Recent results on ultraperipheral collisions with the **ALICE** experiment

David Grund for the ALICE Collaboration

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

December 11, 2023

UPC 2023, Playa del Carmen

ALICE

Outline

- Introduction to UPC physics & diffractive photoproduction
- How ALICE detects UPCs
- Measurement of energy dependence of J/ψ photoproduction
 - Coherent (γPb)
 - Exclusive + dissociative (γp)
- Measurement of |t|-dependence of J/ ψ photoproduction
 - Coherent
 - Incoherent
- J/ ψ polarization
- Invitation to more ALICE UPC talks

Physics of ultra-peripheral collisions

Search for **gluon saturation**, study of nuclear effects such as **shadowing** of gluon PDFs

Ultra-peripheral collisions (UPCs)

- *b* > 2*R*_A ⇒ pure hadronic interactions suppressed
- Photon-induced reactions with sizeable cross sections
- Flux $\propto Z^2$; low virtuality Q^2

LO pQCD:	<u>Z.Phys.C 57 (1993) 89-92</u>
$\frac{\mathrm{d}\sigma(\gamma + \mathrm{Pb} \to \mathrm{VM} + \mathrm{Db})}{\mathrm{d}t}$	$\frac{-\operatorname{Pb}}{ }_{t=0} \propto [xg_A(x,Q^2)]^2$

• VM rapidity traces back the energy evolution

 Clear experimental signature, e.g. J/ψ → l⁺l⁻ ⇒ two lepton tracks in an otherwise empty detector (except in a very forward direction)

	System	Process	$\langle {m p}_{ m T} angle$
	Pb–Pb	Coherent	$\sim 1/R_{ m nucleus} \sim 50 \; { m MeV}$
L		Incoherent	$\sim 1/R_{ m nucleon} \sim 400 \; { m MeV}$
	p–Pb	Exclusive	$\sim 1/R_{\rm proton} \sim 400 { m MeV}$
		Dissociative	~ 1 GeV

David Grund | UPC 2023

ALICE

Energy dependence of coherent, exclusive and dissociative J/ψ production

- **□** Energy dependence of coherent photonuclear production of J/ψ mesons in ultraperipheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, JHEP 10 (2023) 119 NEW!
- □ Exclusive and dissociative J/ ψ photoproduction, and exclusive dimuon production, in p–Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV, <u>arXiv:2304.12403</u> (accepted by PRD) NEW!

UPC cross section for photoproduction

OED

• UPC cross section = sum of the two contributions (photon flux × photonuclear cross section):

$$\frac{\mathrm{d}\sigma_{\mathrm{PbPb}}}{\mathrm{d}y} = n_{\gamma}(y, \{b\})\sigma_{\gamma\mathrm{Pb}}(y) + n_{\gamma}(-y, \{b\})\sigma_{\gamma\mathrm{Pb}}(-y)$$

Forward Pb–Pb: how to disentangle the contributions? $n_{\gamma} = n_{\gamma}(b) \Rightarrow$ one needs to measure at the same rapidity but using **different impact parameters ranges**: $\{b\}_1$ and $\{b\}_2$

Midrapidity in Pb–Pb: $\frac{\mathrm{d}\sigma_{\mathrm{PbPb}}}{\mathrm{d}y} = 2n_{\gamma}(y, \{b\})\sigma_{\gamma\mathrm{Pb}}(y)$

p-Pb:
$$\frac{\mathrm{d}\sigma_{\mathrm{pPb}}}{\mathrm{d}y} = n_{\gamma}(y, \{b\})\sigma_{\gamma\mathrm{p}}(y)$$

