Recent results on ultra-peripheral collisions with the ALICE experiment

David Grund for the ALICE Collaboration

Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague

December 11, 2023

UPC 2023, Playa del Carmen
Outline

• Introduction to UPC physics & diffractive photoproduction
• How ALICE detects UPCs
• Measurement of energy dependence of J/ψ photoproduction
 • Coherent (γPb)
 • Exclusive + dissociative (γp)
• Measurement of $|t|$-dependence of J/ψ photoproduction
 • Coherent
 • Incoherent
• J/ψ polarization
• Invitation to more ALICE UPC talks
Physics of ultra-peripheral collisions

Search for **gluon saturation**, study of nuclear effects such as **shadowing** of gluon PDFs

Ultra-peripheral collisions (UPCs)
- $b > 2R_A \Rightarrow$ pure hadronic interactions suppressed
- Photon-induced reactions with sizeable cross sections
- Flux $\propto Z^2$; low virtuality Q^2

Vector meson diffractive production in UPCs

- VM rapidity traces back the energy evolution
- **Clear experimental signature**, e.g. $J/\psi \to l^+l^-$ ⇒ two lepton tracks in an otherwise empty detector (except in a very forward direction)

<table>
<thead>
<tr>
<th>System</th>
<th>Process</th>
<th>$\langle p_T \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb–Pb</td>
<td>Coherent</td>
<td>$\sim 1/R_{nucleus} \sim 50$ MeV</td>
</tr>
<tr>
<td></td>
<td>Incoherent</td>
<td>$\sim 1/R_{nucleon} \sim 400$ MeV</td>
</tr>
<tr>
<td>p–Pb</td>
<td>Exclusive</td>
<td>$\sim 1/R_{proton} \sim 400$ MeV</td>
</tr>
<tr>
<td></td>
<td>Dissociative</td>
<td>~ 1 GeV</td>
</tr>
</tbody>
</table>

LO pQCD: $d\sigma(\gamma + \text{Pb} \to \text{VM} + \text{Pb})/dt \propto [xg_A(x, Q^2)]^2$

Z. Phys. C 57 (1993) 89-92
How ALICE detects UPCs

Zero Degree Calorimeters (ZDCs)
Fwd neutrons & protons

ALICE Diffractive (AD)
Fwd scintillation counters, vetoing

V0
Fwd scintillation counters, vetoing

Status during Run 2 of the LHC: 2015–2018

David Grund | UPC 2023
UPC analyses at midrapidity

$|\eta| < 0.9$
(often $|\eta| < 0.8$ to exclude border effects)

J/ψ in Pb–Pb UPCs at $\sqrt{s_{_{NN}}} = 5.02$ TeV: $|y| < 0.8$ translates to $x \in (0.3, 1.4) \times 10^{-3}$

David Grund | UPC 2023
J/ψ in Pb–Pb UPCs at \(\sqrt{s_{NN}} = 5.02 \) TeV: \(-4.5 < y < -2.5\) translates to either \(x \in (1.1, 5.1) \times 10^{-5}\) or \(x \in (0.7, 3.3) \times 10^{-2}\)
Energy dependence of coherent, exclusive and dissociative J/ψ production

- Energy dependence of coherent photonuclear production of J/ψ mesons in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, *JHEP* 10 (2023) 119 NEW!

- Exclusive and dissociative J/ψ photoproduction, and exclusive dimuon production, in p–Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV, *arXiv:2304.12403* (accepted by PRD) NEW!
UPC cross section for photoproduction

\[\frac{d\sigma_{PbPb}}{dy} = n_\gamma(y, \{b\})\sigma_{\gamma Pb}(y) + n_\gamma(-y, \{b\})\sigma_{\gamma Pb}(-y) \]

- **Forward** Pb–Pb: how to disentangle the contributions?
 \(n_\gamma = n_\gamma(b) \Rightarrow \) one needs to measure at the same rapidity but using **different impact parameters ranges**: \(\{b\}_1 \) and \(\{b\}_2 \)

- **Midrapidity in Pb–Pb:**
 \[\frac{d\sigma_{PbPb}}{dy} = 2n_\gamma(y, \{b\})\sigma_{\gamma Pb}(y) \]

- **QCD enters here!**

- **QED**

- **p–Pb:**
 \[\frac{d\sigma_{pPb}}{dy} = n_\gamma(y, \{b\})\sigma_{\gamma p}(y) \]

