GEV

• when $Q^2 \sim 0$, p_T of J/ψ is directly related to momentum transfer ($t \sim p_T^2$)

32

J/ψ Photoproduction cross section separated by neutron tagging

J/ ψ CROSS SECTION VS ENERGY $W_{\gamma*N}$

- VM at rapidity $y \neq 0 \Rightarrow$ there is high energy photon candidate (k_1) and a low energy photon one (k_2) ;
- flux factors (~number of photons)