David Grund | UPC 2023

Solving the photon direction ambiguity puzzle

 $\frac{\mathrm{d}\sigma_{\mathrm{PbPb}}^{\{b\}_{1}}}{\mathrm{d}y} = n_{\gamma}(y,\{b\}_{1})\sigma_{\gamma\mathrm{Pb}}(y) + n_{\gamma}(-y,\{b\}_{1})\sigma_{\gamma\mathrm{Pb}}(-y)$ $\frac{\mathrm{d}\sigma_{\mathrm{PbPb}}^{\{b\}_{2}}}{\mathrm{d}y} = n_{\gamma}(y,\{b\}_{2})\sigma_{\gamma\mathrm{Pb}}(y) + n_{\gamma}(-y,\{b\}_{2})\sigma_{\gamma\mathrm{Pb}}(-y)$

We can measure $d\sigma/dy$, calculate the photon fluxes, and then simply solve the system of linear equations (e.g. using a χ^2 -minimization)...

- Two possible approaches:
 - 1) combining results from **UPCs** and **peripheral collisions** (b < 2R)
 - 2) event tagging using **forward neutrons** [1] an independent photon exchange may lead to electromagnetic dissociation (EMD) of a nucleus
- Event classification:
 - **0n0n**: no neutrons on either side
 - **0nXn** + **Xn0n**: neutrons on one side only
 - XnXn: forward neutrons on both sides
- Photon spectra corresponding to these fragmentation scenarios can be calculated [2]

[1] <u>Eur.Phys.J.C 74 (2014) 7, 2942</u>
[2] <u>Phys.Rev.Lett. 89 (2002) 012301</u>

9

Energy dependence of coherent J/ ψ production \Re

ALICE

Energy dependence

- **Unprecedented range** with the ALICE data
- Agreement with Run-1 ALICE results (UPC + peripheral)
- Good description of the **low-energy data**:
 - Impulse approximation
 - STARlight
- Good description of the **high-energy data**:
 - **GSZ**: **EPS09-LO** parametrization of nuclear parton functions or leading twist approximation (LTA) of gluon shadowing
 - **GG-HS**: colour-dipole approach, gluon saturation (hot spots)
 - **b-BK-A**: solution to the impactparameter dependent BK equation
- IA significantly above the data at low *x* ⇒ onset of **nuclear shadowing**

Nuclear suppression factor

• A quantitative measure of nuclear gluon shadowing

 $rac{\sigma_{\gamma \mathrm{Pb}}}{\sigma_{\gamma \mathrm{Pb}}^{\mathrm{IA}}}$

 $S_{
m Pb}(W_{\gamma
m Pb,n}) =$

ALICE alone explores (20, 900) GeV in $W_{\gamma Pb}$ and x from 10^{-2} down to 10^{-5} Recently, CMS performed a similar measurement in a narrower interval

(accepted by PRL)

ALICE: JHEP 10 (2023) 119

ALICE

Energy dependence of exclusive J/ψ production

- Asymmetric **p–Pb** system \Rightarrow photon can be assigned to the source \checkmark
- Beam configuration corresponds to the "low-energy" photon emitted from the nucleus

• Two bins

• Two bins within -4 < y < -2.5 \Rightarrow two $W_{\gamma Pb}$ values: **27 and 57 GeV**

A power-law fit to the ALICE data: $\delta = 0.70 \pm 0.04$

Energy dependence of dissociative J/ψ production

- First measurement of this process at a hadron collider
- The measurement is compatible with H1 results

The **CCT model** (hot spots) predicts maximum of the cross section at \approx 500 GeV ("phase-space saturation")

Probe to fluctuations of subnucleon structures inside the proton!

See the talk by **Michael Winn**: Monday at 16:30

Distribution of nuclear (Pb) matter in the transverse plane

- First measurement of the |t|-dependence of coherent J/ψ photonuclear production, *Phys.Lett.B* 817 (2021) 136280
- □ First measurement of the |t|-dependence of incoherent J/ ψ photonuclear production, <u>arXiv:2305.06169</u> **NEW!**

Why to measure |t|-dependencies?