- UPC cross section = sum of the two contributions (photon flux \(\times \) photonuclear cross section):
Solving the photon direction ambiguity puzzle

\[
\frac{d\sigma^{(b)_1}_{\text{PbPb}}}{dy} = n_\gamma(y, \{b\}_1)\sigma_{\gamma\text{Pb}}(y) + n_\gamma(-y, \{b\}_1)\sigma_{\gamma\text{Pb}}(-y)
\]

\[
\frac{d\sigma^{(b)_2}_{\text{PbPb}}}{dy} = n_\gamma(y, \{b\}_2)\sigma_{\gamma\text{Pb}}(y) + n_\gamma(-y, \{b\}_2)\sigma_{\gamma\text{Pb}}(-y)
\]

• Two possible approaches:
 1) combining results from UPCs and peripheral collisions \((b < 2R)\)
 2) event tagging using forward neutrons [1] – an independent photon exchange may lead to electromagnetic dissociation (EMD) of a nucleus

• Event classification:
 • 0n0n: no neutrons on either side
 • 0nXn + Xn0n: neutrons on one side only
 • XnXn: forward neutrons on both sides

• Photon spectra corresponding to these fragmentation scenarios can be calculated [2]

We can measure \(d\sigma/dy\), calculate the photon fluxes, and then simply solve the system of linear equations (e.g. using a \(\chi^2\)-minimization)...

Energy dependence of coherent J/ψ production

- Simultaneous analysis of mid- and forward-rapidity data
- Neutron classes ⇒ extraction of the dependence on $W_{γPb}$ + the nuclear shadowing factor $S_{γPb}$

Three bins at $−4 < y < −2.5$
Two bins at $|y| < 0.8$
Five $W_{γPb}$ values: 17 to 920 GeV!
Bjorken-x range: 1×10^{-5} to 3×10^{-2}

Example: 0n0n

ALICE Pb–Pb ($\sqrt{s}_{NN} = 5.02$ TeV) $\gamma \rightarrow F^-$
UPC, $L_x = 233 \pm 7$ mb$^{-1}$
$p_t < 0.2$ GeV/c
$0.1 < \gamma < 0.3$
$N_{cm} = 1744 \pm 49$
$\chi^2/\text{dof} = 0.96$

ALICE Pb–Pb ($\sqrt{s}_{NN} = 5.02$ TeV) $\gamma \rightarrow 0n0n$
UPC, $L_x = 233 \pm 7$ mb$^{-1}$
$p_t < 0.2$ GeV/c
$0.1 < \gamma < 0.3$
$N_{cm} = 2939 \pm 84$
$\chi^2/\text{dof} = 0.97$

ALICE Pb–Pb ($\sqrt{s}_{NN} = 5.02$ TeV) $\gamma \rightarrow Xn0n$
UPC, $L_x = 533 \pm 13$ mb$^{-1}$
$p_t < 0.25$ GeV/c
$2.5 < |y| < 4$
$N_{cm} = 2939 \pm 84$
$\chi^2/\text{dof} = 0.97$
Energy dependence

- **Unprecedented range** with the ALICE data
- Agreement with Run-1 ALICE results (UPC + peripheral)
- Good description of the **low-energy data**:
 - Impulse approximation
 - STARlight
- Good description of the **high-energy data**:
 - GSZ: **EPS09-LO** parametrization of nuclear parton functions or leading twist approximation (LTA) of gluon shadowing
 - GG-HS: colour-dipole approach, gluon saturation (hot spots)
 - b-BK-A: solution to the impact-parameter dependent BK equation
- IA significantly above the data at low x
 \Rightarrow onset of nuclear shadowing
Nuclear suppression factor

- A quantitative measure of nuclear gluon shadowing

\[S_{\gamma \text{Pb}} \approx 0.95 \text{ at low energies, then a large gluon depletion} \]
(down to 0.5) at high energies

Cross-check with the previous ALICE Run-2 results at midrapidity:

\[S_{\gamma \text{Pb}} \approx 0.65 \]

\[S_{\gamma \text{Pb}}(W_{\gamma \text{Pb},n}) = \frac{\sigma_{\gamma \text{Pb}}}{\sigma_{\gamma \text{Pb}}} \]

\(\sqrt{\frac{\sigma_{\gamma \text{Pb}}}{\sigma_{\gamma \text{Pb}}}} \)
Energy dependence of the photonuclear cross section

\[\sigma(\gamma, Pb) = 5.02 \text{ TeV} \] (arXiv:2305.19060)
\[\sigma(\gamma, Pb) = 5.02 \text{ TeV} \] (arXiv:2303.16984)
\[\sigma(\gamma, Pb) = 2.76 \text{ TeV} \] (PLB 726 (2013) 290-295)
\[\sigma(\gamma, Pb) = 2.76 \text{ TeV} \] (PRC 96 (2017) 015203)

