UPC physics with ALICE in Run 3

Anisa Khatun (for the ALICE Collaboration)
The University of Kansas

UPC 2023: International workshop on the physics of Ultra Peripheral Collisions
Playa del Carmen
15/12/2023
Ultra-Peripheral Collisions (UPCs) provide a tool to probe the nucleus and nucleons

ALICE is developing a comprehensive physics program [ALICE, arXiv:2211.04384]

Unique in ALICE: Good acceptance for both charged particles, photons at low p_T and excellent particle identification at midrapidity

Run 3 opens a new window to explore novel physics processes

Ions still interact via electromagnetic processes

Photon breaks up target nuclei

No hadronic interaction

Typical exclusive VM production in UPC

A. Khatun

UPC 2023
The ALICE experiment in Run 3

FT0-A : $3.8 < \eta < 5.0$
FT0-C : $-3.4 < \eta < -2.3$
FV0 : $2.2 < \eta < 5.0$
FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

ZDC : $4.8 < \eta < 5.7$
MCH : $-4.0 < \eta < -2.5$
MFT : $-3.6 < \eta < -2.5$

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$

ZDC
Zero Degree Calorimeter

FT0-C : $-3.4 < \eta < -2.3$

FT0-A : $3.8 < \eta < 5.0$

FT0-C : $-3.4 < \eta < -2.3$

FV0 : $2.2 < \eta < 5.0$

FDD-A : $4.7 < \eta < 6.3$
FDD-C : $-6.9 < \eta < -4.9$
The ALICE experiment in Run 3

New common online-offline computing system

- The designed interaction rate was 8 kHz for Pb–Pb and 100 kHz for pp collisions in Run 2.
- To cope up with an increased interaction rate of up to 50 kHz for Pb–Pb, 500 kHz for p-Pb and 1 MHz for pp collisions in continuous readout mode.
- To collect a data sample more than 10 times larger than the combined Run 1 and Run 2 samples.

[Quality control
AO2D
Physics analysis

On-site storage]

BEAM ON: data reduction

BEAM OFF: improved calibration

EPN input data quantum is the "timeframe": 23 ns of continuous readout data. ~10 GB

Progress on UPCs at ALICE

Run 1: ~ 7k events

ALICE Pb-Pb $|s_{NN}| = 2.76$ TeV

$\rho^+(\pi^+\pi^-) < 0.15$ GeV/c

$M_{\pi^+\pi^-}$ (GeV/c2)

σ (b/GeV c2) $|y| < 0.5$

- ALICE, stat. errors
- Söding (res.-cont.)
- BW resonance
- Ross-Stodolsky

Low $|y| < 0.9$ 2.5 $|y| < 4$

Run 2: ~ 60k events

ALICE Pb-Pb UPC $|s_{NN}| = 5.02$ TeV

$\rho_1 < 0.2$ GeV/c $|y| < 0.8$

No possible with continuous readout!

Significant increase in statistics in Run 3!

Integrated luminosity:
1 nb$^{-1}$ (Run 2) -> 13 nb$^{-1}$ (Run 3 + Run 4)

CERN Yellow Rep. Monogr. 7 (2019) 1159-1410
UPC program in Run 3 so far

- LHC faced cryo incident affected pp data taking
- Despite the issues we were able to collect large sample pp data (see next slides for details)
- LHC faced vacuum incident and postponed pp reference data taking for 2024
- First Pb-Pb data taking with 2 kHz hadronic interaction rate recorded on 26th September
- Data is taken successfully with 45 kHz Hadronic Interaction Rate!

- About 1.5 nb$^{-1}$ of integrated luminosity in 2023
- Collected x40 larger sample of minimum bias events in Run 3 compared to Run 1 + Run 2!
- 1.5 nb$^{-1}$ is x3000 larger than integrated luminosity used in ρ^0 analysis of Run 2 data

ALICE Performance, 2023

Pb–Pb, $\sqrt{s_{NN}} = 5.36$ TeV

Recorded: 1535.5 µb$^{-1}$

A. Khatun
UPC 2023
As in Run 2, to select an exclusive vector meson UPC event
we require no signal in the FIT and further empty ZDCs
Possible to veto signals in individual detectors in Run 3
More flexibility, possible to select inclusive, semi-inclusive UPC events
Ongoing UPC activity in Run 3

