UPC physics with ALICE in Run 3

Office of Science

- Anisa Khatun (for the ALICE Collaboration) The University of Kansas
- UPC 2023: International workshop on the physics of **Ultra Peripheral Collisions** Playa del Carmen 15/12/2023

Physics of UPCs

Itra-Peripheral Collisions (UPCs) provide a tool to probe the nucleus and nucleons

☑ ALICE is developing a comprehensive physics program [ALICE, <u>arXiv:2211.04384</u>]

 \mathbf{M} Unique in ALICE: Good acceptance for both charged particles, photons at low p_T and excellent particle identification at midrapidity

Run 3 opens a new window to explore novel physics processes

Photon breaks up target nuclei

A. Khatun

UPC 2023

The ALICE experiment in Run 3

New common online-offline computing system

- **M** The designed interaction rate was 8 kHz for Pb–Pb and 100 kHz for pp collisions in Run 2
- To cope up with an increased interaction rate of up to 50kHz for Pb-Pb, 500 kHz for p-Pb and 1 MHz for pp collisions in continuous readout mode
- **M** To collect a data sample more than 10 times larger than the combined Run 1 and Run 2 samples

BEAM OFF: improved calibration

[G. Eulisse, et al, EPJ Web of Conferences 214, 05010 (2019) CHEP 2018]

UPC 2023

Progress on UPCs at ALICE

	σ	Central 1
Meson		Tota
$ ho ightarrow \pi^+\pi^-$	5.2b	5.5 E
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	210 M
$\phi ightarrow { m K}^+ { m K}^-$	0.22b	82 M
${ m J}/\psi o \mu^+\mu^-$	1.0 mb	1.1 M
$\psi(2\mathrm{S}) o \mu^+ \mu^-$	$30\mu b$	35 K
$ m Y(1S) ightarrow \mu^+ \mu^-$	$2.0 \ \mu b$	2.8 K

A. Khatun

UPC program in Run 3 so far

☑ About 1.5 nb⁻¹ of integrated luminosity in 2023

Collected x40 larger sample of minimum bias events in Run 3 compared to Run 1 + Run 2!

UPC event selection

RUN 2 UPC event

M As in Run 2, to select a exclusive vector meson UPC event

M we require no signal in the FIT and further empty ZDCs

Possible to veto signals in individual detectors in Run 3

More flexibility, possible to select inclusive, semi-inclusive UPC events

A. Khatun

RUN 3 UPC event

UPC 2023

 \Box Clear peak of coherent ρ^0 and J/ ψ in Pb-Pb UPCs at $\sqrt{s_{_{NN}}} = 5.36$ TeV Solution Both coherent and incoherent are shown in the transverse momentum distribution

A. Khatun

UPC physics prospects in Run 3 and beyond : Exclusive vector meson photoproduction

UPC Physics prospects in Run 3 and beyond : Exclusive vector meson photoproduction with FoCal

A. Khatun

What one could possibly do in ALICE? A personal wish list !

Open heavy flavour in UPCs: Possible with triggerless data taking, cross section much larger than charmonia [Phys. Rev. C66, 044906 (2002), Nucl. Phys. A 976 (2018) 33-45]. Only a single gluon is involved unlike vector meson photoproductions \mathbf{M} Measurement of τ anomalous magnetic moment $\mathbf{V} \gamma \gamma$ interaction in UPC: Measuring light-by-light scattering in Pb-Pb and looking for resonances in the invariant mass distributions -> Axion Like Particles (ALPs) [ATLAS, JHEP 11 (2021) 050] Maxions are likely lighter particles, ALICE can potentially push down the search to 1 GeV with focus on low invariant masses [PRD 99 (2019) 9, 093013 \blacksquare Tetraquarks : $\gamma \gamma \rightarrow T_{4c} \rightarrow 4l$ [PLB 816 (2021) 136249] \mathbf{M} Inclusive/semi inclusive UPCs e.g. inclusive J/ ψ , jets in UPCs

A. Khatun

UPC 2023

Central Exclusive Production (CEP) at ALICE

Study of diffraction reactions (exchange of colourless objects)

MCEP events are studied using double-gap topology in ALICE central barrel at mid rapidity If The tracks are selected within central barrel having no signal at the FIT detectors \mathbf{M} About 29 pb⁻¹ of integrated luminosity recorded in pp collisions at $\sqrt{s} = 13.6$ TeV in 2022 and 2023. (We collected ~8 pb⁻¹ in Run 2!)

A. Khatun

UPC 2023

Central Exclusive Production (CEP) at ALICE

 \mathbf{M} Particle Identification carried by TPC down to low p_T based on specific energy loss (pion, kaon hypothesis) **M** The events are selected with two opposite charge tracks Visible resonance in raw invariant mass distributions of opposite-sign pions and kaons It will be possible to study strangeness in double gap events with $\phi(1020)$ and $f_2(1525)$ states

A. Khatun

UPC 2023

Exciting time for UPCs in Run 3 and Run 4

☑ ALICE already collected interesting data in both Pb-Pb and pp collisions. Also prospects for p-Pb data

in the near future

Precision measurements, new resonances as well as new physics!

Strangeness, heavy-quarkonia (Upsilon), open charm in UPCs

Mew physics searches: ALPs, Tetraquarks

☑ Inclusive UPCs

Mow analysis framework capable of handling the event rates expected during Run 3 and beyond!

Work and development in progress, stay tuned!

UPC 2023

Gracias!