- Impulse approximation
- STARlight
- EPS09 LO
- LTA
- GG-HS
- b-BK-A

ALICE alone explores (20, 900) GeV in \(W_{\gamma Pb} \) and \(x \) from \(10^{-2} \) down to \(10^{-5} \)

Recently, CMS performed a similar measurement in a narrower interval

CMS: arXiv:2303.16984 (accepted by PRL)

ALICE: JHEP 10 (2023) 119
Energy dependence of exclusive J/ψ production

- Asymmetric p–Pb system ⇒ photon can be assigned to the source ✓
- Beam configuration corresponds to the “low-energy” photon emitted from the nucleus

A power-law fit to the ALICE data: \(\delta = 0.70 \pm 0.04 \)

- Two bins within \(-4 < y < -2.5\) ⇒ two \(W_{\gamma\text{Pb}}\) values: 27 and 57 GeV
Energy dependence of dissociative J/ψ production

- First measurement of this process at a hadron collider
- The measurement is compatible with H1 results

The CCT model (hot spots) predicts maximum of the cross section at ≃ 500 GeV (“phase-space saturation”)

Probe to fluctuations of sub-nucleon structures inside the proton!

See the talk by Michael Winn: Monday at 16:30
Distribution of nuclear (Pb) matter in the transverse plane

- First measurement of the $|t|$-dependence of incoherent J/ψ photonuclear production, arXiv:2305.06169 NEW!
Why to measure $|t|$-dependencies?

- Impact parameter b and the VM transverse momentum p_T are **Fourier conjugates**
- $|t|$-dependence of $\sigma_{Y\text{Pb}} \leftrightarrow$ matter distribution in the transverse plane

Fourier tr.

Good-Walker approach:
- coherent \leftrightarrow **average**
- incoherent \leftrightarrow **variation** (quantum fluctuations)

- Larger $|t| \leftrightarrow$ smaller scattering centers
- At $|t| \sim 1 \text{ GeV}^2$ we probe fluctuations at a sub-femtometer scale \Rightarrow **gluons!**

Pb + Pb $\rightarrow J/\Psi + \text{Pb} + \text{Pb, } \sqrt{s} = 5.02 \text{ TeV, } y = 0$

Geometric and Q_s fluctuations in the nucleons

No subnucleon fluctuations

Graphs and plots

Phys.Rev.Lett. 117 (2016) 5, 052301

David Grund | UPC 2023
Photonuclear cross section extraction

- $J/\psi \rightarrow \mu\mu$ at midrapidity $\Rightarrow x \in (0.3, 1.4) \times 10^{-3}$
- Very clean J/ψ signal over a relatively small background

\[
\frac{d^2\sigma_{J/\psi}}{dy dp_T^2} \bigg|_{y=0} = 2n_\gamma(y = 0) \frac{d\sigma_{\gamma Pb}}{d|t|}
\]

Coherent measurement
- unfolding to account for p_T migration
- $p_T^2 \rightarrow |t|$ unfolding (photon k_T)

Incoherent measurement
- p_T migration negligible
- $|t| = p_T^2$ (large transferred momentum)

Counts per 25 (MeV/c)2

Coherent yields: $p_T < 0.11$ GeV/c (only a fit in one p_T interval is shown)

Incoherent yields: $0.2 < p_T < 1$ GeV/c (the full sample is shown)

 Corrections for contamination

UPC cross section (measured)

PHYS.Lett.B 817 (2021) 136280

David Grund | UPC 2023

arXiv:2305.06169
Coherent J/ψ

- Sensitive to the **average** of the target spatial distribution in the transverse plane

- **STARlight** – hadronic model based on the Glauber calculation
 - Gives a too high cross section
 - The p_T spectrum determined from the nuclear (Pb) form factor

- **Dynamic effects from QCD important:**
 - **LTA** – leading twist approximation of nuclear shadowing (“low” prediction)
 - **b-BK** – color dipole approach, solution to the b-dependent BK equation (saturation effects)

New ALICE **Run-3 data** + improved tracking should help us distinguish which pQCD prediction is doing better!
Incoherent J/ψ

- The slope sensitive to **fluctuations** of the target transverse profile
- Each theory group provides two predictions:
 1) Elastic scattering on a **full nucleon** (**MS-p, MSS, GSZ-el**)
 2) **Sub-nucleon degrees of freedom**:
 - **MS-hs**: IPsat (hot spots + satu. scale fluct.)
 - **MSS-fl**: CGC-based, JIMWLK solution
 - **GSZ-el+diss**: extra dissociative component

 These models predict **steeper slopes** than in the data...

