

K+K-photoproduction in ultra-peripheral **Pb--Pb collisions with ALICE**

Minjung Kim on behalf of the ALICE Collaboration (UC Berkeley / LBNL / CFNS, Stony Brook U.)

UPC 2023: International workshop on the physics of ultra peripheral collisions 11. Dec. 2023 - 15. Dec. 2023

Exclusive K^+K^- photoproduction

- Cross section of Exclusive K^+K^- ($\pi^+\pi^-$) photoproduction described by Söding formula

$$\frac{d\sigma}{dM_{KK}} = \left| A_{\phi} \frac{\sqrt{M_{KK} M_{\phi} \Gamma_{\phi}}}{M_{KK}^2 - M_{\phi}^2 + iM_{\phi} \Gamma_{\phi}} + B_{KK} \right|^2 \text{ where } \Gamma_{\phi} = \Gamma_0 \frac{M_K}{M_{KK}} \left(\frac{M_{KK}^2 - 4M_K^2}{M_{\phi}^2 - 4M_K^2} \right)^{3/2}$$

mass dependent width and M_K is the kaon mass, while A_{ϕ} and B_{KK} are the amplitudes for

 $\phi(1020) \rightarrow K^+K^-$ and direct K^+K^- production

Minjung Kim UC Berkeley

Different physics processes are involved, which cannot be distinguished from and interfere

Diagrams from Nachtmann et. al., PRD 98, 014001 (2018)

> UPC workshop 11. Dec. 2023

ALICE as photon-hadron collider experiment

Trigger events having two back-to-back tracks in the transverse plane in central barrel

V0 and AD sets of two scintillator detectors: veto triggers **ZDC** for neutron detection **Time Projection Chamber** for tracking and particle identification Time Of Flight for trigger back-to-back topology

> Minjung Kim UC Berkeley

UPC workshop 11. Dec. 2023

 $\rho(770)$ + direct $\pi^+\pi^-$ photoproduction

ALICE Collaboration, JHEP 06 (2020) 035

Invariant mass distribution is fitted to the Söding formula Contribution from continuum, |B/A|: \rightarrow constant as a function of rapidity, collision energy (vs. 2.76 TeV) and different neutron classes in current precision STAR Collaboration, PRC.96.054904 → comparison with STAR result: sensitive to the kinematics of interaction or type of target?

.5

Kaon identification based on TPC signal

- reject pion, muon and electron
- $n\sigma_{\rm K}$ distribution \rightarrow negligible background pairs in $1.1 < M_{\rm KK} < 1.4 \ {\rm GeV}/c^2$

Kaon identification with specific energy loss measured in TPC: stringent PID requirements to

Contamination from misidentified particles estimated based on the 2-dimensional TPC dE/dx

Raw yield of K+K- candidates

Small fraction of like-sign pairs: little (negligible) combinatorial background pairs in $p_{\rm T,KK} < 0.1 \text{ GeV}/c \text{ in } 1.1 < M_{\rm KK} < 1.4 \text{ GeV}/c^2$

• Rise of K+K- raw yield at low $p_{T,KK}$ indicating coherent photoproduction

$\ensuremath{p_T^2}\xspace$ distribution of exclusive K+K- photoproduction

ALI-PUB-565617

- Exclusive K+K- photoproduction as a function of $p_{\rm T}^2 \approx \|\,t\,|$
- Exponential function: $ae^{-b \times p_T^2}$ with slope parameter $b = 428\pm6(\text{stat.})\pm15(\text{syst.})$ GeV^{-2} taken from ALICE $\rho(770) \rightarrow \pi\pi$ measurement fairly well describes the data ALICE Collaboration, JHEP 09 (2015) 095,
- The cross section at low p_T^2 is in favor of photoproduction with destructive interference (as both nuclei can be either the photon source or scattering target)

Invariant mass spectrum

ALICE Collaboration, arXiv: 2311.11792

Invariant mass spectrum

ALICE Collaboration, arXiv: 2311.11792

Minjung Kim UC Berkeley

Söding formula has 3 free parameters:

$$\frac{d\sigma}{dM_{KK}} = \left| A_{\phi} \frac{\sqrt{M_{KK}M_{\phi}\Gamma_{\phi}}}{M_{KK}^2 - M_{\phi}^2 + iM_{\phi}\Gamma_{\phi}} + B_{KK} \right|^2$$

where
$$\Gamma_{\phi} = \Gamma_0 \frac{M_K}{M_{KK}} \left(\frac{M_{KK}^2 - 4M_K^2}{M_{\phi}^2 - 4M_K^2} \right)^{3/2}$$

- ϕ meson cross section: fixed by HERA measurement + Glauber model with 25% uncertainty including BR
- |B/A|: ratio between non-resonant contribution and $\phi \to KK$
- Φ : relative phase angle between nonresonant contribution and $\phi \rightarrow KK$
- Best fit: fit data points with 2 free parameters, |B/A| and Φ considering measured uncertainties

Invariant mass spectrum

ALICE Collaboration, arXiv: 2311.11792

	• $\pi\pi$ system:
,	 All 3 parameters fixed: R. M. Egloff et al., PRL.43.657 ZEUS Collaboration Phys. Lett. B 377 (1996) 259–272 φ(1020) meson cross section
	ALICE Collaboration, JHEP 06 (2020) 035 - B/A from <u>ALICE</u>
	STAR Collaboration, PRC.96.054904 Phase angle Φ from STAR
00)	 Lower edge of fit uncertainty B/A =0:
	 Independent from phase angle Φ
	 Band reflects the 25% systematic uncertainty of ϕ(1020) cross section
	More than 2 sigma away from the

Uncertainty and confidence level

ALICE Collaboration, arXiv: 2311.11792

ALI-PUB-565625

- χ^2/ndf scanned over $-\pi < \phi < \pi$ and 0 < |*B*/*A*| < 2 to determine confidence level
- $\Delta \chi^2 = \chi^2 \chi^2_{min}$ contour as 68% and 95% confidence level
- As seen in invariant mass spectrum, the parameters are consistent with those in $\pi\pi$ system in 1σ

Summary and outlook

- heavy-ion collisions
- The measured cross section for coherent photoproduction of K+K- in the mass range $1.1 < M_{\rm KK} < 1.4 ~{\rm GeV}/c^2$ consistent with a mixture of ϕ (1020) and nonresonant K+K- photoproduction and their interference
- Ratio of each component and the relative phase angle between ϕ (1020) and nonresonant K+K- are similar to those seen for the $\rho(770)$ and direct $\pi^+\pi^-$ production
- Improved precision measurement expected based on large data collected in Run 3

• First measurement of coherent photoproduction of K+K- pairs in ultra-peripheral