Clear peak of coherent ρ^0 and J/ψ in Pb-Pb UPCs at $\sqrt{s_{NN}} = 5.36$ TeV
Both coherent and incoherent are shown in the transverse momentum distribution

-4 < η_p < -2.5
2.85 < $M_{\pi\pi}$ < 3.25 GeV/c²

Counts (20 MeV/c²)
Precision study of vector meson photoproduction in UPCs with significant increase in integrated luminosity

Uncertainties for nuclear suppression factor are expected to be at the level of 4% [CERN Yellow Rep. Monogr. 7 (2019) 1159-1410]. Double vector meson photoproduction

UPC bottomonia production [arXiv:2303.03007v1]

Exclusive ϕ production in the dikaon channel (currently done with Run 2 data in ALICE [arXiv:2311.11792] - See talk by Minjung Kim)

Exclusive production of a much wider range of particles, including excited vector mesons and searches for exotica- e.g. X(3872)
UPC Physics prospects in Run 3 and beyond: Exclusive vector meson photoproduction with FoCal

- FoCal: Part of ALICE upgrade for Run 4 (starting from 2029)- See talk by Ionut Cristian Arsene
- Positioned 7 m from IP2 (A-side), covering $3.4 < \eta < 5.8$
- Dissociative J/ψ in Run 3 with FOCAL acceptance in Run 4

- Exclusive J/ψ and $\psi(2S)$ ($+\text{Run 4 with Focal acceptance}$) in p-Pb UPCs

Measurement of τ anomalous magnetic moment

$\gamma\gamma$ interaction in UPC: Measuring light-by-light scattering in Pb-Pb and looking for resonances in the invariant mass distributions -> Axion Like Particles (ALPs) [ATLAS, JHEP 11 (2021) 050]

Axions are likely lighter particles, ALICE can potentially push down the search to 1 GeV with focus on low invariant masses [PRD 99 (2019) 9, 093013]

Tetraquarks: $\gamma\gamma \rightarrow T_{4c} \rightarrow 4l$ [PLB 816 (2021) 136249]

Inclusive/semi inclusive UPCs e.g. inclusive J/ψ, jets in UPCs

What one could possibly do in ALICE? A personal wish list!
Study of diffraction reactions (exchange of colourless objects)

- **$\gamma\gamma$ interaction**
 - Final state: l^+l^-, meson or photon pairs (light-by-light scattering)

- **Double-pomeron exchange**
 - Final state: enhanced production of gluon-rich final states

- **γ pomeron interaction**
 - Final state: vector mesons or dijets

- CEP events are studied using double-gap topology in ALICE central barrel at mid rapidity
- The tracks are selected within central barrel having no signal at the FIT detectors
- About 29 pb$^{-1}$ of integrated luminosity recorded in pp collisions at $\sqrt{s} = 13.6$ TeV in 2022 and 2023. (We collected ~8 pb$^{-1}$ in Run 2!)

ALICE Performance, Run 3, pp, $\sqrt{s} = 13.6$ TeV
Recorded: 29.0 pb$^{-1}$
Central Exclusive Production (CEP) at ALICE

- Particle Identification carried by TPC down to low p_T based on specific energy loss (pion, kaon hypothesis)
- The events are selected with two opposite charge tracks
- Visible resonance in raw invariant mass distributions of opposite-sign pions and kaons
- It will be possible to study strangeness in double gap events with $\phi(1020)$ and $f_2(1525)$ states

ALICE performance
Run 3 pp $\sqrt{s} = 13.6$ TeV
Luminosity = 0.28 pb$^{-1}$

Fraction of $\pi^+\pi^-$ candidates

Visible resonance in raw invariant mass distributions of opposite-sign pions and kaons

2% of 2022 pp data
KK-pairs DG events

ALI-PERF-551097
ALI-PERF-545710

A. Khatun
UPC 2023
Conclusion and Outlook

- Exciting time for UPCs in Run 3 and Run 4
- ALICE already collected interesting data in both Pb-Pb and pp collisions. Also prospects for p-Pb data in the near future
- Precision measurements, new resonances as well as new physics!
- Strangeness, heavy-quarkonia (Upsilon), open charm in UPCs
- New physics searches: ALPs, Tetraquarks
- Inclusive UPCs
- New analysis framework capable of handling the event rates expected during Run 3 and beyond!
- Work and development in progress, stay tuned!
Gracias!