- **Sub-nucleon fluctuation region**

 These models are **favored by the data** at higher |t|

- The models fail to describe the **normalization** (scaling from proton to nuclear targets)

[Graph showing data points and model predictions with labels for MS-hs, MS-p, MSS-fl, GSZ-el, and GSZ-el+diss.]

ALICE, Pb–Pb UPC √s_{NN} = 5.02 TeV

ALICE incoherent J/ψ, |y| < 0.8

Uncorrelated stat. + syst.

Correlated syst.

sub-nucleon fluctuation region
Putting together coherent & incoherent data points

Three orders of magnitude in $|t|$ covered with a HERA-like accuracy!

arXiv:2305.06169

Other recent ALICE UPC results...

- First polarisation measurement of coherently photoproduced J/ψ in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

 arXiv:2304.10928

- Photoproduction of K^+K^- pairs in ultra-peripheral collisions,

 arXiv:2311.11792

- Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ^0 photoproduction (preliminary)

- Exclusive four pion photoproduction in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (preliminary)
J/ψ polarization

- Angular distribution of J/ψ yields was unfolded in \(\phi \), corrected for \(A \times \varepsilon \), and fitted to (\(\lambda \) are polarization parameters):
 \[
 W(\cos \theta, \phi) \propto \frac{1}{3 + \lambda_\theta} (1 + \lambda_\theta \cos^2 \theta + \lambda_\varphi \sin^2 \theta \cos 2\phi + \lambda_{\theta\varphi} \sin 2\theta \cos \phi)
 \]

- **Helicity frame** used (z axis \(\parallel \) J/ψ momentum)

Results compatible with **transverse polarization**:
\((\lambda_\theta, \lambda_\varphi, \lambda_{\theta\varphi}) = (1,0,0) \)

- First experimental evidence for the s-channel helicity conservation (SCHC) hypothesis in J/ψ photoproduction off lead nuclei
- Spin-density matrix elements extracted & compared with HERA results:

 \[
 r_{00}^{04} = \frac{1 - \lambda_\theta}{3 + \lambda_\theta} \\
 r_{1,-1}^{04} = \frac{\lambda_\varphi}{2} (1 + r_{00}^{04})
 \]

David Grund | UPC 2023

\[0.3 - 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4 0.5\]

\[0.068 \pm 0.070 \pm 0.070\]
\[0.003 \pm 0.003 \pm 0.003\]
\[0.014 \pm 0.014 \pm 0.012\]
\[0.340 \pm 0.090 \pm 0.060\]

\[0.02 (\text{sys.}) \pm 0.03 (\text{stat.}) \pm 0.03 (\text{stat.})\]
\[0.03 \pm 0.03 (\text{stat.}) \pm 0.02 (\text{stat.})\]
\[0.01 \pm 0.01 (\text{stat.}) \pm 0.01 (\text{stat.})\]

\[0.10 \pm 0.05 (\text{stat.}) \pm 0.06 (\text{stat.})\]

\[\chi^2/\text{dof} = 127.4 / 74 = 1.7\]
Summary

Using data from Run 2 of the LHC, ALICE has recently presented many UPC measurements:

- Energy dependence of coherent, exclusive and dissociative J/ψ production
- Dependence of coherent and incoherent J/ψ production on |τ|
- J/ψ polarization
- K⁺K⁻ and exclusive four pion photoproduction
- Azimuthal anisotropies in ρ⁰ production

Some of these are, especially through comparison with phenomenological models, a probe into important effects in high-energy QCD:

- Gluon saturation
- Nuclear shadowing
- Fluctuations at sub-nucleon scale

With new data to come in Run 3 & 4, and thanks to detector upgrades, ALICE will be able improve the precision and conduct even more detailed measurements...

STAY TUNED!

See the talk by Anisa Khatun: Friday at 18:00
Reminder of ALICE contributions at UPC 2023

• Energy dependence of J/ψ in UPCs at the LHC
 Michael Winn, Monday at 16:30

• K⁺K⁻ photoproduction in ultra-peripheral Pb–Pb collisions with ALICE
 Minjung Kim, Monday at 18:45

• Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ⁰ photoproduction with ALICE
 Andrea Riffero, Tuesday at 10:15

• Photoproduction of J/ψ and dileptons in events with nuclear overlap with ALICE
 Nicolas Bizé, Thursday at 17:30

• A Forward Calorimeter in ALICE
 Ionut Cristian Arsene, Friday at 16:30

• UPC physics with ALICE in Run 3
 Anisa Khatun, Friday at 18:00
Thank you for your attention!