- Impact parameter *b* and the VM transverse momentum $p_{\rm T}$ are **Fourier conjugates**
- |t|-dependence of $\sigma_{\gamma Pb} \xleftarrow{\text{Fourier tr.}} matter distribution in the transverse plane$

<u>Good-Walker approach</u>: coherent ↔ **average** incoherent ↔ **variation** (quantum fluctuations)

- Larger $|t| \Leftrightarrow$ smaller scattering centers
- At $|t| \sim 1$ GeV² we probe fluctuations at a sub-femtometer scale \Rightarrow **gluons**!

17

Photonuclear cross section extraction

Coherent measurement • $J/\psi \rightarrow \mu\mu$ at midrapidity $\Rightarrow x \in (0.3, 1.4) \times 10^{-3}$ unfolding to account for $p_{\rm T}$ migration • Very clean J/ ψ signal over a relatively small background • $p_{\rm T}^2 \rightarrow |t|$ unfolding (photon $k_{\rm T}$) photon flux **Incoherent measurement** (calculated) $\mathrm{d}^2\sigma_{\mathrm{J}/\psi}$ UPC cross photonuclear $\mathrm{d}\sigma_{\gamma\mathrm{Pb}}$ • *p*_T migration negligible $2n_{\gamma}(y=0)$ cross section section $|t| = p_T^2$ (large transferred momentum) (measured) (extracted) Me//c₂ 220 200 ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV dN/dp ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV 25 (MeV/c² ALICE, Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 10³ $3.0 < m_{\mu\mu} < 3.2 \text{ GeV}/c^2$ $J/\psi \rightarrow \mu^+ \mu^-$ 250 $J/\psi \rightarrow \mu^+ \mu^ J/\psi \rightarrow \mu^+ \mu^-$ |y| < 0.8UPC, $L_{int} = 232 \pm 7 \ \mu b^{-1}$ 20 180 UPC, $L_{int} = 232 \pm 7 \ \mu b^{-1}$ UPC, $L_{int} = 233 \pm 6 \ \mu b^{-1}$ 🕂 data Counts per $0.2 < p_{_{T}} < 1.0 \text{ GeV}/c$ bei coherent J/ψ 160 $p_{\rm T}^2 \in (0.0007, 0.0016) \frac{{\rm GeV}^2}{c^2}$ 200 |y| < 0.8|v| < 0.8- incoherent J/ψ 40 10² inc. J/ψ with nucleon diss. $N_{\rm J/w} = 551^{+26}_{-25}$ $N_{\rm J/w} = 512 \pm 26$ ---·J/ ψ from coh. ψ ' decay 120 150 ---· J/ ψ from inc. ψ ' decay **Coherent** yields: **Incoherent** yields: 100 - model $0.2 < p_{\rm T} < 1 \, {\rm GeV}/c$ $p_{\rm T} < 0.11 \, {\rm GeV}/c$ 80 100 Corrections for 10 (only a fit in one $p_{\rm T}$ (the full sample 60 contamination interval is shown) is shown) 40 20 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0 2.5 3 3.5 p_{τ} (GeV/c) $m_{\mu\mu}$ (GeV/ c^2) $m_{\rm uu}$ (GeV/ c^2) ALI-PUB-542589 ALI-PUB-542593 ALI-PUB-496163 arXiv:2305.06169 Phys.Lett.B 817 (2021) 136280 David Grund | UPC 2023 18

Coherent J/ψ

- Sensitive to the **average** of the target spatial distribution in the transverse plane
- **STARlight** hadronic model based on the Glauber calculation
 - Gives a too high cross section
 - The $p_{\rm T}$ spectrum determined from the nuclear (Pb) form factor
- Dynamic effects from QCD important:
 - LTA leading twist approximation of nuclear shadowing ("low" prediction)
 - **b-BK** color dipole approach, solution to the *b*-dependent BK equation (saturation effects)

New ALICE **Run-3 data** + improved tracking should help us distinguish which pQCD prediction is doing better!

David Grund | UPC 2023

Incoherent J/ ψ

- The slope sensitive to **fluctuations** of the target transverse profile
- Each theory group provides two predictions:
 - Elastic scattering on a full nucleon (MS-p, MSS, GSZ-el)

These models predict **steeper slopes** than in the data...

