Exclusive Vector Meson Physics at the EIC

Nathaly Santiesteban

First International Workshop on the Physics of Ultra Peripheral Collisions 2023

MOTIVATION

Wigner Function

Generalized Parton Distributions

- 3D imaging of the nucleon and nuclei: GPDs
- Origin of nucleon mass
- Wigner functions

Vector Meson Production

Vector meson production

MOTIVATION

J/ Ψ production: transverse spatial distribution of gluons

Eur. Phys. J., 6 vol. A52 (2016)

MOTIVATION

Trace anomaly contribution to the proton mass.

Nucl. Phys. A 1026 (2022)

Exclusive Vector Meson Production as a Probe of Saturation

J/ Ψ is smaller, less sensitive to saturation effects ϕ meson is larger, more sensitive to saturation effects T. Toll and T. Ullrich

Sartre event generator

Where to perform such studies?

Electron Ion Collider

- High luminosity: $L = 10^{33}$ to 10^{34} cm⁻²sec⁻¹
- Center-of-mass energies: E_{cm} = 29 to 141 GeV
- Polarized beams World's first: polarized-electron + polarized-proton/light-ion polarized-electron + Nucleus collider
- Hadron species: Protons Uranium
- Two superconducting storage rings
 3.8km circumference

EIC is based on existing RHIC facility

Electron Ion Collider

• *(Existing)* Hadron Storage Ring (HSR):

injectors, ion sources, infrastructure; needs only relatively few modifications and upgrades

- (In progress) Add a 5 to 18 GeV electron storage ring and its injector complex to the RHIC facility
- (In progress) Design and built a suitable interaction region (ePIC)

EIC is based on existing RHIC facility

Interaction Region Layout

Large detector acceptance Total size of the detector: ~75 m Central detector (~10 m) Far Backward (electron detection) ~35 m Far Forward (hadron detection) ~40m

Central Detector

Magnet 1.7 T Solenoid

2.8 m bore diameter

Tracking

Si Vertex Tracker MAPS wafer-level stitched sensors Si Tracker MAPS barrel an disks Gaseous tracker: MPGDS (μ RWELL, MMG) cylindrical and planar

PID

High performance DIRC (hpDIRC) Dual RICH (aerogel + gas) (forward) Proximity focussing RICH (backward) ToF using AC-LGAD (barrel + forward)

EM Calorimetry

Imaging EMCAL (barrel) W-powder/SciFi (forward) PbWO₄ crystals (backward)

Hadron calorimetry

FeSc (barrel, re-used from sPHENIX) Steel/Scint - W/Scint (backward/forward)

Central Detector

Exclusive vector meson physics requires tagging charged hadrons or forward particles at large rapidities. (Far Forward)

Measurement of the absolute and relative luminosity, as well as tagging of low- Q^2 electrons (Far backward)

rapidity coverage (-4 < η < 4) coverage

Far-Forward Detectors

Far-Forward Detectors

Far-Backward Detectors

Selected Previous Study (2021)

$e + p \rightarrow e' + p' + J/\Psi$

N. Santiesteban, S. Fegan

Generator

IAger - Argonne generic I/A-event generator (S. Joosten)

- •The LAGER generator **was used to produce** event samples for the studies presented.
- Modular accept-reject generator, capable of simulating both fixed target and collider kinematics

Variable	Definition	Range
Q^2 [GeV]	$Q^2 = -q^2 = -(k_e - ke')$	$0 - 50 \text{GeV}^2$
x _B	$x_B = \frac{Q^2}{2 \cdot k_p \cdot q}$	0 - 0.15

J/ψ reconstruction

Scattered proton detection

B₀ outside acceptance of kinematics studied

Scattered electron reconstruction

Reconstruction method of -t

- Method Exact (E):
- Method Approximate (A) (UPCs)
- Method with exclusivity corrected (L):

$$-t = -(p_{e}-p_{e}, -p_{VM})^{2} = -(p_{A}, -p_{A})^{2}$$

$$-t = (p_{T,e}, +p_{T,VM})^{2}$$

$$-t = -(p_{A',corr} - p_{A})^{2},$$

where $p_{A',corr}$ is constrained by exclusive reaction.

Best method concluded from the EIC Yellow Report^{*} is with **exclusivity corrected**:

- Insensitive to beam effects, e.g., angular divergence and momentum spread.
- More precise than Method A for electroproduction

* also known as `Method L` in the Yellow Report

Slide courtesy of K. Tu

Kinematics and Resolutions

Study results

 J/ψ differential cross section interest will come from the evolution over -t

 Q^2 dependence will be useful for multi-dimensional binning

Selected Current Studies

Generator

Simulation with **eStarlight**: $e + A \rightarrow e' + A' + VM$

A: ¹⁶O, ⁶³Cu, ⁹⁰Zr and ²⁰⁸Pb Vector mesons: ρ , J/Ψ , ϕ , ... Energies: 5x100 GeV² and 18 x 275 GeV² (electron x proton)

> arXiv:1803.06420 arXiv:1805.08586

> > Z. Citron, E. Mautner, M. Pitt

 $e + Pb \rightarrow e' + Pb' + J/\Psi$

Q2 is correlated with outgoing electron rapidity.

Z. Citron, E. Mautner, M. Pitt

 $e + Pb \rightarrow e' + Pb' + J/\Psi + n\gamma$ n = 1, 2, ...~6

arXiv:2007.13625

Z. Citron, E. Mautner, M. Pitt

 $e + Pb \rightarrow e' + Pb' + J/\Psi + n\gamma$ n = 1, 2, ...~6

arXiv:2007.13625

Z. Citron, E. Mautner, M. Pitt

Exclusive and diffractive vector meson production

Legend details:

- w. EEMC: electron energy from EEMC, electron mass (PDG), angle (eta,phi) from tracking; φ→KK from tracking.
- Track only: e', $\phi \rightarrow KK$, all from tracking
- Best: average of the above 2 E-by-E.

Z. Tu

Summary

- ePIC is a new collaboration formed last year to build the first EIC detector and realize the science potential of the EIC.
- ePIC simulations are ongoing with unified and modern software framework. Next:
 - Continue exclusive vector meson simulations (ongoing efforts on software and reconstruction)
 - Incoherent background, where the nucleus breaks up. Veto on far-forward particles.
- Far-forward physics characterized by exclusive reactions.
- Far-Backward can help to tag coherent processes at very low Q
- This work is part of the Exclusive, Diffractive and Tagging working group, one of the physics working groups in the ePIC collaboration