- 2) Sub-nucleon degrees of freedom:
 - **MS-hs**: IPsat (hot spots + satur. scale fluct.)
 - MSS-fl: CGC-based, JIMWLK solution
 - **GSZ-el+diss**: extra dissociative component

```
These models are favored by the data at higher |t|
```

• The models fail to describe the **normalization** (scaling from proton to nuclear targets)

Other recent ALICE UPC results...

- □ First polarisation measurement of coherently photoproduced J/ ψ in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV arXiv:2304.10928
- □ Photoproduction of K⁺K⁻ pairs in ultra-peripheral collisions, <u>arXiv:2311.11792</u>
- □ Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ^0 photoproduction (preliminary)
- □ Exclusive four pion photoproduction in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (preliminary)

See the next slide...

NEW!

See the talk by **Minjung Kim**: Monday at 18:45

See the talk by **Andrea Riffero**: Tuesday at 10:15

J/ψ polarization

• Angular distribution of J/ ψ yields was unfolded in φ , corrected for $A \times \varepsilon$, and fitted to (λ are polarization parameters):

 $W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} (1+\lambda_{\theta}\cos^2\theta+\lambda_{\varphi}\sin^2\theta\cos2\varphi+\lambda_{\theta\varphi}\sin2\theta\cos\varphi)$

• Helicity frame used (z axis $\parallel J/\psi$ momentum)

Results compatible with transverse polarization: $(\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}) = (1, 0, 0)$

- $\lambda_{\theta} = 0.75 \pm 0.25 \text{ (stat.)} \pm 0.24 \text{ (syst.)}$ $\lambda_{\varphi} = 0.03 \pm 0.03 \text{ (stat.)} \pm 0.02 \text{ (syst.)}$ $\lambda_{\theta\varphi} = 0.10 \pm 0.05 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$
- First experimental evidence for the *s*-channel helicity conservation (SCHC) hypothesis in J/ ψ photoproduction off lead nuclei
- Spin-density matrix elements extracted & compared with HERA results:

arXiv:2304.10928

$$r_{00}^{04} = \frac{1 - \lambda_{\theta}}{3 + \lambda_{\theta}}$$
$$r_{1,-1}^{04} = \frac{\lambda_{\varphi}}{2} (1 + r_{00}^{04})$$

David Grund | UPC 2023

ALI-PUB-542093

ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV, coherent J/ ψ

 (θ) soc

Summary

ALICE

Using data from Run 2 of the LHC, ALICE has recently presented **many UPC measurements**:

- Energy dependence of coherent, exclusive and dissociative J/ ψ production
- Dependence of coherent and incoherent J/ ψ production on |t|
- J/ψ polarization
- K⁺K⁻ and exclusive four pion photoproduction
- Azimuthal anisotropies in ρ^0 production

Some of these are, especially through comparison with phenomenological models, **a probe into important effects in high-energy QCD**:

- Gluon saturation
- Nuclear shadowing
- Fluctuations at sub-nucleon scale

See the talk by **Anisa Khatun**: Friday at 18:00

With **new data to come in Run 3 & 4**, and thanks to detector upgrades, ALICE will be able improve the precision and conduct even more detailed measurements...

STAY TUNED!

Reminder of ALICE contributions at UPC 2023

- Energy dependence of J/ψ in UPCs at the LHC Michael Winn, Monday at 16:30
- K⁺K⁻ photoproduction in ultra-peripheral Pb–Pb collisions with ALICE Minjung Kim, Monday at 18:45
- Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ^0 photoproduction with ALICE Andrea Riffero, Tuesday at 10:15
- Photoproduction of J/ ψ and dileptons in events with nuclear overlap with ALICE Nicolas Bizé, Thursday at 17:30
- A Forward Calorimeter in ALICE Ionut Cristian Arsene, Friday at 16:30
- UPC physics with ALICE in Run 3 Anisa Khatun, **Friday** at **18:00**

Thank you for your attention!